首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
The behavior of reinforced concrete structures under severe demands, as strong ground motions, is highly complex; this is mainly due to the complexity of concrete behavior and to the strong interaction between concrete and steel, with several coupled failure modes. On the other hand, given the increasing awareness and concern on the worldwide seismic risk, new developments have arisen in earthquake engineering; nonetheless, some developments are mainly based on simple analytical tools that are widely used, given their moderate computational cost. This research aims to provide a solid basis for validation and calibration of such developments by using computationally efficient continuum mechanics‐based tools. Within this context, this paper presents a model for 3D simulation of cyclic behavior of RC structures. The model integrates a bond‐slip model developed by one of the authors and the damage variable evolution methodology for concrete damage plastic model developed by some authors. In the integrated model, a new technique is derived for efficient 3D analysis of bond‐slip of 2 or more crossing reinforcing bars in beam‐column joints, slabs, footings, pile caps, and other similar members. The analysis is performed by implementing the bond‐slip model in a user element subroutine of Abaqus and the damage variable evolution methodology in the original concrete damage plastic model in the package. Two laboratory experiments consisting of a column and a frame subjected to cyclic displacements up to failure are simulated with the proposed formulation.  相似文献   

2.
Beam–column sub‐assemblages are the one of the most vulnerable structural elements to the seismic loading and may lead to devastating consequences. In order to improve the performance of the poorly/under‐designed building structures to the critical loading scenarios, introduction of steel bracing at the RC beam–column joint is found to be one of the modern and implementable techniques. In the present work, a diagonal metallic single haunch/bracing system is introduced at the beam–column joints to provide an alternate load path and to protect the joint zone from extensive damage because of brittle shear failure. In this paper, an investigation is reported on the evaluation of tae influence of different parameters, such as angle of inclination, location of bracing and axial stiffness of the single steel bracing on improving the performance through altering the force transfer mechanism. Numerical investigations on the performance of the beam–column sub‐assemblages have been carried out under cyclic loading using non‐linear finite element analysis. Experimentally validated numerical models (both GLD and upgraded specimen) have been further used for evaluating the performance of various upgrade schemes. Cyclic behaviour of reinforcement, concrete modelling based on fracture energy, bond‐slip relations between concrete and steel reinforcement have been incorporated. The study also includes the numerical investigation of crack and failure patterns, ultimate load carrying capacity, load displacement hysteresis, energy dissipation and ductility. The findings of the present study would be helpful to the engineers to develop suitable, feasible and efficient upgrade schemes for poorly designed structures under seismic loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of RC frames to failure, not only for monotonically increasing force/pressure loads such as under extreme wind loads but also for dynamic displacement-driven loads such as under earthquake ground motions. To describe member deformations at ultimate loading, traditional moment–curvature techniques have required the use of an empirical hinge length to predict rotations, and despite much research a definitive generic expression for this empirical hinge length is yet to be defined. To overcome this problem, a discrete rotation approach, which directly quantifies the rotation between crack faces using mechanics, has been developed for beams and been shown to be accurate under monotonic loading. In this paper, the discrete rotation approach for monotonic loads is extended to cope with cyclic loads for dynamic analyses, and this has led to the development of a new partial interaction numerical simulation capable of allowing for reversals of slip of the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of reinforced concrete beams and reinforced concrete columns with small axial loads under severe dynamic loads. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigated the use of external steel jacketing for seismic retrofit of non‐ductile reinforced concrete (RC) bridge columns to prevent lap‐splice failure. Three 1/2.5‐scale specimens were tested under cyclic loads. The effectiveness of two types of steel jackets for improving the ductility and strength of specimens using inadequate transverse reinforcing and lap‐splice details were examined. An octagonal steel jacketing scheme for the seismic retrofitting of rectangular RC bridge columns was proposed. In addition, the methods for seismic retrofitting rectangular columns using elliptical steel jacketing were also critically tested. The test results indicated that the octagonal steel jackets can effectively provide confinement thereby mitigating failures as a result of inadequate transverse reinforcing and inadequate lap‐splices. Tests also confirmed that the ductility performance and the energy dissipation capacity of the specimens can be significantly improved by the octagonal steel jacket. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a fiber beam-column element considering flexure–shear interaction and bond-slip effect is developed for cyclic analysis of reinforced concrete (RC) structures. The element is based on conventional displacement-based Timoshenko beam theory, where the transverse shear deformation is included, and adopts the fiber model to describe the section force–deformation behavior. In the fiber model, shear deformation is assumed to be uniformly distributed along the section and is only resisted by concrete, thus the multi-dimensional concrete damage model is used for concrete fibers and therefore flexure–shear interaction is reflected naturally at the material level. Meanwhile, to account for the significant bond-slip effect at critical regions, the anchorage slip of bars at these regions is analytically derived. Then it is used to modify the uniaxial stress–strain model for steel fibers by assuming that the total strain can be treated as the sum of the bar deformation and anchorage slip, therefore the bond-slip effect is implicitly but simply represented. To validate the proposed element, a series of RC member and structure tests under cyclic loading are simulated. The results indicate that the proposed element can predict cyclic responses of RC structures, and can be used as a reliable tool for analysis of RC structures.  相似文献   

6.
Results from an investigation aimed at assessing seismic behavior of transfer story connections for high‐rise building consisting of steel‐reinforced concrete (SRC) frame and reinforced concrete (RC) core tube are presented. Two types of transfer story connections were experimentally evaluated for adequate strength, ductility and energy dissipation. For each type of connection, two large‐scale subassembly tests were carried out under monotonic and cyclic lateral displacement, respectively. Detailed observations and behavior responses were obtained to contrast the differences between monotonic and cyclic performance of the connections. Test results showed that the SRC column failed before connection collapse and that loading types have little effect on the strength but greatly affect the failure modes and the ductility of the connections. All specimens exhibited good properties for earthquake resistance since they all kept a stable inelastic behavior up to the interstory drift demand suggested by the AISC Seismic Provisions. Based on test observations, support stiffeners with appropriate width‐to‐thickness ratio and mechanical connectors connecting bars with the steel plate are recommended for design purposes in order to achieve more ductile and reliable seismic behavior of transfer story connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The response of calcium silicate unreinforced masonry construction to horizontal cyclic loading has recently become the focus of experimental and numerical research, given its extensive use in some areas of the world that are now exposed to induced earthquakes (eg, north of the Netherlands). To assess the seismic behaviour of such construction, a relatively wide range of modelling methodologies are available, amongst which the discrete elements approach, which takes into account the intrinsic heterogeneity of a brick‐mortar assembly, can probably be deemed as the most appropriate computational procedure. On the other hand, however, since discrete elements numerical methods are based on a discontinuum domain, often they are not able to model every stage of the structural response adequately, and because of the high computational burden required, the analysis scale should be chosen carefully. The applied element method is a relatively recent addition to the discrete elements family, with a high potential for overcoming the aforementioned limitations or difficulties. Initially conceived to model blast events and concrete structures, its use in the earthquake engineering field is, of late, increasing noticeably. In this paper, the use of the applied element method to model the in‐plane cyclic response of calcium silicate masonry walls is discussed and scrutinised, also through the comparison with experimental results of in‐plane cyclic shear‐compression tests on unreinforced masonry walls.  相似文献   

8.
This paper proposes a simple lattice model for collapse analysis of RC bridges subjected to earthquakes by using the extended distinct element method (EDEM). In the model, a concrete element consists of lumped masses connected to one another by springs, and a reinforcement bar is represented by a discrete model or an integrated model. The proposed lattice model is simple but its parameters are reasonably defined. It has fewer element nodes and connecting springs, which will be of benefit by shortening the CPU time. The processes to determine the initial stiffness of concrete and steel springs, the parameters of the constitutive model and the fracture criteria for springs are described. A re‐contact spring model is also proposed to simulate the re‐contact of the concrete after fracture of springs; and a general grid searching method is used to decrease the CPU time for judging re‐contact after fracture. The lattice model is assessed by numerical simulations and experiments. As an application, a damaged single‐column pier subjected to the Kobe Earthquake in 1995 is analysed by EDEM with the proposed model. The simulation results indicate that the proposed model predicts well qualitatively the collapse process of RC bridges. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
This paper focuses on analyzing the nonlinear seismic response of high‐arch dams with cantilever reinforcement strengthening. A modified embedded‐steel model is presented to evaluate the effects of the strengthening measure on alleviating the extension and opening of cracks under strong earthquakes. By stiffening reinforced steel, this model can easily consider the steel–concrete interaction for lightly reinforced concrete (RC) members without the need of dividing them into RC and plain concrete zones. The new tensile constitutive relations of reinforced steel are derived from the load–deformation relationship of RC members in direct tension. This model has been implemented in the finite element code and its applicability is verified by two numerical simulations for RC tests. Subsequently, numerical analyses for a 210‐m high‐arch dam (Dagangshan arch dam) are conducted with and without the presence of cantilever reinforcement. Numerical results show that reinforcement strengthening can reduce the nonlinear response of the arch dam, e.g. joint opening and crest displacement, and limit the extension and opening width of concrete cracks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Reinforced concrete (RC) structures in low to moderate seismic regions and many older RC structures in high seismic regions include columns with steel reinforcement details not meeting the requirements of modern seismic design codes. These columns typically fail in shear or in a brittle manner and their behavior must be accurately captured when RC structures are modeled and analyzed. The total lateral displacement of a low ductility or shear critical RC column can be represented as the sum of three displacement components: (1) flexural displacement, (2) displacement due to slippage of the reinforcing bars at column ends, and (3) shear displacement. In this study, these three displacement components are separately modeled and then combined together following a proposed procedure based on the expected overall behavior of the column and its failure mechanism. A simplified slip model is proposed. The main objective of this research is to develop an easy-to-apply method to model and capture the cyclic behavior of RC columns considering the shear failure mechanism. The proposed model is validated using the available data from RC column and frame experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号