首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Active energy dissipation is proved to be very effective for abating seismic effects on buildings. The implementation of this concept in seismic design of buildings is studied by response simulations of a single storey building subjected to earthquake motion. Active energy dissipaters can be installed as part of the building lateral load bracing, and they regulate the strength and stiffness of the bracing during the building's response to the seismic events. The energy is dissipated when the bracing load exceeds the axial strength provided by the dissipater, and the bracing telescopes in and out. The design parameters of active energy dissipaters are described using the simulated response of a single storey building to ground pulse and harmonic ground excitation. The feasibility of the energy dissipater is demonstrated by the development and construction of a full-scale prototype device called an Active Slip Bracing Device (ASBD). The device utilizes Coulomb friction. The active characteristics are implemented by a computer controlled clamping mechanism on the friction interface. The ASBD's control of the strength and stiffness is investigated.  相似文献   

4.
We apply a combination of earthquake early warning system (EEWS) and real-time strong motion monitoring system (RSMS) to emergency response for a high-rise building; The Kogakuin University has a 29-story high-rise building in Shinjuku Ward, Tokyo. The proposed strategy is based on the Plan, Do, Check, Action (PDCA) Cycle to brush up the systems and the users: in the “Plan” stage, we apply EEWS and RSMS to the building, where EEWS predicts not only short-period strong ground motions but also long-period ground motions [1]. The system is built into a building announcement system, an emergency elevator control system, and an email message system, which quickly send emails to the emergency response team. Meanwhile, RSMS provides information on seismic intensities at each floor of the building via the web browser in real time using the existing network in the building. In addition, the building response and structural damage can be estimated based on this information. The network system is impervious to the earthquake damage, because the network cable has extra length, there is, however, possible that a network system does not work due to power outage. Thus, we develop the network system that has uninterruptible power-supply system (UPS) and apply it to EEWS and RSMS. The high-rise building has the emergency call units to the security control center in the building on every floor. The emergency call line, however, will be busy promptly, because it is able to use only one line. Therefore, we installed IP telephone which uses the network system on main floors. UPS will work about 30 min after a major earthquake, it is supposed to be enough time for gathering the damage information about the building during initial response. In the “Do” stage, we prepare emergency response instruction manuals and educate the faculty members and students to carry out promptly emergency response. In the “Check” stage, the validity of the proposed systems are verified by carrying out an earthquake drill in an actual high-rise building. The earthquake drill confirmed that our proposed approach is valid. In the final “Action” stage, we improve these systems and emergency response manual and educate people in the building how to use effectively these systems.  相似文献   

5.
A procedure to estimate the seismic motion at the base of a building from measured acceleration response at two or more floors is presented. The proposed method is comprised of two steps. In the first step, the dynamic characteristics of the building are inferred by using an output‐only system identification procedure. In the second step, the motion of the base of the building is estimated by using the transfer function of a simplified building model consisting of a shear and flexural continuous beam together with dynamic properties obtained in the first step. The proposed method is validated first with an analytical model subjected to the 1940 El Centro ground motion and then with an instrumented building in California that experienced the 1994 Northridge earthquake, and the ground motions at the base of the building are available. It is shown that the proposed method is capable of providing very good estimates of the motion at the base. The use of the proposed method is finally illustrated on an instrumented building, where the sensor at the base of the building did not function during the 1994 Northridge earthquake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Semi‐active stiffness damper (SASD) is one of many semi‐active control systems with the capability to mitigate the dynamic response using only a small amount of external power. The system consists of a hydraulic damper connected to the bracing frame in a selected story unit. In this paper, study of a SASD in two building models of five‐stories under four benchmark earthquake records is reported. The purpose of this study is to evaluate the effectiveness of the control system against structure type and varying earthquake inputs. Various control laws are chosen to work with SASD, such as: resetting control, switching control, linear quadratic regulator (LQR) and modified LQR, and the results are compared with no control and passive control cases. Numerical results show that the use of a SASD is effective in reducing seismic responses. Control effectiveness is dependent on the type of structure and earthquake excitation. Passive control is less effective than other control cases as expected. Resetting control, switching control and LQR generally perform similarly in response reduction. While modified LQR is more efficient and robust compared with other control algorithms. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
组合橡胶支座及橡胶支座与柱串联系统的水平刚度计算方法   总被引:11,自引:0,他引:11  
目前基础隔震建筑中应用的叠层橡胶支座都是等截面的,其水平刚度是以遭遇强烈地震为依据设计的,当遭遇中小地震时水平刚度将偏大,致使上部结构的减震效果比遭遇设计地震时明显减小,而由两个不同截面橡胶支座组成的组合橡胶支座在不同强度地震时均能发挥较好设计的隔震效果。  相似文献   

8.
An enhanced reduced model is proposed for elastic earthquake response analysis of a class of mono-symmetric shear building structures with constant eccentricity. The proposed reduction method consists of two parts. The first stage is the construction of a reduced structural model with the degrees of freedom at representative floor levels only. In this stage, an inverse eigenmode-problem formulation is used to guarantee the limited equivalence between the original model and the reduced model. The reduced model is constructed so as to have the same fundamental natural frequency and the same lowest-mode component ratios at the representative floor levels as those of the original model. The second stage is the transformation of earthquake input forces into a set of reduced input forces. This transformation utilizes the static equivalence of lateral-torsional stiffness between these two models and is introduced to enhance the accuracy level of the reduced model. Several examples of a three-dimensional mono-symmetric ten-story shear building model with constant eccentricity are presented to demonstrate the validity and accuracy of the proposed reduction method for earthquake response analysis.  相似文献   

9.
Viscoelastic dampers (VEDs) are one of the most common passive control devices used in new and retrofit building projects which reduce the structure responses and dissipate seismic energy during an earthquake. Various methods to design this kind of dampers have been proposed based on the desired level of additional damping, eigenvalue assignment, modal strain energy, linear quadratic regulator control theories, and other approaches. In the current engineering practice, the popular method is the one based on the modal strain energy that uses the inter-story lateral stiffness as one of the main variables for damper design. However, depending on the configuration of the structure, in some cases the resulting interstory lateral stiffness can be very large. Consequently, the dampers size would also be large producing much more damping than that effectively necessary, resulting in an increase of the overall cost of the supplemental damping system and causing excessive stress on the structural elements connected to the dampers. In this paper an alternative practical design method for structures with VEDs is proposed. This method uses the inter-story shear forces as one of the main variables to accomplish the damper design compared to what was done in previous studies. Nonlinear time-history analyses were conducted on a 7-story reinforced concrete (RC) structure to check the reliability and effectiveness of the proposed method. Comparisons on the seismic performance between the structure without dampers and that equipped with VEDs were carried out. It is concluded that the proposed method results in a very suitable size of dampers, which are able to improve the performance of the structure at all levels of earthquake ground motions and satisfying the drift requirement prescribed in the codes.  相似文献   

10.
A new method of stiffness‐damping simultaneous identification of building structures is proposed using limited earthquake records. It is shown that when horizontal accelerations are recorded at the floors just above and below a specific storey in a shear building model, the storey stiffness and the damping ratio can be identified uniquely. The viscous damping coefficient and the linear hysteretic damping ratio can also be identified simultaneously in a numerical model structure. The accuracy of the present identification method is investigated through the actual limited earthquake records in a base‐isolated building. It is further shown that an advanced identification technique for mechanical properties of a Maxwell‐type model can be developed by combining the present method with a perturbation technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
将结构物简化为多质点体系,考虑隔震支座的水平刚度、垂直刚度和转动刚度,按反应谱方法进行了高层剪力墙结构和砖结构抗震计算,结果表明,隔震结构可以大幅度地降低地震作用。  相似文献   

12.
This paper presents the first application of a semi-active damper system to an actual building. The Semi-active Hydraulic Damper (SHD) can produce a maximum damping force of 1000 kN with an electric power of 70 W. It is compact, so a large number of them can be installed in a single building. It is thus possible to control the building's response during a severe earthquake, because a large control force is obtained in comparison with a conventional active control system. This paper outlines the building, the control system configuration, the SHD, the control method using a Linear Quadratic Regulator, the response analysis results of the controlled building, and the dynamic loading test results of the actual SHD. The simulation analysis shows that damage to buildings can be prevented in a severe earthquake by SHD control. The dynamic loading test results of the SHD are reported, which show that the specified design values were obtained in the basic characteristic test. The control performance test using simulated response time histories, also shows that the damping force agrees well with the command. Finally, it is confirmed that the semi-active damper system applied to an actual building effectively controls its response in severe earthquakes. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

13.
The seismic design of multi‐story buildings asymmetric in plan yet regular in elevation and stiffened with ductile RC structural walls is addressed. A realistic modeling of the non‐linear ductile behavior of the RC walls is considered in combination with the characteristics of the dynamic torsional response of asymmetric buildings. Design criteria such as the determination of the system ductility, taking into account the location and ductility demand of the RC walls, the story‐drift demand at the softer (most displaced) edge of the building under the design earthquake, the allowable ductility (ultimate limit state) and the allowable story‐drift (performance goals) are discussed. The definition of an eccentricity of the earthquake‐equivalent lateral force is proposed and used to determine the effective displacement profile of the building yet not the strength distribution under the design earthquake. Furthermore, an appropriate procedure is proposed to calculate the fundamental frequency and the earthquake‐equivalent lateral force. A new deformation‐based seismic design method taking into account the characteristics of the dynamic torsional response, the ductility of the RC walls, the system ductility and the story‐drift at the softer (most displaced) edge of the building is presented and illustrated with an example of seismic design of a multi‐story asymmetric RC wall building. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Numerical simulations and parametric studies have been used to investigate the influence of potential poundings of seismically isolated buildings with adjacent structures on the effectiveness of seismic isolation. Poundings are assumed to occur at the isolation level between the seismically isolated building and the surrounding moat wall. After assessing some common force‐based impact models, a variation of the linear viscoelastic impact model is proposed to avoid tensile impact forces during detachment, while enabling the consideration of permanent plastic deformations at the vicinity of the impact. A large number of numerical simulations of seismically isolated buildings with different characteristics have been conducted under six earthquake excitations in order to investigate the influence of various design parameters and conditions on the peak floor accelerations and interstorey deflections during poundings. The numerical simulations demonstrate that poundings may substantially increase floor accelerations, especially t the base floor where impacts occur. Higher modes of vibration are excided during poundings, increasing the interstorey deflections, instead of retaining an almost rigid‐body motion of the superstructure, which is aimed with seismic isolation. Impact stiffness seems to affect significantly the acceleration response at the isolation level, while the displacement response is more insensitive to the variation of the impact stiffness. Finally, the results indicate that providing excessive flexibility at the isolation system to minimize the floor accelerations may lead to a building vulnerable to poundings, if the available seismic gap is limited. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
巨子型有控结构体系中黏滞阻尼器参数研究   总被引:2,自引:0,他引:2  
巨子型有控结构体系(Mega-sub Controlled Structure System,即MSCSS)是一种新型的超高层建筑结构体系.本文针对MSCSS的构造特点,提出一种安装黏滞阻尼器的新的布置方案,通过研究该布置方案中取不同黏滞阻尼器参数时巨子型有控结构体系在罕遇地震作用下的动力响应,提出了与该结构体系动力特...  相似文献   

16.
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake.  相似文献   

17.
The Millikan Library on the campus of the California Institute of Technology was strongly shaken during the San Fernando earthquake of 9 February 1971. The building was not damaged structurally, but the observed E-W response of the building showed a fundamental period of about 1.0 sec, significantly longer than the 0.66 sec observed in pre-earthquake vibration tests. In this study, the response of the fundamental mode was treated as that of a single-degree-of-freedom hysteretic structure, and four simple models, two stationary and two with changing properties, were examined to see if they could describe the observed response. It was found that an equivalent linear model and a bilinear hysteretic model both could match the response, provided their properties were changed during the earthquake. (Four changes were used.) A linear model with constant properties and a stationary, bilinear hysteretic model did not give nearly as good agreement as the non-stationary models. The results indicated, in general, a degrading of the stiffness and energy dissipation capacity of the building, with the suggestion that the changes were sudden rather than gradual.  相似文献   

18.
结构的动力特性直接影响到动力荷载的作用效应。动力特性分析中,土体的影响不可忽视。与地震荷载不同,动风荷载自结构向土体传播,土体的惯性力可以忽略。无质量地基法可以满足针对风荷载的土-结构动力分析的要求。本文首先推导土-结构动力相互作用的运动方程,在此基础上,以剪力墙箱型基础结构为基本分析对象,确定有限地基域的范围,分析土-结构整体动力特性。认为:足够的基础埋深,可以有效控制建筑物的摆动;为控制建筑物的动力特性,可以采取措施适当使地基土增加一定的刚度;如何在上部结构的质量和刚度之间建立对应关系以控制土-结构系统的动力特性,有待进一步研究。  相似文献   

19.
Structural damage assessment under external loading, such as earthquake excitation, is an important issue in structural safety evaluation. In this regard, appropriate data analysis and feature extraction techniques are required to interpret the measured data and to identify the state of the structure and, if possible, to detect the damage. In this study, the recursive subspace identification with Bona‐fide LQ renewing algorithm (RSI‐BonaFide‐Oblique) incorporated with moving window technique is utilized to identify modal parameters such as natural frequencies, damping ratios, and mode shapes at each instant of time during the strong earthquake excitation. From which the least square stiffness method (LSSM) combined with the model updating technique, called efficient model correction method (EMCM), is used to estimate the first‐stage system stiffness matrix using the simplified model from the previously identified modal parameters (nominal model). In the second stage, 2 different damage assessment algorithms related to the nominal system stiffness matrix were derived. First, the model updating technique, called EMCM, is applied to correct the nominal model by the newly identified modal parameters during the strong motion. Second, the element damage index can be calculated using element damage index method (EDIM) to quantify the damage extent in each element. Verification of the proposed methods through the shaking table test data of 2 different types of structures and a building earthquake response data is demonstrated to specify its corresponding damage location, the time of occurrence during the excitation, and the percentage of stiffness reduction.  相似文献   

20.
提出了采用质量调谐减震控制技术对厂房结构进行减震控制的方法。利用屋盖系统作为附加质量,屋盖支座采用夹层橡胶隔震垫,建立了厂房-TMD系统模型,并用非线性时程分析法对其进行了多种地震动激励下的计算分析,探讨了厂房-TMD减震体系减震效果的参数影响及减震机理。结果表明,采用质量调谐减震技术对单层工业厂房进行减震是一种有效的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号