首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It has been well known for more than 50 years that electric utilities in northern latitudes can have geomagnetically induced currents (GICs) flowing in their transmission lines and transformer ground points, and that these are caused by geomagnetic storms. Initially, these GICs were considered harmless and very little attention was paid to them. However, in the last 40 years it was realized that large GICs can flow in power systems and become problematic and even severe enough to cause a complete system shutdown. Utilities susceptible to GIC do not expect to rely on luck that the geomagnetic storm will not affect them, or if it does, the loading conditions at the time will allow enough margin to ride through it. This is precisely why many utilities today are studying the cause, effect, and mitigation of GICs and why utilities respect GICs. This paper presents a detailed discussion on how electric utilities are affected by GICs and what can be accomplished to mitigate the harmful effects.  相似文献   

2.
Geomagnetically induced currents (GIC) in technological systems, like electric power transmission grids, at the Earth's surface are caused by space weather processes, whose origin is in the Sun. In power systems, transformers may be saturated due to GIC leading to different problems extending from an increase of harmonics to a blackout of the system and damage of transformers. To design reasonable measures against impending problems, GIC magnitudes in the network should be estimated in different circumstances. This paper tackles basic features of GIC flow in a fictitious five-transformer/four-line power system, which is simple enough to make the equations easily manageable but complex enough to yield real and usable information. It is shown that the direction of the geoelectric field affects GIC at different sites but the dependence is not straightforward since GIC produced in one part of the system flows to others. Generally, transmission lines experience much larger GIC than transformers. Series capacitors in transmission lines prevent the flow of dc-like GIC but, without a careful analysis, their installation may result in larger GIC at some transformers of the system thus increasing the risk of problems.  相似文献   

3.
Geomagnetically induced currents (GIC) flowing in ground-based technological networks, such as electric power transmission grids, are the ground end of the space weather chain originating from the Sun. GIC constitute a possible source of problems to the system. Matrix formulas enabling the calculation of GIC in a power grid have been presented before. In this paper, we summarise the formulas and also express them in an alternative form that includes the (geo)voltages driving GIC during a space weather event more explicitly. An issue usually ignored in GIC modelling is the effect of overhead shield wires protecting a power grid and generally earthed at the towers. By numerical examples, it is shown in this paper that such neglect causes an insignificant error in comparison with other inaccuracies involved in GIC modelling and is thus really acceptable in practice.  相似文献   

4.
Space weather is a popular and important research topic today. Its origin isin the Sun. Space weather effects extend to the surface of the Earth where theyare usually called GIC referring to geomagnetically induced currents intechnological systems such as electric power transmission grids, oil and gaspipelines, telecommunication cables and railway equipment. GIC are a possiblesource of problems within such systems, and observations have been made sincethe first telegraph systems in the 1800's. This paper is a summary and reviewof present knowledge and of possibilities of modelling GIC in a system.Modelling efforts require a determination of the electric field occurring inconnection with a magnetic storm at the Earth's surface and a calculation ofthe resulting GIC. Different modelling techniques of the electric and magneticfields are evaluated in this paper, and special attention is paid to thecomplex image method (CIM) which is suitable for time-critical purposes likeforecasting of GIC. A discretely-earthed power system and a buried pipelineneed different calculation methods of GIC. The former can be treated by amatrix formalism while the distributed-source transmission line (DSTL) theoryis applicable to the latter.  相似文献   

5.
A project implemented to study the effects of space weather on the Finnish natural gas pipeline was started in August 1998. The aims of the project were (1) to derive a model for calculating geomagnetically induced currents (GIC) and pipe-to-soil (P/S) voltages in the Finnish natural gas pipeline, (2) to perform measurements of GIC and P/S voltages in the pipeline and (3) to derive statistical predictions for the occurrences of GIC and P/S voltages at different locations in the pipeline network.GIC and P/S voltage were recorded at a compressor station. The GIC measurement was made with two magnetometers, one right above the pipe, and another at the Nurmijärvi Geophysical Observatory about 30 km southwest. The largest GIC since November 1998 has been 30 A. The P/S voltage recording was stopped in May 1999, but GIC is still measured.GIC statistics were derived based on the recordings of the geomagnetic field at Nurmijärvi. The geoelectric field was calculated by using the plane wave model. This field was input to the general pipeline model resulting in the distribution of currents and P/S voltages at selected points in the pipeline. As could be expected, the largest P/S voltage variations occur at the ends of the pipeline network, while the largest GIC flow in the middle parts.  相似文献   

6.
因太阳活动而引起的地磁扰动,会在地球表面感生出地电场,从而在地表附近的导体系统中产生地磁感应电流(GICs).太阳表面的异常活动而引起的磁暴会导致强烈的GICs,严重威胁电信设备、电网、油气管道和铁路运输网络等基础设施系统的安全运行,已经成为最严重的空间天气灾害之一.因此,对GICs进行深入研究以建立对其做出迅速预测的能力,在科学和应用方面都有重要意义.本文综述了GICs的研究进展,从引入空间天气的概念开始,将GICs作为从太阳活动到太阳风再到地球扰动的空间天气链的最终环节;重点阐述了GICs的计算中所涉及的三个步骤:地球表面地磁场重建、感应地电场的计算,以及地面导体系统中GICs计算;对每一步骤中主要方法的相关原理和应用做了简要介绍与评估;最后总结了当前GICs的研究现状,并对未来GICs的研究方向与挑战进行了展望.  相似文献   

7.
地磁感应电流(GIC)的作用与评估   总被引:2,自引:1,他引:2       下载免费PDF全文
地磁感应电流(GIC)可能对各种人工长距离导电体造成影响与危害.地磁扰动产生的感应电场的强度与地磁场强度、地下电阻率结构相关,在导电系统内生成的GIC的强度则同时与导电系统的内在结构有关.计算了加拿大Manitoba省三个典型地区在2000年7月15日的一个强烈磁暴期间产生的感应电场.通过对地磁活动性的统计分析,估计加拿大魁北克电网可能经受的最大GIC达每相78A(一年一次)和234A(每十年一次).  相似文献   

8.
大地电导率横向突变处磁暴感应地电场的邻近效应   总被引:3,自引:0,他引:3       下载免费PDF全文
大地电性结构的横向变化会对磁暴时的感应地电流和地面电磁场产生影响.本文假设扰动地磁场变化的源为地面以上一定高度的面电流,以某一典型层状大地电导率结构为基础,构造含有电导率横向突变的地电模型.针对感应电流的方向与横向分界面平行的情形,采用伽辽金有限元法对电导率横向突变处的感应地电场进行了分析,揭示了电导率横向差异产生的趋肤效应和邻近效应的机理,针对与电性结构分界面平行的输电线路,从评估地磁感应电流的角度讨论了影响的严重程度和范围.  相似文献   

9.
Modelling of space weather effects on pipelines   总被引:1,自引:0,他引:1  
The interaction between the solar wind and the Earth's magnetic field produces time varying currents in the ionosphere and magnetosphere. The currents cause variations of the geomagnetic field at the surface of the earth and induce an electric field which drives currents in oil and gas pipelines and other long conductors. Geomagnetically induced currents (GIC) interfere with electrical surveys of pipelines and possibly contribute to pipeline corrosion.In this paper, we introduce a general method which can be used to determine voltage and current profiles for buried pipelines, when the external geoelectric field and the geometry and electromagnetic properties of the pipeline are known. The method is based on the analogy between pipelines and transmission lines, which makes it possible to use the distributed source transmission line (DSTL) theory. The general equations derived for the current and voltage profiles are applied in special cases. A particular attention is paid to the Finnish natural gas pipeline network.This paper, related to a project about GIC in the Finnish pipeline, thus provides a tool for understanding space weather effects on pipelines. Combined with methods of calculating the geoelectric field during magnetic storms, the results are applicable to forecasting of geomagnetically induced currents and voltages on pipelines in the future.  相似文献   

10.
电网磁暴灾害风险影响因素研究综述   总被引:5,自引:2,他引:3       下载免费PDF全文
磁暴是源自太阳磁场剧烈变化的地球空间效应,随着电网规模的增大和电压等级的增高,磁暴灾害已经成为诱发电网故障风险的威胁之一.研究电力系统磁暴灾害风险的影响因素可为预防与控制其引发的电网事故提供重要参考.在分析历史典型磁暴事件的基础上,剖析了磁暴诱发电力系统故障的机理,阐述了故障传播与电力系统响应的过程,总结了近年来关于影响电力系统的地磁感应电流水平及其产生的变压器无功损耗方面的研究成果,从磁暴本身的特点和电力系统的参数与结构两方面将影响因素分类.以GIC标准模型,通过改变磁暴扰动环境和电力系统参数,说明了各因素对电网磁暴灾害风险的影响程度,并比较了不同因素影响后果的差异,最后指出了尚未解决的问题和可能的研究方向.  相似文献   

11.
中国广东电网的几次强磁暴影响事件   总被引:9,自引:2,他引:7       下载免费PDF全文
2001年以来,随着我国阳\|淮系统等多条500 kV长距离线路的相继建成投运,江苏上河、广东岭澳等地变压器多次发现不明原因的强烈振动和噪声增大事件.本文通过对2004年11月以来、十几次磁暴地磁数据与变压器中性点实测电流数据的比较,证明了干扰事件是磁暴在电网产生的地磁感应电流(GIC)所为;其中,2004年11月7日和10日磁暴在岭澳核电站引发的GIC最大值为47A和55.8A,大于直流输电单极运行时变压器中性点的直流电流水平,因此磁暴对岭澳核电站的瞬时影响比直流输电的影响大;监测数据表明广东电网的GIC水平高于阳淮输电系统的水平,初步分析认为与电网结构和海岸效应等因素有关.目前,举世瞩目的1000 kV特高压工程已开工建设,特高压线路的单位电阻最多是500 kV的二分之一,并且线路更长、规划规模大、且变压器采用单相变压器组结构,磁暴影响问题迫切需要研究.  相似文献   

12.
Experimental and theoretical researches have confirmed that changes in crustal stress can be monitored by the in situ bedrock temperature. Monitoring stress by temperature requires the high-precision and multi-channel temperature measurement system. We have developed such a system, based on the several refinements. The key parameters on temperature measurement system mainly include:1)the accuracy is better than 1.0mK. At the 99.5%confidence level, the accuracy reaches 0.5mK. This system can be used to detect the change of magnitude of a few tenths to several MPa. The sampling period can be set, depending on remote control. The sampling period is usually set 5 or 15 minutes. 2)A system has up to 20 channels, and commonly uses for 8 or 12 channels. 3)This system has a significant performance in low power consumption. The power is supplied by lead-acid battery with 12 volt. It is at least 2 years that a lead-acid battery, with contents of 120Ah12V, can supply the power for a system with 8 channels. In conclusion, multichannel temperature measurement system with high precision and low power consumption is designed and realized. Specially, the performance in low power consumption is of great significance, which can greatly reduce the maintenance cost after the measurement station is constructed. This temperature measurement system provides a basic technology for monitoring changes in crustal stress with bedrock temperature.  相似文献   

13.
王芳  李丽  王宝善 《地震学报》2017,39(6):831-847
基于2011年建立的云南普洱大寨深井台站,开展了噪声压制及附近波场特征研究.通过计算该台站的噪声功率谱概率密度函数,显示该井下台站对1 Hz以上的高频噪声具有明显的压制效果, 最高能降低40 dB,其降噪能力优于其它井下台阵,推断与该台站附近的场地条件有关.基于地表与井下地震记录的差异,应用正则化反卷积干涉方法进一步研究该台站附近的波场特征.以地表记录为参考,对井下记录进行反卷积,获取两台站之间的格林函数,直接识别出了原始记录上无法区分的上行入射波与下行地表反射波,然后利用两震相的到时差建立了一个浅层地震波速度模型,与理论模拟的结果一致.研究结果表明,相对于地表观测,井下台站在压制噪声和近地表地震波传播特征研究等方面具有很大的优势,同时该研究对其它地区开展深井观测具有参考意义.   相似文献   

14.
华北地区地电暴时GIC及涡旋电流响应分析   总被引:4,自引:0,他引:4       下载免费PDF全文
章鑫  杜学彬  刘君 《地球物理学报》2017,60(5):1800-1810
通过地电场台址近地表介质电阻率和地电场值计算大地电流,从大地电流场中分离出涡旋电流;根据平面波理论和水平导电层模型,使用地磁暴观测数据在频率域计算地磁感应电场(GIE),由GIE计算地磁暴感应电流(GIC).计算结果与实测值对比分析表明:GIE计算结果与实测地电暴具有很好的相位一致性;GIC涡旋中心相对地电暴涡旋中心存在向SE漂移约3°的现象;磁暴时地磁场Z分量的幅值分布图中极大值区域与涡旋中心重合,可能是GIC涡旋中心偏移的原因.另外,根据电磁感应原理提出的等效环电流模型,在一定程度上解释了涡旋大地电流的形成机制.本项工作可应用于地磁观测与地电观测的相互校正,同时有助于认识地电暴对大地电流分布的影响.  相似文献   

15.
The time derivative (d H/dt) of the geomagnetic field horizontal component (H) for seven intervals of high geomagnetic activity in 2003–2005 has been calculated, based on the data of Alma-Ata, Novosibirsk, and Irkutsk observatories, in order to estimate the probability of appearance of geomagnetically induced current (GIC), the value of which is linearly dependent on d H/dt, in power lines on the territory of Kazakhstan. The distributions of the H and d H/dt directions have been constructed; in this case it was most interesting that these distributions were narrow and extended along the magnetic meridian for Alma-Ata and were wider angular for Novosibirsk and Irkutsk. It has been indicated that large H values, determining significant GIC values, took place at a sudden commencement of strong storms, which had a character of a pulsed disturbance of the geomagnetic field, and during large-amplitude geomagnetic field pulsations. The duration of the periods of large |d H/dt| values exceeding the threshold (30 nT/min), when GIC could cause unwanted consequences in power circuits, has been determined.  相似文献   

16.
17.
Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power‐based classification and a physics‐based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and median bed particle size ranging over several orders of magnitude with various channel patterns and bar types, but no obvious eroding or aggrading tendency. Empirically a continuum is found for increasing specific stream power, here calculated with pattern‐independent variables: mean annual flood, valley gradient and channel width predicted with a hydraulic geometry relation. ‘Thresholds’, above which certain patterns emerge, were identified as a function of bed sediment size. Bar theory predicts nature and presence of bars and bar mode, here converted to active braiding index (Bi). The most important variables are actual width–depth ratio and nonlinearity of bed sediment transport. Results agree reasonably well with data. Empirical predictions are somewhat better than bar theory predictions, because the bank strength is indirectly included in the empirical prediction. In combination, empirical and theoretical prediction provide partial explanations for bar and channel patterns. Increasing potential‐specific stream power implies more energy to erode banks and indeed correlates to channels with high width–depth ratio. Bar theory predicts that such rivers develop more bars across the width (higher Bi). At the transition from meandering to braiding, weakly braided rivers and meandering rivers with chutes are found. Rivers with extremely low stream power and width–depth ratios hardly develop bars or dynamic meandering and may be straight or sinuous or, in case of disequilibrium sediment feed, anastomosing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB (~?6–7 m/s) and the wide central SBB region (~?11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.  相似文献   

19.
地震逆散射波场和算子的谱分解   总被引:13,自引:3,他引:13       下载免费PDF全文
本文对地震逆散射的研究,旨在于为抑制层间多次波和地震波场多重散射对一次反射干扰效应提供理论依据.这对薄互层地层滤波的高频恢复、保幅弹性反演、衍射地震勘探及海洋地震勘探中的干扰消除皆具重要意义.本文基于上下行波分解及弹性波互易定理,导出横向变速介质条件下线性预测算子的表达式和反射数据的广义谱分解方程. 文中先由上覆地层广义反射透射矩阵的元素定义线性预测算子,并将其表示成一系列单程波算子的线性组合,之后将横向变速介质条件下线性预测方程表达为反射数据与线性预测算子及其逆的乘积. 对该方程的求解可获得上覆地层的线性预测算子,从而可借以求出相应的反射透射算子. 本文先将水平层状介质条件下垂直入射的一维线性预测方程推广到斜入射的情况,以此为参照,导出横向非均匀介质条件下反射数据的地震逆散射广义谱分解方程.文中也揭示了单程波地震逆散射算子、反射透射算子的性态.本文还针对水平层状介质条件,给出斜入射的数值结果.  相似文献   

20.
本文利用张家口台宽频带倾斜仪的数字化观测资料,采用功率谱密度估计方法,在没有对资料进行去固体潮处理的情况下,准确获得了2011年3月11日日本9.0级大地震激发的oS2~oS35,基频球型自由振荡,并与地球初步参考模型(PREM)的理论自由振荡频率进行了对比,发现实测振荡频率与PREM预测的振荡频率基本符合。宽频带倾斜仪的数字化观测资料的确可以提取到日本地震激发的地球自由振荡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号