首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, the "spectral amplitude ratio method" (SAR), "energy method" (EN) and "coda wave method" (CW) are used to calculate theQ value variations of gneiss in the preparing rupture process. The obtained results show that the variation state ofQ values by SAR features the shape of relative stability—gradual increment to the maximum—then decrement and final rupture. The variation state ofQ values by EN is just contrary to that by SAR, i. e. with the shape of stability—decrement—increment—and final rupture. The varation state ofQ values by CW is similar to that by EN, its main frequency features the shape of relatively high value—decrement to the minimum—increment—and final rupture. But to the high frequency (higher than the main frequency), the variation state ofQ values features the shape of the stable value-increment to the maximum-decrement-and final rupture. At the same time, the results by coda wave amplitude spectrum show that, when stress reaches 70% of rupture stress, the high frequency component of S wave rapidly reduces (Q c increasing); at the time of impending the main rupture, the main frequency component reduces with a large scale (Q c increasing again), this may be the reason which causes the different variation states of two codaQ values. The result of amplitude spectra of P, S (initial wave) waves also show that with the appearance of microcracks the frequency band of S wave turn to be narrow, the high frequency component is reduced quickly, i. e. the S wave spectra have different variation states with different frequency components. That is why theQ s obtained by different methods have different variation characteristics.  相似文献   

2.
TheQvaluevariationsinthepreparingpro┐cesofrockruptureBINWANG1)(王彬),ZHAO-YONGXU1)(许昭永),JIN-MINGZHAO1)(赵晋明)YI-LIHU2)(胡毅力)1)Sei...  相似文献   

3.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

4.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

5.
—Broad band digital three-component data recorded at UNM, a GEOSCOPE station, were used to estimate Lg coda Q for 34 medium size (3.9 ≤m b ≤ 6.3) earthquakes with travel paths laying in different geological provinces of southern Mexico in an effort to establish the possible existence of geological structures acting as wave guides and/or travel paths of low attenuation between the Pacific coast and the Valley of Mexico. The stacked spectral ratio method proposed by XIE and NUTTLI (1988) was chosen for computing the coda Q. The variation range of Q 0 (Q at 1?Hz) and the frequency dependence parameter η estimates averaged on the frequency interval of 0.5 to 2?Hz for the regions and the three components considered are: i) Guerrero region 173 ≤ 0≤ 182 and 0.6 ≤ 0 ≤ 0.7, ii) Oaxaca region 183 ≤ 0 ≤ 198 and 0.6 ≤ 0 ≤ 0.8, iii) Michoacan-Jalisco region 187 ≤ 0 ≤ 204 and 0.7 ≤ 0 ≤ 0.8 and iv) eastern portion of the Transmexican Volcanic Belt (TMVB) 313 ≤Q 0≤ 335 and η = 0.9. ¶The results show a very high coda Q for the TMVB as compared to other regions of southern Mexico. This unexpected result is difficult to reconcile with the geophysical characteristics of the TMVB, e.g., low seismicity, high volcanic activity and high heat flow typical of a highly attenuating (low Q) region. Visual inspection of seismograms indicates that for earthquakes with seismic waves traveling along the TMVB, the amplitude decay of Lg coda is anomalously slow as compared to other earthquakes in southern Mexico. Thus, it seems that the high Q value found does not entirely reflect the attenuation characteristics of the TMVB but it is probably contaminated by a wave-guide effect. This phenomenon produces an enhancement in the time duration of the Lg wave trains travelling along this geological structure. This result is important to establish the role played by the transmission medium in the extremely long duration of ground motion observed during the September 19, 1985 Michoacan earthquake. ¶The overall spatial distribution of coda Q values indicates that events with focus in the Michoacan-Jalisco and Oaxaca regions yield slightly higher values than those from Guerrero. This feature is more pronounced for the horizontal component of coda Q. A slight dependence of average coda Q ?1 on earthquake focal depth is observed in the frequency range of 0.2 to 1.0?Hz approximately on the horizontal component. Deeper (h > 50?km) events yield lower values of Q ?1 than shallower events. For frequencies higher than 1.0?Hz no clear dependence of Q ?1 on focal depth is observed. However, due to the estimates uncertainties this result is not clearly established.  相似文献   

6.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

7.
Based on the single scattering model of seismic coda waves, we have calculated theQ-factor in Beijing and its surrounding regions by means of calculating the power density spectrum in frequency domain with a fixed time window. The digital seismic data of 69 earthquakes from Beijing Telemetered Seismographic Network are used. These earthquakes were recorded from January 1, 1989 to December 31, 1990 at 20 stations. This paper shows the variations of the codaQ-factors in the studied region with different sites, frequency and lapse time, and the temporal change of the codaQ-factors in these two years. The results indicate that codaQ-factor depends strongly on the lapse time and frequency. It is assumed that whenQ C=Q 0fη, for the three time windows of 15–30s, 30–60s and 60–90s, the average values ofQ 0 are 48, 115 and 217; and the average values ofη are 0. 89, 0.91 and 0.74, respectively.  相似文献   

8.
Using simulated coda waves, the resolution of the single-scattering model to extract codaQ (Q c ) and its power law frequency dependence was tested. The back-scattering model ofAki andChouet (1975) and the single isotropic-scattering model ofSato (1977) were examined. The results indicate that: (1) The inputQ c models are reasonably well approximated by the two methods; (2) almost equalQ c values are recovered when the techniques sample the same coda windows; (3) lowQ c models are well estimated in the frequency domain from the early and late part of the coda; and (4) models with highQ c values are more accurately extracted from late code measurements.  相似文献   

9.
The quality factors of coda and shear waves have been estimated for the SE Sabalan Mountain, geothermal region in northwestern Iran. We have analyzed 65 local earthquakes with magnitude of 2.8 to 6.1 and 2.8 to 5 for shear and coda wave quality factor estimation, respectively. These events were recorded on five stations installed by Building and Housing Research Center Network. Coda normalization and Spectral decay methods have been used to estimate the frequency dependence attenuation relation for shear wave, and single back-scattering method for coda waves. We have observed that the coda normalization method has supplied significantly higher Q S values as compared to the spectral method. The results show that, in general, Q values are significantly smaller for the entire frequency range as compared to tectonically active areas and are close to the values for volcanic areas.  相似文献   

10.
—?The digital data acquired by 16 short-period seismic stations of the Friuli-Venezia-Giulia seismic network for 56 earthquakes of magnitude 2.3–4.7 which occurred in and near NE Italy have been used to estimate the coda attenuation Q c and seismic source parameters. The entire area under study has been divided into five smaller regions, following a criterion of homogeneity in the geological characteristics and the constrains imposed by the distribution of available events. Standard IASPEI routines for coda Q c determination have been used for the analysis of attenuation in the different regions showing a marked anomaly in the values measured across the NE border between Friuli and Austria for Q 0 value. A large variation exists in the coda attenuation Q c for different regions, indicating the presence of great heterogeneities in the crust and upper mantle of the region. The mean value of Q c (f) increases from 154–203 at 1.5?Hz to 1947–2907 at 48?Hz frequency band with large standard deviation estimates.¶Using the same earthquake data, the seismic-moment, M 0, source radius, r and stress-drop, Δσ for 54 earthquakes have been estimated from P- and S-wave spectra using the Brune's seismic source model. The earthquakes with higher stress-drop (greater than 1?Kbar) occur at depths ranging from 8 to 14?km.  相似文献   

11.
Regional seismograms were collected to image the lateral variations of L g coda Q at 1 Hz (Q 0 ) and its frequency dependence η across Burma and its neighboring regions. The data include 660 vertical-component traces recorded at 39 stations. The resulting image indicates that L g coda Q, at a frequency of 1 Hz, varies between 100 and 500. Lowest Q values (< 200) lie in the Three rivers (the Jinshajiang River, Nujiang River, and Lancangjiang River) area of Southwest China. Relatively low Q values (200–250) are found in the Himalayan region and the eastern Burma highland. Higher L g coda Q values (> 250) are found in the eastern Indian block. From the L g coda Q tomography, we found that (1) The Sagain fault acts as a rough boundary between the eastern Indian plate and the Three rivers area of the Eurasia plate; (2) near the eastern Himalayan syntaxis, higher Q value appears in the background of relatively low Q (which may be the consequence of the northward intrusion of the Assam block of the Indian plate into the southern Qinghai-Tibet plateau.  相似文献   

12.
Coda wave quality factor (Q c ) was investigated by using digital data (100 sample sec–1) recorded by a vertical component short-period station installed for this study. The station was located in the greater Fairbanks area in central Alaska. From several hundred earthquakes recorded by this station in about a year, 27 earthquakes were selected for the above study; 7 of these selected earthquakes were located along the Alaska Wadati-Benioff zone (Pacific plate). The other 20 earthquakes were located in the area of intraplate seismicity (North American plate). The data was filtered using 9 pass-bands with center frequency varying from 1.5 Hz to 16 Hz with octave bandwidth. The values ofQ c obtained from the coda amplitude decay rates measured on the filtered data after corrections due to the recording instrument and source-receiver separation show appreciable frequency dependence. The value ofQ c varies in the range of 253 and 1190 corresponding to the frequency interval from 1.5 Hz to 16 Hz for the study area. This variation is close to that reported by others for the Kanto region of Japan. Moreover, the characteristics ofQ c obtained in the present case seem to be independent of epicentral distance and hypocentral depth.  相似文献   

13.
785 traces of vertical components from shallow earthquakes recorded by 10 CDSN (Chinese Digital Seismographic Network) stations and 5 GSN (Global Seismographic Network) stations were collected to study the attenuation characteristics ofL g coda in the Chinese continent and its adjacent regions. The records were processed first using the stack spectral ratio method to obtain the average values ofQ 0 (Q at 1Hz) and η, the frequency dependence, ofL g coda in the ellipses corresponding to the paths. The back-projection technique was then employed to obtain the tomographic maps ofQ 0 and η values, and the distribution of their errors. Results indicate that in the studied areaQ 0 varies between 200 and 500. The lowest value ofQ 0 exists in the Yun-nan-Tibetan region, while the highest value ofQ 0 occurs in the southern edge of Siberian platform. η varies between 0.3 and 0.8. For most part of the studied area η varies inversely withQ 0.  相似文献   

14.
In this paper, considering the influences of source spectrum, the scattering property of medium and instrument response on the dominant frequency of coda, a method of using the coda of local earthquake to determine the correlation length of medium andQ-value is given. We find the following formula as: {fx719-1} wheret* =t/Q, f is the dominant frequency of coda,u 1 andu 2 are the parameters depend on the correlation length and the corner frequency of the source spectrum respectively,I(f) is a function of instrument response. If the source parameter is given, we can obtain the correlation length andQ-value by means of the inversion of observed curves off-t of coda. We processed the data of coda wave of more than 40 earthquakes from 1982 to 1989 in Lingwu region, China, determined the correlation length andQ-value, and preliminarily studied the temporal change of correlation length before and after moderately strong earthquakes. The result suggests that there are indications that the correlation length of medium decreases before the moderate earthquake. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 62–70, 1992.  相似文献   

15.
For short-period near-earthquake records in eastern China, from the empirical attenuation formula of coda ground motion amplitudeA with timeτ: lgA=G?2. 235 lgτ, using the single scattering theory modified with epicentral distance, we obtain the curve family of corrected coda amplitudeA c(r,t), andω/2Q c values for each time interval of coda. From this,Q c(f,h) values, which correspond to each observational average frequency and sampling depth, are calculated. The results substantially agree with those observationalQ c values in Yunnan, Beijing and central Asia.  相似文献   

16.
Estimation of seismic wave attenuation in the shallow crust in terms of coda wave Q structure previously investigated in the vicinity of Cairo Metropolitan Area was improved using seismograms of local earthquakes recorded by the Egyptian National Seismic Network. The seismic wave attenuation was measured from the time decay of coda wave amplitudes on narrow bandpass filtered seismograms based on the single scattering theory. The frequency bands of interest are from 1.5 to 18 Hz. In general, the values obtained for various events recorded at El-Fayoum and Wadi Hagul stations are very similar for all frequency bands. A regional attenuation law Q c = 85.66 f 0.79 was obtained.  相似文献   

17.
Coda Q Estimates in the Koyna Region, India   总被引:1,自引:0,他引:1  
—The coda Q, Q c ?, have been estimated for the Koyna region of India. The coda waves of 76 seismograms from thirteen local earthquakes, recorded digitally in the region during July–August, 1996, have been analyzed for this purpose at nine central frequencies viz., 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 16.0 and 24.0 Hz using a single backscattering model. All events with magnitude less than 3 fall in the epicentral distances less than 60 km and have focal depths which range from 0.86 to 9.43 km. For the 30 sec coda window length the estimated Q c values vary from 81 to 261 at 1.5 Hz and 2088 to 3234 at 24 Hz, whereas the mean values of Q c with the standard error vary from 148 ± 13.5 at 1.5 Hz to 2703 ± 38.8 at 24 Hz. Both the estimated Q c values and their mean values exhibit the clear dependence on frequency in the region and a frequency dependence average attenuation relationship, Q c = 96f 1.09, has been obtained for the region, covering an approximate area of 11500 km2 with the surfacial extent of about 120 km and depth of 60 km.¶Lapse time dependence of Q c has also been studied for the region, with the coda waves analyzed at five lapse time windows from 20 to 60 sec duration with the difference of 10 sec. The frequency dependence average Q c relationships obtained at these window lengths Q c = 66f 1.16 (20 sec), Q c = 96f 1.09 (30 sec), Q c =131f 1.04 (40 sec), Q c = 148f 1.04 (50 sec), Q c = 182f 1.02 (60 sec) show that the frequency dependence (exponentn) remains mostly stationary at all the lapse time window lengths, while the change in Q 0 value is significant. Lapse time dependence of Q c in the region is also interpreted as the function of depth.  相似文献   

18.
Numerical modelling ofSH wave seismograms in media whose material properties are prescribed by a random distribution of many perfectly elastic cavities and by intrinsic absorption of seismic energy (anelasticity) demonstrates that the main characteristics of the coda waves, namely amplitude decay and duration, are well described by singly scattered waves in anelastic media rather than by multiply scattered waves in either elastic or anelastic media. We use the Boundary Integral scheme developed byBenites et al. (1992) to compute the complete wave field and measure the values of the direct waveQ and coda wavesQ in a wide range of frequencies, determining the spatial decay of the direct wave log-amplitude relation and the temporal decay of the coda envelope, respectively. The effects of both intrinsic absorption and pure scattering on the overall attenuation can be quantified separately by computing theQ values for corresponding models with (anelastic) and without (elastic) absorption. For the models considered in this study, the values of codaQ –1 in anelastic media are in good agreement with the sum of the corresponding scatteringQ –1 and intrinsicQ –1 values, as established by the single-scattering model ofAki andChouet (1975). Also, for the same random model with intrinsic absorption it appears that the singly scattered waves propagate without significant loss of energy as compared with the multiply scattered waves, which are strongly affected by absorption, suggesting its dominant role in the attenuation of coda waves.  相似文献   

19.
Seismic coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250?km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28?Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( $ Q_{\text{c}}^{ - 1} $ ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( $ Q_{\text{c}}^{ - 1} \left( f \right) = Q_{0}^{ - 1} f^{ - n} $ ). The Q 0 (Q c at 1?Hz) estimates vary from about 50 for a 10?s lapse time and 10?s window length, to about 350 for a 60?s lapse time and 60?s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q c ?1 values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.  相似文献   

20.
Three types of seismic data recorded near Coalinga, California were analyzed to study the behavior of scattered waves: 1) aftershocks of the May 2, 1983 earthquake, recorded on verticalcomponent seismometers deployed by the USGS; 2) regional refraction profiles using large explosive sources recorded on essentially the same arrays above; 3) three common-midpoint (CMP) reflection surveys recorded with vibrator sources over the same area. Records from each data set were bandpassed filtered into 5 Hz wide passbands (over the range of 1–25 Hz), corrected for geometric spreading, and fit with an exponential model of amplitude decay. Decay rates were expressed in terms of inverse codaQ (Q c –1 ).Q c –1 values for earthquake and refraction data are generally comparable and show a slight decrease with increasing frequency. Decay rates for different source types recorded on proximate receivers show similar results, with one notable exception. One set of aftershocks shows an increase ofQ c –1 with frequency.Where the amplitude decay rates of surface and buried sources are similar, the coda decay results are consistent with other studies suggesting the importance of upper crustal scattering in the formation of coda. Differences in the variation ofQ c –1 with frequency can be correlated with differences in geologic structure near the source region, as revealed by CMP-stacked reflection data. A more detailed assessment of effects such as the depth dependence of scattered contributions to the coda and the role of intrinsic attenuation requires precise control of source-receiver field geometry and the study of synthetic seismic data calculated for velocity models developed from CMP reflection data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号