首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
研究如何在白天观测地脉动存在人为振动干扰情况下准确计算卓越周期.选择一个场地进行连续24 h地脉动观测.应用快速傅里叶变换计算地脉动数据的功率谱,应用Hilbert-Huang变换对地脉动数据进行经验模态分解并计算边际谱.通过实验发现,夜间和白天观测地脉动功率谱具有明显差异.在夜间观测的地脉动主峰明显,容易识别卓越周期,在白天观测的地脉动功率谱存在多个峰值,难以识别卓越周期.边际谱与功率谱基本一致,存在多个峰值,难以由边际谱判别卓越周期.通过实验还发现,可以由某一IMF分量的频谱判别卓越周期,但具体为哪个IMF分量需结合场地条件判断.对原始数据减去IMF分量后差值的频谱分析发现主峰明显,频率和夜间观测的非常接近,可以判别卓越周期.实验结果表明,对于在白天观测存在人为振动干扰的场地,难以通过功率谱和边际谱判别卓越周期,可以应用Hilbert-Huang变换进行经验模态分解,由原始数据减去IMF分量后差值的频谱峰值判别卓越周期.  相似文献   

2.
于海英  祝达  周宝峰  徐旋  马温喜 《地震研究》2020,(1):166-175,I0004
考虑地铁环境振动噪声对未来城市地铁地震警报系统中地震信号识别的影响,以包含Ⅱ类和Ⅲ类2种场地土类型的哈尔滨市4个地铁站的上行线首部和尾部作为观测点,展开地铁环境振动噪声的测试、分析以及降噪处理研究。首先,对采集的列车振动数据进行统计分析;其次,基于滑动平均法,提出确定帕曾窗带宽b值的经验方法,并利用其对采集的地脉动数据进行平滑滤波处理;最后,采用本方法确定哈尔滨地铁地震P波预警的滤波频带,并与日本气象厅仪器地震烈度以及新干线地震预警系统的滤波频带进行对比。结果表明:①三轴向地铁列车振动信号中,竖向振动比水平向振动要大,切向振动比径向振动要大。②帕曾窗带宽b值为0.4 Hz时,平滑滤波处理后的频谱能较好地反映地脉动信号的频谱主频,且滤波后的地脉动信号的卓越频率和场地土类型有明显的对应关系,即水平向卓越频率和场地土类型的相关性较好,而竖向卓越频率的误差较大。③哈尔滨地铁地震P波预警的滤波频带为0.3~10 Hz时,能较好地滤除地震动信号中的地铁环境振动噪声,满足地震警报系统对地震记录信噪比的要求。  相似文献   

3.
日本学者中村(Nakamura)1989年提出了一种基于同一地表测点地脉动水平分量与竖向分量傅里叶振幅谱比值来估计场地特征的方法,即所谓的中村方法.该方法被广泛应用于场地特征的估计,并已取得大量的成果.目前,这一方法也被国内外的研究人员用来进行结构响应特征的研究.但中村方法的合理性,国内外尚存在较大争议.通过对北京城区的一栋钢筋混凝土框架结构建筑的脉动观测,采用中村方法对获取的速度记录进行了计算分析.结果表明,该方法能有效地得到结构的自振频率,但是不能给出结构对振动的真实放大倍数,因此,在使用此方法分析结构响应方面时应谨慎,建议采用多种方法进行比较分析.  相似文献   

4.
本文首先回顾了地脉动波场分析方法的发展历史和以往研究地脉动机制的几种方法。然后依据作者对基岩地脉动水平分量与竖向分量谱比的理论分析结果,结合地脉动记录的运动学和动力学特征,提出了判定地脉动波场性质的形态法,轨迹法和基岩地脉动谱比法,并用实际地脉动观测记录对这3种方法进行了验证。  相似文献   

5.
橡胶隔震支座建筑结构脉动观测与减震性能分析   总被引:1,自引:0,他引:1  
通过对两幢结构相同、彼此相邻,而其中一幢采用了橡胶隔震支座减展措施的建筑物进行地脉动观测,对比地基基础和结构上的脉动时程曲线和相应功率谱曲线,利用两幢建筑结构脉动特征的差异分析研究橡胶隔震支座的减震效果。  相似文献   

6.
某工矿企业破碎筛分车间为钢-混凝土混合结构厂房,布置有9台破碎机,且破碎机基础与主厂房结构没有脱开.破碎机的工作扰力导致结构振动严重.利用吊车冲击和地脉动现场实测了结构动力特性参数,而后测试了破碎机不同开启工况下的结构整体和设备基础的振动线位移,根据实测值评估了厂房的振动安全性.采用ANSYS(R)程序建立有限元模型,进行模态分析和谐响应分析,并与实测结果进行对比分析,以验证有限元模型的准确性,再预测破碎机改造后的结构振动位移大小.改造两台破碎机后再次进行了结构振动现场实测,改造后结构振动明显减小,测试结果与有限元预测结果基本一致.本文的振动测试和治理方法可以为类似工业建筑振动超限问题提供参考.  相似文献   

7.
地铁周边地面环境振动的大量实际观测数据分析显示,地面振动大小与源频率成分有关.但是实际振动观测受周围环境振动影响较大,为了从理论上解释地铁以及地面交通源频率成分对地表环境振动的影响,本文通过二维有限元数值模拟来研究1~20 Hz激振源分别作用于地面和地下,以及地下与地面同时加载这三种情况下地面的振动加速度响应.通过与地面实际观测资料对比,得出结论:(1)由于地铁或地面交通与地层的耦合振动,使得存在一个特定的频率,当载荷以该频率输入时地面的振动最大,当载荷频率小于或大于该频率的时候,地面振动减小;(2)本文对应的地层模型情况下,随着距离的增加,当源频率低于5 Hz时,地面振动衰减缓慢,当源频率高于8Hz时,地面振动衰减快;(3)在地层不同位置激发振动,地表的最大反应频率不同.  相似文献   

8.
利用地脉动进行地球物理无源探测技术,并基于地脉动观测的水平分量与竖直分量谱比法(H/V),获取沉积层卓越频率和沉积盖层厚度已得到较广泛的应用。本文从正演的角度出发,分别建立了水平层状、倾斜层状和不均匀构造三种由简单到复杂的模型,采用时域有限差分方法(FDTD)模拟地脉动随机源的探测数据,将数值模拟获得的数据利用H/V谱比法(Nakamura方法)进行反推,与原模型设置值相对比符合良好,表明FDTD的全波正演能很好地模拟获得各种模型在随机源激发下产生的稳定波场信息,为应用地脉动探测研究城市沉积层提供了科学的依据。  相似文献   

9.
1.对于地磁脉动分类的讨论,应从两种不同的意义上进行(1)从观测角度,为便于直观地从记录上加以区分,因此利用脉动的形态、周期等参量是方便的,目前国际上使用的Berkeley 1963分类法,就是这种性质的。  相似文献   

10.
新型地电阻率交流观测系统研究及江宁台观测试验   总被引:1,自引:1,他引:0       下载免费PDF全文
正地电阻率前兆观测是我国地震前兆观测重要手段之一,但是目前城市地铁和轻轨等对其造成了严重影响.利用低频交流电场与直流电场具有相似特性的特点(桂燮泰等,1988;马希融,1989),采用交流方法进行地电阻率观测,能够在一定程度上抑制地铁和轻轨的干扰影响(张宇等,2014;马小溪等,2015).目前,地电阻率台站所受到的突出干扰是地铁、轻轨等运行引起的近直流干扰,干扰周期主要为  相似文献   

11.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The aim of this work is to estimate the fundamental translational frequencies and relative damping of a large number of existing buildings, performing ambient vibration measurements. The first part of the work is devoted to the comparison of the results obtained with microtremor measurements with those obtained from earthquake recordings using four different techniques: horizontal‐to‐vertical spectral ratio, standard spectral ratio, non‐parametric damping analysis (NonPaDAn) and half bandwidth method. We recorded local earthquakes on a five floors reinforced concrete building with a pair of accelerometers located on the ground and on top floor, and then collected microtremors at the same location of the accelerometers. The agreement between the results obtained with microtremors and earthquakes has encouraged extending ambient noise measurements to a large number of buildings. We analysed the data with the above‐mentioned methods to obtain the two main translational frequencies in orthogonal directions and their relative damping for 80 buildings in the urban areas of Potenza and Senigallia (Italy). The frequencies determined with different techniques are in good agreement. We do not have the same satisfactory results for the estimates of damping: the NonPaDAn provides estimates that are less dispersed and grouped around values that appear to be more realistic. Finally, we have compared the measured frequencies with other experimental results and theoretical models. Our results confirm, as reported by previous authors, that the theoretical period–height relationships overestimate the experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of seismic pounding on the structural performance of a base-isolated reinforced concrete (RC) building are investigated, with a view to evaluate the influence of adjacent structures and separation between structures on the pounding response. In particular, seismic pounding of a typical four-story base-isolated RC building with retaining walls at the base and with a four-story fixed-base RC building is studied. Three-dimensional finite element analyses are carried out considering material and geometric nonlinearities. The structural performance of the base-isolated building is evaluated considering various earthquake excitations. It is found that the performance of the base-isolated building is substantially influenced by the pounding. The investigated base-isolated building shows good resistance against shear failure and the predominant mode of failure due to pounding is flexural. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is fundamentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engineering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metropolitan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced concrete high-rise building using background vibration noise. By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seismology and earthquake engineering projects for seismic hazard mitigation in urban areas.  相似文献   

15.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

16.
以北京市防震减灾中心结构为例,进行了结构的地震反应观测及振动特性识别研究。基于半功率带宽法对结构脉动测试数据进行了分析,计算出了结构自振周期和振型以及相应的阻尼比。各振型都具有较大幅值的楼层分别位于3、6和8层,据此设计并建成了结构地震反应观测台阵。分析台阵地震记录识别出了结构的自振特性,同时功率谱曲线显示,井下数据存在高频特性,初步判定其来自钢套管振动。开展结构的数值模拟分析,利用观测楼层上地震记录的卓越频率不断修正结构数值模型,直至结构反应与地震记录的频率值相符,且与脉动测试数据基本一致,相对位移对比分析发现,在该模型基础上相对位移反应与相对位移记录基本吻合。结构地震反应观测和数值模拟分析较好地实现了结构地震反应观测台阵的观测目的。  相似文献   

17.
Structural irregularity in new buildings is sometimes desired for aesthetic reasons. Often it is unavoidable due to different uses in adjacent spaces within the building. The seismic behaviour of irregular structures is harder to predict than that of regular buildings. More comprehensive analysis techniques are often required to achieve adequate accuracy. Designing irregular structures poses additional challenges as the structural characteristics are unknown. There is a lack of practical design methods that reliably produce economic and seismically robust design solutions for highly irregular RC structures. This paper presents an extension of the Effective Modal Design (EMD) method from asymmetric-plan RC wall buildings to vertically setback asymmetric-plan RC wall buildings. EMD is a generalization of the Direct Displacement-Based Design method for highly irregular ductile uncoupled RC wall structures. EMD reverse engineers a multi-degree of freedom Equivalent Linear System to produce the most economic design solution that achieves the target performance levels. The utility of EMD is verified for a wide range of setback asymmetric-plan reinforced concrete wall structures using nonlinear time history analysis of reasonably realistic 3D structural models. Advantages of EMD include explicit consideration of nonlinear, torsional and ‘higher mode’ effects. The method produces capacity-designed design actions for all reinforced concrete walls in the seismic structural system. EMD only requires three response spectrum type analyses. It does not require time history analysis or pushover analysis. EMD is a practical seismic design method for generally irregular RC wall buildings that uses analysis techniques that most engineering practitioners are familiar and confident with. It was found that for over 95% of the structures considered, EMD achieved critical mean peak responses between ??20 and +?15% of the target response values, with a median of ??5%. This significant improvement in design accuracy and reliability (compared to traditional force based design) was achieved at the relatively small additional computational effort of two Response Spectrum Analyses. This demonstrates the value that the proposed Effective Modal Design method adds to the current spectrum of seismic design methods for irregular ductile RC wall structures.  相似文献   

18.
以某典型的12层钢筋混凝土框架结构作为研究对象,研究基于非线性动力时程分析和地震动参数的RC框架结构易损性分析方法。首先采用静力pushover分析判定结构薄弱层,并确定结构性能(capacity)参数;然后应用非线性动力时程分析估计结构地震反应,研究以峰值加速度和基本周期加速度反应谱作为地震动参数结构反应的不确定性,并进一步分析结构地震需求(demand)参数与地震动参数的关系;在此基础上,分别建立该结构基于峰值加速度和加速度反应谱的易损性曲线,通过考虑场地条件对地震动特性的影响,研究场地条件对结构易损性的影响,结果表明不同场地条件下的结构易损性曲线有一定差异。应用本文方法,根据新一代地震区划图或地震安全性评价确定的地震动参数,可以直接估计结构在未来地震中出现不同破坏的概率,这在结构的抗震性能评估和地震损失预测中有一定意义。  相似文献   

19.
Most current seismic design includes the nonlinear response of a structure through a response reduction factor(R). This allows the designer to use a linear elastic force-based approach while accounting for nonlinear behavior and deformation limits. In fact, the response reduction factor is used in modern seismic codes to scale down the elastic response of a structure. This study focuses on estimating the actual ‘R' value for engineered design/construction of reinforced concrete(RC) buildings in Kathmandu valley. The ductility and overstrength of representative RC buildings in Kathmandu are investigated. Nonlinear pushover analysis was performed on structural models in order to evaluate the seismic performance of buildings. Twelve representative engineered irregular buildings with a variety of characteristics located in the Kathmandu valley were selected and studied. Furthermore, the effects of overstrength on the ductility factor, beam column capacity ratio on the building ductility, and load path on the response reduction factor, are examined. Finally, the results are further analyzed and compared with different structural parameters of the buildings.  相似文献   

20.
After the recent Central Italy Earthquake of the 6th April 2009 (Mw = 6.3), the Italian and German engineer and geophysicist Task Force carried out a wide characterization of sites, buildings and damages. In Navelli, a town about 35 km far from epicentre, heavy damage occurred on a reinforced concrete (RC) building that represent an anomalous case of damage, when compared with those occurred in the neighbouring area. In this paper, characterization of the site and damage of the Navelli RC Building is reported and discussed. We performed ambient noise and strong motion measurements, installing one three-directional accelerometer on each floor of the structure and two in free-field, and we have carried out repeated measurements using a couple of three-directional tromometers. In the mean time, a geological survey was carried out and the site response was investigated, with the aid of down-hole measurements. It was thus possible to investigate the structural response and damage taking into account site condition. One of the main results of this work is that repeating analyses using ambient noise measurements show that the main structural frequencies reached after the first damaging shock are constant over time, and then the structural behaviour appears stationary at long term. On the other hand, the strong motion recordings show that the building exhibits a transient non-stationary behaviour as the fundamental frequency changes during each aftershock, then returning to the starting value after each event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号