首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
正1.Great challenges in scientific frontiers of marine carbon storage in the scenario of global change The marine carbon cycle is influenced by anthropogenic activities,affecting global climate change and casting a significant impact on ecosystems.However,the complex spatiotemporal process of the marine carbon cycle results in the uncertainty in the estimation of marine carbon budget,either  相似文献   

2.
The eddy covariance technique has emerged as an important tool to directly measure carbon dioxide, water vapor and heat fluxes between the terrestrial ecosystem and the atmosphere after a long history of fundamental research and technological developments. With the realization of regional networks of flux measurements in North American, European, Asia, Brazil, Australia and Africa, a global-scale network of micrometeorological flux measurement (FLUXNET) was established in 1998. FLUXNET has made great progresses in investigating the environmental mechanisms controlling carbon and water cycles, quantifying spatial-temporal patterns of carbon budget and seeking the "missing carbon sink" in global terrestrial ecosystems in the past ten years. The global-scale flux measurement also built a platform for international communication in the fields of resource, ecology and environment sciences. With the continuous development of flux research, FLUXNET will introduce and explore new techniques to extend the application fields of flux measurement and to answer questions in the fields of bio-geography, eco-hydrology, meteorology, climate change, remote sensing and modeling with eddy covariance flux data. As an important part of FLUXNET, ChinaFLUX has made significant progresses in the past three years on the methodology and technique of eddy covariance flux measurement, on the responses of CO2 and H2O exchange between the terrestrial ecosystem and the atmosphere to environmental change, and on flux modeling development. Results showed that the major forests on the North-South Transect of Eastern China (NSTEC) were all carbon sinks during 2003 to 2005, and the alpine meadows on the Tibet Plateau were also small carbon sinks. However, the reserved natural grassland, Leymus chinensis steppe in Inner Mongolia, was a carbon source. On a regional scale, temperature and precipitation are the primary climatic factors that determined the carbon balance in major terrestrial ecosystems in China. Finally, the current research emphasis and future directions of ChinaFLUX were presented. By combining flux network and terrestrial transect, ChinaFLUX will develop integrated research with multi-scale, multi-process, multi-subject observations, placing emphasis on the mechanism and coupling relationships between water, carbon and nitrogen cycles in terrestrial ecosystems.  相似文献   

3.
The Milankovi theory stresses that the summer insolation in the high northern latitudes that is dominated by the precession cycle controls the glacial/interglacial cycles in global climate change.If the climate system responds linearly to the external insolation forcing,the precession cycle of 23 or 19 ka should dominate the variations in the climatic proxy records.I performed spectral and evolutive cross spectral analyses on the high resolution benthic 18O and 13C records from the South China Sea and the North Atlantic,the proxies of global ice volume and ocean carbon reservoir respectively.I found that the obliquity instead of the eccentricity or the precession is the most marked cycle in the global ice volume and ocean carbon reservoir variations over the past 5 Ma.The analysis further reveals that only at the obliquity band instead of the eccentricity or the precession band does the global ice volume and ocean carbon reservoir display consistently high coherency and stable phase relationship over the past 5 Ma.The consistently positive or near-zero phases of the benthic 18O relative to the benthic13C at the obliquity band suggest that the global carbon cycle is involved in the polar ice sheet growth as an important internal feedback,not a determinative driving factor.The obliquity instead of the precession or the eccentricity takes the dominant role of driving the global climate change during the Pliocene and Pleistocene.  相似文献   

4.
The deep ocean piezosphere accounts for a significant part of the global ocean,hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carbon cycle.The conventional biological pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understanding of the role of microorganisms in cycling of carbon in the ocean.However,there are significant gaps in our knowledge and a lack of mechanistic understanding of the processes of microbially-mediated production,transformation,degradation,and export of marine dissolved and particulate organic matter(DOM and POM)in the deep ocean and the ecological consequence.Here we propose the POM-DOM piezophilic microorganism continuum(PDPMC)conceptual model,to address these important biogeochemical processes in the deep ocean.We propose that piezophilic microorganisms(bacteria and archaea)play a pivotal role in deep ocean carbon cycle where microbial production of exoenzymes,enzymatic breakdown of DOM and transformation of POM fuels the rapid cycling of marine organic matter,and serve as the primary driver for carbon cycle in the deep ocean.  相似文献   

5.
The long-term and continuous carbon fluxes of Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical evergreen coniferous forest (QYZ), Dinghushan subtropical evergreen mixed forest (DHS) and Xishuangbana tropical rainforest (XSBN) have been measured with eddy covariance techniques. In 2003, different responses of carbon exchange to the environment appeared across the four ecosystems. At CBS, the carbon exchange was mainly determined by radiation and temperature. 0℃and 10℃were two important temperature thresholds; the former determined the length of the growing season and the latter affected the magnitude of carbon exchange. The maximum net ecosystem exchange (NEE) of CBS occurred in early summer because maximum ecosystem photosynthesis (GPP) occurred earlier than maximum ecosystem respiration (Rθ). During summer, QYZ experienced severe drought and NEE decreased significantly mainly as a result of the depression of GPP. At DHS and XSBN, NEE was higher in the drought season than the wet season, especially the conversion between carbon sink and source occurring during the transition season at XSBN. During the wet season, increased fog and humid weather resulted from the plentiful rainfall, the ecosystem GPP was dispressed. The Q10 and annual respiration of XSBN were the highest among the four ecosystems, while the average daily respiration of CBS during the growing season was the highest. Annual NEE of CBS, QYZ, DHS and XSBN were 181.5, 360.9, 536.2 and -320.0 g·C·m-2·a-1, respectively. From CBS to DHS, the temperature and precipitation increased with the decrease in latitude. The ratio of WEE/Rθincreased with latitude, while Rθ/Gpp, ecosystem light use efficiency (LUE), precipitation use efficiency and average daily GPP decreased gradually. However, XSBN usually escaped such latitude trend probably because of the influence of the south-west monsoon climate which does not affect the other ecosystems. Long-term measurement and more research were necessary to understand the adaptation of forest ecosystems to climate change and to evaluate the ecosystem carbon balance due to the complexity of structure and function of forest ecosystems.  相似文献   

6.
Carbon dynamics of grasslands on the Qinghai-Tibetan Plateau may play an important role in regional and global carbon cycles. The CENTURY model (Version 4.5) is used to examine temporal and spatial variations of soil organic carbon (SOC) in grasslands on the Plateau for the period from 1960 to 2002. The model successfully simulates the dynamics of aboveground carbon and soil surface SOC at the soil depth of 0-20 cm and the simulated results agree well to the measurements. Examination of SOC for eight typical grasslands shows different patterns of temporal variation in different ecosystems in 1960-2002. The extent of temporal variation increases with the increase of SOC of ecosystem. SOC increases first and decreases quickly then during the period from 1990 to 2000. Spatially, SOC density obtained for the equilibrium condition declines gradually from the southeast to the northwest on the plateau and showed a high heterogeneity in the eastern plateau. The results suggest that (i) SOC den-sity in the alpine grasslands shows remarkable response to climate change during the 42 years, and (ii) the net carbon exchange rate between the alpine grassland ecosystems and the atmosphere increases from 1990 to 2000 as compared with that before 1990.  相似文献   

7.
Carbon burial in lake sediments is an important component of the global carbon cycle. However, little is known about the magnitude of carbon sequestered in lake sediments over the arid/semiarid region of China(ASAC).In this study, we estimate both organic and inorganic carbon burial since *AD 1800 based on nine lakes in ASAC,and discuss the most plausible factors controlling carbon burial. Our estimates show that the annual organic carbon burial rate(OCBR) ranges from 5.3 to 129.8 g cm-2year-1(weighted mean of 49.9 g cm-2year-1), leading to a standing stock of 1.1–24.0 kg cm-2(weighted mean of 8.6 kg cm-2)and a regional sum of *108 Tg organic carbon sequestered since *AD 1800. The annual inorganic carbon burial rate(ICBR) ranges from 11.4 to 124.0 g cm-2year-1(weighted mean of 48.3 g cm-2year-1), which is slightly lower than OCBR. The inorganic carbon standing stock ranges from2.4 to 26.0 kg cm-2(weighted mean of 8.1 kg cm-2),resulting in a sum of *101 Tg regional inorganic carbon burial since *AD 1800, which is slightly lower than the organic carbon sequestration. OCBR in ASAC shows a continuously increasing trend since *AD 1950, which is possibly due to the high autochthonous and allochthonous primary production and subsequently high sedimentation rate in the lakes. This increasing carbon burial is possibly related to both climatic changes and enhanced anthropogenic activities, such as land use change, deforestation, and eutrophication in the lake. Furthermore, OCBR and ICBR are expected to continuously increase under the scenario of increasing precipitation and runoff and enhanced anthropogenic activities.The results of this research show that the buried carbon in lake sediments of the ASAC region constitutes a significant and large carbon pool, which should be considered and integrated into the global carbon cycle.  相似文献   

8.
1 Introduction As one of the most important greenhouse gases, atmospheric carbon dioxide (CO2) has increased in concentration rapidly since preindustrial times[1―4] and significantly contributes to the climate change[5] caused by anthropogenic emissions. Documentation of the global carbon cycle has been critical for under-standing the causative relationships between green-house gases and climate change. For example, the CO2 level in the atmosphere has been monitored at many sites worldwide …  相似文献   

9.
As the third largest country in the world, China has highly variable environmental condition and eco- logical pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China. From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981―2000.  相似文献   

10.
Spatio-temporal patterns and driving mechanisms of forest carbon dioxide (CO2) exchange are the key issues on terrestrial ecosystem carbon cycles, which are the basis for developing and validating ecosystem carbon cycle models, assessing and predicting the role of forests in global carbon balance. Eddy covariance (EC) technique, an important method for measuring energy and material exchanges between terrestrial ecosystems and the atmosphere, has made a great contribution to understanding CO2 exchanges in the biosphere during the past decade. Here, we synthesized published EC flux measurements at various forest sites in the global network of eddy flux tower sites (FLUXNET) and regional flux networks. Our objective was to explore spatio-temporal patterns and driving factors on forest carbon fluxes, i.e. net ecosystem productivity (NEP), gross primary productivity (GPP) and total ecosystem respiration (TER). Globally, forest NEP exhibited a significant latitudinal pattern jointly controlled by GPP and TER. The NEP decreased in an order of warm temperate forest > cold temperate and tropical rain forests > boreal and subalpine forests. Mean annual temperature (MAT) made a greater contribution to forest carbon fluxes than sum of annual precipitation (SAP). As MAT increased, the GPP increased linearly, whereas the TER increased exponentially, resulting in the NEP decreasing beyond an MAT threshold of 20°C. The GPP, TER and NEP varied substantially when the SAP was less than 1500 mm, but tended to increase with increasing SAP. Temporal dynamics in forest carbon fluxes and determinants depended upon time scales. NEP showed a significant interannual variability mainly driven by climate fluctuations and different responses of the GPP and TER to environmental forcing. In a longer term, forest carbon fluxes had a significant age effect. The ecosystem was a net carbon source right after clearcutting, gradually switched to a net carbon sink when the relative stand age (i.e. ratio of actual stand age to the stand rotation age) approached 0.3, and maximized carbon sequestration capacity at premature or mature stand stages. This temporal pattern of NEP was correlated with stand leaf area index and associated GPP. This study highlights the significance of spatio-temporal dynamics in the CO2 exchange in forest carbon cycling studies. It is also suggested that in addition to forest biomes, interannual variations and stand age effects of forest carbon fluxes should be considered in the global carbon balance.  相似文献   

11.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

12.
Increased nitrogen(N) deposition and land-use and land-cover change(LUCC) have influenced the terrestrial ecosystem carbon budget in China over the past few decades.However,the coupling effects of N deposition and LUCC on the carbon cycle remain unclear.This study first evaluated the effects of LUCC on N deposition based on estimated N deposition data from NO_2 column remote sensing data and the GlobeLand30 LUCC dataset,and then assessed the coupling effects of N deposition and LUCC on carbon budgets in China based on a terrestrial ecosystem process-based model.The results showed that the average rate of increase in N deposition in China was 0.35 Tg N yr~(-1)(Tg = 10~(12) g),which caused net primary production(NPP) and net ecosystem production(NEP) to rise by 92.2 Tg C yr~(-1) and 46.9 Tg C yr~(-1),respectively.The effects of LUCC reduced N deposition by 0.21 GgNyr~(-1)(Gg= 10~9g).The land changed from forest to cropland had the greatest rate of increase in N deposition among all types of land-cover change.Changes from cropland to forest slowed the rate of N deposition increase the most.Generally,the change in N deposition resulting from LUCC reduced NPP and NEP by 0.7 and 0.4 Gg C yr~(-1),respectively.Compared with the total effects of N deposition on NPP and NEP,N deposition changes caused by LUCC had a limited aggregate effect on the C budget.  相似文献   

13.
The projected changes in carbon exchange between China terrestrial ecosystem and the atmosphere and vegetation and soil carbon storage during the 21st century were investigated using an atmos-phere-vegetation interaction model (AVIM2). The results show that in the coming 100 a, for SRES B2 scenario and constant atmospheric CO2 concentration, the net primary productivity (NPP) of terrestrial ecosystem in China will be decreased slowly, and vegetation and soil carbon storage as well as net ecosystem productivity (NEP) will also be decreased. The carbon sink for China terrestrial ecosystem in the beginning of the 20th century will become totally a carbon source by the year of 2020, while for B2 scenario and changing atmospheric CO2 concentration, NPP for China will increase continuously from 2.94 GtC·a?1 by the end of the 20th century to 3.99 GtC·a?1 by the end of the 21st century, and vegetation and soil carbon storage will increase to 110.3 GtC. NEP in China will keep rising during the first and middle periods of the 21st century, and reach the peak around 2050s, then will decrease gradually and approach to zero by the end of the 21st century.  相似文献   

14.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX network. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

15.
Continuous measurement of carbon dioxide exchange using the eddy covariance (EC) technique is made at the Qianyanzhou mid-subtropical planted forest as part of the ChinaFLUX net-work. Qianyanzhou planted forest is affected by typical subtropical continental monsoon climate. It has plentiful water and heat resource but is in inconsistency of its seasonal distribution in the mid-subtropical region, thus seasonal drought frequently occurs in this planted forest. In this study, seasonal drought effect on ecosystem carbon sequestration was analyzed based on net ecosystem productivity (NEP), ecosystem respiration (RE) and gross ecosystem productivity (GEP) at the month scale in 2003 and 2004. In this drought-stressed planted forest, ecosystem carbon sequestration showed a clear seasonality, with low rates during seasonal drought and in winter. The declining degree of ecosystem carbon sequestration under the seasonal drought condition was determined by the accumulation of soil moisture deficits and a co-occurrence of high temperatures. Different drought effects are expected for RE and GEP. The net effect of ecosystem carbon balance depends on how these two quantities are affected relatively to each other. Summer drought and heat wave are two aspects of weather that likely play an important part in the annual NEP of forest in this region.  相似文献   

16.
A process-based ecosystem productivity model BEPS (Boreal Ecosystem Productivity Simulator) was updated to simulate half-hourly exchanges of carbon, water and energy between the atmosphere and terrestrial ecosystem at a temperate broad-leaved Korean pine forest in the Changbai Mountains, China. The BEPSh model is able to capture the diurnal and seasonal variability in carbon dioxide, water vapor and heat fluxes at this site in the growing season of 2003. The model validation showed that the simulated net ecosystem productivity (NEP), latent heat flux (LE), sensible heat flux (Hs) are in good agreement with eddy covariance measurements with an R2 value of 0.68, 0.86 and 0.72 for NEP, LE and Hs, respectively. The simulated annual NEP of this forest in 2003 was 300.5 gC/m2, and was very close to the observed value. Driving this model with different climate scenarios, we found that the NEP in the Changbai Mountains temperate broad-leaved Korean pine mixed forest ecosystem was sensitive to climate variability, and the current carbon sink will be weakened under the condition of global warming. Furthermore, as a process-based model, BEPSh was also sensitive to physiological parameters of plant, such as maximum Rubisco activity (Vcmax) and the maximum stomatal conductance (gmax), and needs to be carefully calibrated for other applications.  相似文献   

17.
As the third largest country in the world, China has highly variable environmental condition and eco logical pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China.From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981 -2000.  相似文献   

18.
Net primary productivity (NPP) lays the foundation for provision of various ecosystem services, and understanding the impacts of potential influencing factors on NPP is of great significance to formulating appropriate management measures to guarantee the sustainable provision of essential ecosystem services. This study analyzed the impacts of potential influencing factors on NPP in the lower Heihe River Basin, a typical arid and semi-arid region in China. First, NPP was estimated with the C-FIX model, and then the multilevel model was used to analyze the impacts of potential influencing factors on NPP during 2000–2008. Finally decomposition analysis was used to further analyze the contribution of influencing factors to NPP change during 2000–2008. The average NPP increased by approximately 9.07% during 2000–2008, and results of the multilevel model indicate that both the socioeconomic variables and demographic variables are useful in explaining NPP change. In particular, coefficients of rainfall and evapotranspiration which represent the water availability reached 0.0456 and 0.2956, respectively. Results of decomposition analysis suggested that the water availability played an important role in increasing NPP, with a contribution rate of 44.17%, and it is necessary to carry out some policies that can promote the water use efficiency to increase NPP under the background of climate change and intensified human activities. There are some uncertainties in the results of this study, but these results still can provide valuable reference information for the water resource management to increase the ecosystem service supply in the lower Heihe River Basin.  相似文献   

19.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about ?4.671 μmol·m?2·s?1 to a maximum of 13.80 μmol·m?2·s?1, mean net ecosystem exchange of CO2 flux was ?2.0 μmol·m?2·s?1 and 3.9 μmol·m?2·s?1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (R a:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m?2·a?1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m?2·a?1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

20.
As the third largest country in the world, China has highly variable environmental condition and ecological pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China. From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981–2000. Supported by the Ministry of Science and Technology of China (G2002CB412507), the Major Program of the National Natural Science Foundation of China (Grant No.30590384), the “Hundred Talent” Program of the Chinese Academy of Sciences, and K C WONE Education Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号