首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The rate of vertical accretion was determined on two backbarrier marshes in the Mississippi River Plain, using 137Cs dating techniques. An average accretion rate of 0-55 cm yr?1 was found on Grande Terre, and 0.78 cm yr?1 on Grand Isle. Analysis of mineral organic content of the marsh profile shows that the backbarrier marshes accrete through (1) accumulation of low density organic matter, and (2) episodic deposition of high density mineral sediment probably associated with major hurricanes or storm events. The rates of vertical accretion were two to three times less than the rate of submergence due primarily to rapid subsidence in the deltaic plain, and imply that these backbarrier marshes will progressively deteriorate.  相似文献   

2.
Sediment flux in marsh tidal creeks is commonly used to gauge sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended‐sediment concentration (SSC), velocity and depth were measured near the mouths of two tidal creeks during three 6‐ to 10‐week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally averaged suspended‐sediment flux (SSF) in the tidal creeks varied from slightly landward to strongly bayward with increasing tidal energy. SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF for each deployment. During ebb tides following the highest tides, velocities exceeded 1 m s?1 in the narrow tidal creeks, resulting in negative tidally averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally averaged SSF was positive in wavy conditions with moderate tides. Spring tide sediment export at the creek mouth was about twice that at a station 130 m further up the tidal creek. The negative tidally averaged water flux near the creek mouth during spring tides indicates that in the lower marsh some of the water flooding directly across the bay–marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
This paper provides a detailed study on the sedimentation patterns and the recent morphodynamic evolution affecting the macro-tidal salt marshes located west of the Mont-Saint-Michel (France). Twenty-two stations along three transects on the marshes were seasonally monitored for marsh surface level variations from 1999 to 2005, using a sediment erosion bar. The corresponding erosion/accretion rates were obtained together with data on topography, vegetation cover, and grain size of surface sediment. To examine the mechanisms contributing to the salt marsh sedimentation, the data and their evolution were treated with respect to tides, relative mean regional sea level, and wind speed/frequency variations.From 1999 to 2005, the marsh was globally accreting (from 3.45 to 38.11 mm yr−1 in the low marsh, up to 4.91 mm yr−1 in the middle marsh, and up to 1.35 mm yr−1 in the high marsh), while the study was conducted during a window of decreasing trend in mean regional sea level (−2.45 mm yr−1 according to regional-averaged time series). These sedimentation rates are one of the highest recorded worldwide; however, the sedimentation was not found to be continuous over the period in question. This pattern is illustrated by the strong extension of the marshes from 1999 to 2002, and the relative stability observed from 2003 to 2005. The imported and reworked sediments are trapped and fixed by the dense vegetation (Puccinellia maritima, Halimione portulacoides), inducing the general seaward extension of the marshes. The processes governing sediment budget (accretion/erosion) show annual, seasonal, and spatial variability on the marsh. Spatial variations display contrasted patterns of erosion/sedimentation between the low, middle, and high marsh, and between the different transects. These patterns are a result of distance from sediment sources, strong heterogeneity in vegetation cover (human induced or not), and contrasting topographic and micro-topographic characteristics. The higher accretion rates are observed in distal settings in the low marsh, and strongly decrease toward the middle and high marsh. This evolution results from a decrease in accommodation space/water column thickness, and frequency of inundation coupled with an increase in station elevation, but also from the cumulated effects of vegetation cover and micro-topography. The vegetation cover of the low and middle marsh enhance the settling and fixing of fine sediments imported through tides or dispersed by flood and ebb currents.The seasonal evolution of the marshes is marked by contrasting effects of water storage in the sediment. The overall seasonal sediment budget is controlled by the variation of the frequency of inundation relative to tidal range and marshes topography. Autumns are influenced by the tide (equinoxes), relative mean regional sea level, and variations in wind speed/frequency. Winter wind speed and frequency in relation with tidal variations appear to be the main parameters regulating winter marsh evolution. Summers are predominantly under the influence of local variations in water storage (desiccation) while external parameters generally display a low influence. Although it is not governed by any one parameter, springtime sediment budget seems to result from strong interaction between the above-cited parameters, despite the significant frequency of inundation (equinoxes).  相似文献   

4.
Analytical modelling of heat transport was used to address effects of uncertainty in thermal conductivity on groundwater–surface water exchange. In situ thermal conductivities and temperature profiles were measured in a coastal lagoon bed where groundwater is known to discharge. The field site could be divided into three sediment zones where significant spatial changes in thermal conductivity on metre to centimetre scale show that spatial variability connected to the sediment properties must be considered. The application of a literature‐based bulk thermal conductivity of 1.84 Wm?1 °C?1, instead of field data that ranged from 0.62 to 2.19 W m?1 °C?1, produced a mean overestimation of 2.33 cm d?1 that, considering the low fluxes of the study area, represents an 89% increase and up to a factor of 3 in the most extreme cases. Incorporating the uncertainty due to sediment heterogeneities leads to an irregular trend of the flux distribution from the shore towards the lagoon. The natural variability of the thermal conductivity associated with changes in the sediment composition resulted in a mean variation of ±0.66 cm d?1 in fluxes corresponding to a change of ±25.4%. The presence of organic matter in the sediments, a common situation in the near‐shore areas of surface water bodies, is responsible for the decrease of thermal conductivity. The results show that the natural variability of sediment thermal conductivity is a parameter to be considered for low flux environments, and it contributes to a better understanding of groundwater–surface water interactions in natural environments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Limited information exists on one of the mechanisms governing sediment input to streams: streambank erosion by ground water seepage. The objective of this research was to demonstrate the importance of streambank composition and stratigraphy in controlling seepage flow and to quantify correlation of seepage flow/erosion with precipitation, stream stage and soil pore water pressure. The streambank site was located in Northern Mississippi in the Goodwin Creek watershed. Soil samples from layers on the streambank face suggested less than an order of magnitude difference in vertical hydraulic conductivity (Ks) with depth, but differences between lateral Ks of a concretion layer and the vertical Ks of the underlying layers contributed to the propensity for lateral flow. Goodwin Creek seeps were not similar to other seeps reported in the literature, in that eroded sediment originated from layers underneath the primary seepage layer. Subsurface flow and sediment load, quantified using 50 cm wide collection pans, were dependent on the type of seep: intermittent low‐flow (LF) seeps (flow rates typically less than 0·05 L min?1), persistent high‐flow (HF) seeps (average flow rate of 0·39 L min?1) and buried seeps, which eroded unconsolidated bank material from previous bank failures. The timing of LF seeps correlated to river stage and precipitation. The HF seeps at Goodwin Creek began after rainfall events resulted in the adjacent streambank reaching near saturation (i.e. soil pore water pressures greater than ?5 kPa). Seep discharge from HF seeps reached a maximum of 1·0 L min?1 and sediment concentrations commonly approached 100 g L?1. Buried seeps were intermittent but exhibited the most significant erosion rates (738 g min?1) and sediment concentrations (989 g L?1). In cases where perched water table conditions exist and persistent HF seeps occur, seepage erosion and bank collapse of streambank sediment may be significant. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine-grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high-resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco-geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood-ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In-situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea-level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
A full‐scale controlled experiment was conducted on an excavated and re‐assembled coastal wetland surface, typical of floristically diverse northwest European saltmarsh. The experiment was undertaken with true‐to‐scale water depths and waves in a large wave flume, in order to assess the impact of storm surge conditions on marsh surface soils, initially with three different plant species and then when this marsh canopy had been mowed. The data presented suggests a high bio‐geomorphological resilience of salt marshes to vertical sediment removal, with less than 0.6 cm average vertical lowering in response to a sequence of simulated storm surge conditions. Both organic matter content and plant species exerted an important influence on both the variability and degree of soil surface stability, with surfaces covered by a flattened canopy of the salt marsh grass Puccinellia experiencing a lower and less variable elevation loss than those characterized by Elymus or Atriplex that exhibited considerable physical damage through stem folding and breakage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m?2 (equivalent to disturbance caused by wind SE 5–7 m s?1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4 +-N were separately 1.92 × 10?3, ?1.81 × 10?4 and 5.28 × 10?4 mg m?2 s?1 (positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10?4, 1.68 × 10?4 and ?1.29 × 10?4 mg m?2 s?1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted. The result shows that the maximum lasting time for wind SE 5–7 m s?1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4 +-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L?1 separately. With stronger disturbance (bottom wave stress is 0.217 N m?2 which is equivalent to disturbance caused by wind SE 10–11 m s?1 at the same site), there has been significant increase of nutrient fluxes (1.16 × 10?2, 6.76 × 10?3, 1.14 × 10?2 and 2.14 × 10?3 mg m?2 s?1 for TN, DTN and NH4 +-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54 × 10?5 mg m?2 s?1) and SRP with flux having a small increase (measured to be 5.42 × 10?5 mg m?2 s?1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10–11 m s?1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4 +-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0.009, 0.0004 and 0.0002 mg L?1. Therefore in shallow lakes, surface disturbance can lead to significant increase of nutrient concentrations although some components in water column had negative flux with weak disturbance (e.g. TDN and SRP in this experiment). In this case, sediment looks to be a source of nutrients. These nutrients deposited in sediment can be carried or released into water with sediment resuspension or changes of environmental conditions at water-sediment interface, which can have great effects on aquatic ecosystem and is also the characteristics of shallow lakes.  相似文献   

9.
This article introduces the SVG (salt‐velocity gauge), a novel automated technique for measuring flow velocity by means of salt tracing. SVG allows a high measuring rate (up to one every 2 seconds), short control section length (down to 10 cm), high accuracy (+[sol ]?1·5 cm s?1), and unbiased calculation of the mean velocity in experimental conditions with turbulent, supercritical flow. A few cubic centimetres of saturated salt solution (NaCl) are injected into the flow at regular time intervals using a programmable solenoid valve. The tracer successively passes two conductivity probes placed a short distance downstream. The transformation of the signal between the two probes is modelled as a one‐dimensional diffusion wave equation. Model calibration gives an estimation of the mean velocity and the diffusion for each salt plume. Two implementations of the SVG technique are described. The first was an outdoors simulated rainfall experiment in Senegal (conductivity probes at 40 cm apart, 8 Hz measurement rate, salt injections at 10 second intervals). Mean velocity was estimated to range between 0·1 and 0·3 m s?1. The second was a laboratory‐based flume experiment (conductivity probes at 10 cm apart, 32 Hz, salt injections at 2 second intervals). Another SVG with probes at 34 cm apart was used for comparison. An acoustic Doppler velocimeter (ADV) was also used to give an independent assessment of velocity. Using the 10 cm salt gauge, estimated mean velocity ranged from 0·6 to 0·9 m s?1 with a standard deviation of 1·5 cm s?1. Comparisons between ADV, 10 cm SVG and 34 cm SVG were consistent and demonstrated that the salt‐tracing results were unbiased and independent of distance between probes. Most peaks were modelled with r2 > 90 per cent. The SVG technology offers an alternative to the dye‐tracing technique, which has been severely criticized in the literature because of the wide interval of recommended values for the correction factor α to be applied to the timings. This article demonstrates that a fixed value of α is inappropriate, since the correction factor varies with velocity, diffusion and the length of the control section. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
We have investigated the contributions of three dominant macrophyte species, Deyeuxia angustifolia, Carex lasiocarpa, and Carex pseudocuraica (covering about 10 304 km2), to carbon (C), nitrogen (N), and phosphorus (P) stocks in the largest freshwater marsh (17 300 km2) in China for a 3‐year period (from 2002 to 2004). The monthly biomass, seasonal, and annual net primary productivity (NPP), and nutrient concentrations of three species were measured. All three plant species showed rapid growth in the rainy season. The maximum and minimum production rates in the freshwater marsh were ~36.19 and ~9.92 g m?2 day?1, respectively. The total NPP accounts 1900–2700 g m?2 year?1 in the studied area. Total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) concentrations in roots were higher than those in stem and leaf tissues. The vast beds of the three studied species comprise 80% of the grass covered marsh of Sanjiang plain, contributing annual nutrient stocks of ~10.99 × 106, ~788.36 × 103, and ~18.10 × 103 t (tonnes) for TOC, TN, and TP, respectively. Our results suggest that the nutrient bioaccumulation capacity in freshwater marshes depend mainly on plant species, which are decided by hydrological conditions. The nutrient stocks in the Sanjiang plain marsh have been greatly reduced because some of the area occupied by C. lasiocarpa was replaced by D. angustifolia as a result of succession caused by the changes of water table.  相似文献   

11.
Coastal marsh loss in Louisiana is attributed to plane dieback caused by processes that stress vegetation, and a common landscape pattern is broken marsh that expands at the expense of surrounding unbroken marsh. We tested the hypothesis that vegetation is more stressed in broken marsh than in adjacent unbroken marsh, as indicated by vegetation aboveground biomass, species diversity and soil Eh, on transects that extended from broken marsh to unbroken marsh at Marsh Island, Louisiana. Soil Eh, vegetation above-ground biomass and species diversity did not differ between broken marsh and unbroken marsh, and above-ground biomass was similar to that reported from other marshes. Thus, we rejected the hypothesis that marsh loss is related to vegetation stress. Two factors were related to vegetation vigour: soil drainage and soil bulk density. Surprisingly, significant soil drainage occurred in broken marsh but not in unbroken marsh. Above-ground biomass of the dominant plant, Spartina patens (Aiton) Muhl., was lowest where soil bulk density was less than 0-08 gcm−3, which illustrated the importance of mineral matter accumulation in submerging coastal marshes. The mechanism of marsh loss appeared to be erosion below the living root zone, as indicated by the vertical and often undercut marsh-water interface, and by the separation of sod clasts. This is different from more rapid marsh loss associated with plant stress which we observed in other Louisiana marshes only 135 km away, indicating that marsh loss mechanisms can vary spatially even within a relatively small region.  相似文献   

12.
Sea level rise (SLR) is threatening coastal marshes, leading to large-scale marsh loss in several micro-tidal systems. Early recognition of marsh vulnerability to SLR is critical in these systems to aid managers to take appropriate restoration or mitigation measures. However, it is not clear if current marsh vulnerability indicators correctly assess long-term stability of the marsh system. In this study, two indicators of marsh stress were studied: (i) the skewness of the marsh elevation distribution, and (ii) the abundance of codominant species in mixtures. We combined high-precision elevation measurements (GPS), LiDAR imagery, vegetation surveys and water level measurements to study these indicators in an organogenic micro-tidal system (Blackwater River, Maryland, USA), where large-scale historical conversion from marshes to shallow ponds resulted in a gradient of increasing marsh loss. The two indicators reveal increasingly stressed marshes along the marsh loss gradient, but suggest that the field site with the most marsh loss seems to experience less stress. For the latter site, previous research indicates that wind waves generated on interior marsh ponds contribute to lateral erosion of surrounding marsh edges and hence marsh loss. The eroded marsh sediment might temporarily provide the remaining marshes with the necessary sediment to keep up with relative SLR. However, this is only a short-term alleviation, as lateral marsh edge erosion and sediment export lead to severe marsh loss in the long term. Our findings indicate that marsh elevation skewness and the abundance of codominant species in mixtures can be used to supplement existing marsh stress indicators, but that additional indices such as fetch length and the sediment budget should be included to account for lateral marsh erosion and sediment export and to correctly assess long-term stability of micro-tidal marshes. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
Bifurcations are key geomorphological nodes in anabranching and braided fluvial channels, controlling local bed morphology, the routing of sediment and water, and ultimately defining the stability of their associated diffluence–confluence unit. Recently, numerical modelling of bifurcations has focused on the relationship between flow conditions and the partitioning of sediment between the bifurcate channels. Herein, we report on field observations spanning September 2013 to July 2014 of the three‐dimensional flow structure, bed morphological change and partitioning of both flow discharge and suspended sediment through a large diffluence–confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13 500 to 27 000 m3 s?1). Analysis of discharge and sediment load throughout the diffluence–confluence unit reveals that during the highest flows (Q = 27 000 m3 s?1), the downstream island complex is a net sink of sediment (losing 2600 ± 2000 kg s?1 between the diffluence and confluence), whereas during the rising limb (Q = 19 500 m3 s?1) and falling limb flows (Q = 13 500 m3 s?1) the sediment balance is in quasi‐equilibrium. We show that the discharge asymmetry of the bifurcation varies with discharge and highlight that the influence of upstream curvature‐induced water surface slope and bed morphological change may be first‐order controls on bifurcation configuration. Comparison of our field data to existing bifurcation stability diagrams reveals that during lower (rising and falling limb) flow the bifurcation may be classified as unstable, yet transitions to a stable condition at high flows. However, over the long term (1959–2013) aerial imagery reveals the diffluence–confluence unit to be fairly stable. We propose, therefore, that the long‐term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence–confluence unit, may be controlled by the dominant sediment transport regime of the system. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
We report the results of numerical and analytical simulations to test the hypothesis that downward vertical flow of porewater from the crests of domed alpine and kettle bogs controls vertical porewater distributions of major solutes such as Ca and Mg. The domed Etang de la Gruère bog (EGr), Switzerland, characterized by a vertical downward gradient of 0·04 and stratified layers of peat, is chosen as a field site for the model calibration and evaluation. The middle 4‐m section of the 6·5 m thick bog peat is heavily humified and has a hydraulic conductivity of ~10?5·6 cm s?1. Above and below, peat is less humified with a hydraulic conductivity of ~10?3 cm s?1. Heuristic finite difference simulations, using Visual MODFLOW, of the bog hydraulics show that the higher conductivity peat at the bog base is critical to create the observed deep, local flow cells that substantively recharge porewater. Model results and Peclet number calculations show that before ~7000 14C yr BP diffusion of solutes from underlying mineral soils controlled the vertical distribution of porewater chemistry. From 7000 to ~1250 14C BP the porewater chemistry was probably controlled by both upward diffusion and downward advection, and after ~1250 14C yr BP porewater chemistry was probably controlled by downward advection. Concentrations of conservative major solutes in the porewaters of alpine, ombrotrophic bogs are the net effect of both downward vertical porewater movement and upward vertical diffusion, the magnitudes of which are delicately poised to the configuration of the bog water table over time and subsurface peat stratigraphy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Piezometers and wells installed for water quality monitoring are frequently used to assess the saturated hydraulic conductivity (K) in the surrounding formation. A series of recovery tests was conducted to evaluate how purging, required to obtain representative water quality samples, affected measured values of hydraulic conductivity in 15 newly installed and undeveloped piezometers placed to between 2 and 15 m depth (in oxidized and unoxidized material) in a loamy glacial till (K range from 10?6 to 10?9 m s?1). Piezometers were purged between 9 and 11 times for sampling over a period of five months. The effect of the purgings on piezometer development was evaluated by changes in slope of the water level recovery curves which were used to calculate hydraulic conductivity. The first five purgings following piezometer installation increased K in the 15 piezometers by an average of 34%. The average increase in a value of K after 10 purgings was 44%. Values measured for hydraulic conductivity in a 75 mm diameter auger hole appeared stable after four purgings but piezometers installed in larger diameter boreholes (100 mm to 280 mm) snowed increases in K with up to 10 purgings. The hydraulic conductivity determined for piezometers installed at a 30° angle to the vertical showed greater variability than was observed in the adjacent vertically installed piezometers at the same depth.  相似文献   

16.
Salt marshes are ubiquitous features of the tidal landscape governed by mutual feedbacks among processes of physical and biological nature. Improving our understanding of these feedbacks and of their effects on tidal geomorphological and ecological dynamics is a critical step to address issues related to salt-marsh conservation and response to changes in the environmental forcing. In particular, the spatial variation of organic and inorganic soil production processes at the marsh scale, a key piece of information to understand marsh responses to a changing climate, remains virtually unexplored. In order to characterize the relative importance of organic vs. inorganic deposition as a function of space, we collected 33 shallow soil sediment samples along three transects in the San Felice and Rigà salt marshes located in the Venice lagoon, Italy. The amount of organic matter in each sample was evaluated using Loss On Ignition (LOI), a hydrogen peroxide (H2O2) treatment, and a sodium hypochlorite (NaClO) treatment following the H2O2 treatment. The grain size distribution of the inorganic fraction was determined using laser diffraction techniques. Our study marshes exhibit a weakly concave-up profile, with maximum elevations and coarser inorganic grains along their edges. The amount of organic and inorganic matter content in the samples varies with the distance from the marsh edge and is very sensitive to the specific analysis method adopted. The use of a H2O2+NaClO treatment yields an organic matter density value which is more than double the value obtained from LOI. Overall, inorganic contributions to soil formation are greatest near the marsh edges, whereas organic soil production is the main contributor to soil accretion in the inner marsh. We interpret this pattern by considering that while plant biomass productivity is generally lower in the inner part of the marsh, organic soil decomposition rates are highest in the better aerated edge soils. Hence the higher inorganic soil content near the edge is due to the preferential deposition of inorganic sediment from the adjacent creek, and to the rapid decomposition of the relatively large biomass production. The higher organic matter content in the inner part of the marsh results from the small amounts of suspended sediment that makes it to the inner marsh, and to the low decomposition rate which more than compensates for the lower biomass productivity in the low-lying inner zones. Finally, the average soil organic carbon density from the LOI measurements is estimated to be 0.044 g C cm−3. The corresponding average carbon accumulation rate for the San Felice and Rigà salt marshes, 132 g C m−2 yr−1, highlights the considerable carbon stock and sequestration rate associated with coastal salt marshes.  相似文献   

17.
Tidal marsh restoration and creation is growing in popularity due to the many and diverse sets of services these important ecosystems provide. However, it is unclear what conditions within constructed settings will lead to the successful establishment of tidal marsh. Here we provide documentation for widespread and rapid development of tidal freshwater wetlands for a major urban estuary as an unintended result of early industrial development. Anthropogenic backwater areas established behind railroad berms, jetties, and dredge spoil islands resulted in the rapid accumulation of clastic material and the subsequent initiation of emergent marshes. In one case, historical aerial photos document this transition occurring in less than 18 years, offering a timeframe for marsh development. Accretion rates for anthropogenic tidal marshes and mudflats average 0.8–1.1 and 0.6–0.7 cm year−1, respectively, equivalent to two to three times the rate of relative sea level rise as well as the observed accretion rate at a 6000+ year-old reference marsh in the study area. Paired historical and geospatial analysis revealed that more than half of all the tidal wetlands on the Hudson River were likely triggered by anthropogenic development since the onset of the industrial era, including two-thirds of the emergent cattail marsh. These inadvertently constructed tidal wetlands currently trap roughly 6% of the Hudson River's sediment load. Results indicate that when sediment is readily available, freshwater tidal wetlands can develop relatively rapidly in sheltered settings. The study sites serve as useful examples to help guide future tidal marsh creation and restoration efforts.  相似文献   

18.
The form and functioning of peatlands depend strongly on their hydrological status, but there are few data available on the hydraulic properties of tropical peatlands. In particular, the saturated hydraulic conductivity (K) has not previously been measured in neotropical peatlands. Piezometer slug tests were used to measure K at two depths (50 and 90 cm) in three contrasting forested peatlands in the Peruvian Amazon: Quistococha, San Jorge and Buena Vista. Measured K at 50 cm depth varies between 0.00032 and 0.11 cm s?1, and at 90 cm, it varies between 0.00027 and 0.057 cm s?1. Measurements of K taken from different areas of Quistococha showed that spatial heterogeneity accounts for ~20% of the within‐site variance and that depth is a good predictor of K. However, K did not vary significantly with depth at Buena Vista and San Jorge. Statistical analysis showed that ~18% of the variance in the K data can be explained by between‐site differences. Simulations using a simple hydrological model suggest that the relatively high K values could lead to lowering of the water table by >10 cm within ~48 m of the peatland edge for domed peatlands, if subjected to a drought lasting 30 days. However, under current climatic conditions, even with high K, peatlands would be unable to shed the large amount of water entering the system via rainfall through subsurface flow alone. We conclude that most of the water leaves these peatlands via overland flow and/or evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In north‐central Oklahoma eastern redcedar (Juniperus virginiana), encroachment into grassland is widespread and is suspected of reducing streamflow, but the effects of this encroachment on soil hydraulic properties are unknown. This knowledge gap creates uncertainty in understanding the hydrologic effects of eastern redcedar encroachment and obstructs fact‐based management of encroached systems. The objective of this study was to quantify the effects of eastern redcedar encroachment into tallgrass prairie on soil hydraulic properties. Leaf litter depth, soil organic matter, soil water repellency, soil water content, sorptivity, and unsaturated hydraulic conductivity were measured near Stillwater, OK, along 12 radial transects from eastern redcedar trunks to the center of the grassy intercanopy space. Eastern redcedar encroachment in the second half of the 20th century caused the accumulation of 3 cm of hydrophobic leaf litter near the trunks of eastern redcedar trees. This leaf litter was associated with increased soil organic matter in the upper 6 cm of soil under eastern redcedar trees (5.96% by mass) relative to the grass‐dominated intercanopy area (3.99% by mass). Water repellency was more prevalent under eastern redcedar than under grass, and sorptivity under eastern redcedar was 0.10 mm s?1/2, one seventh the sorptivity under adjacent prairie grasses (0.68 mm s?1/2). Median unsaturated hydraulic conductivity under grass was 2.52 cm h?1, four times greater than under eastern redcedar canopies (0.57 cm h?1). Lower sorptivity and unsaturated hydraulic conductivity would tend to decrease infiltration and increase runoff, but other factors such as rainfall interception by the eastern redcedar canopy and litter layer, and preferential flow induced by hydrophobicity must be examined before the effects of encroachment on streamflow can be predicted. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号