首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A paleomagnetic study of a 2200-meter thick section of clastic turbidites from the Eocene Hecho group (southcentral Pyrenees, Spain) allows defining its magnetostratigraphic record. Natural remanent magnetization is carried by up to three components: a viscous low-temperature component; a second component unblocked between 300°C and 345°C, likely carried by iron-sulphides; and a third component which demagnetizes at temperatures higher than 345°C and is likely carried by magnetite. The second and third components may display opposite polarities at the same site. The magnetite component delineates different polarity zones and has a more consistent behavior along section if compared with the iron-sulphide component, which displays either a normal or a reverse direction without any stratigraphic consistency along section. The bulk of iron sulphides are interpreted to be secondary in origin and to carry diagenetic overprints acquired at different times after deposition and the magnetite component is taken as the characteristic primary magnetization. As supported by biostratigraphy, the section is correlated from chrons C20r to C18n.2n (Lutetian-Bartonian transition), which indicates a mean sediment accumulation rate of about 52 cm/ky for the studied section. The new chronostratigraphy allows constraining the age of the upper Hecho Group (Banastón and Jaca allogroups) to an unprecedented level and is consistent with previous magnetostratigraphic work in younger sediments from the Jaca Basin. Deep clastic sedimentary systems should not be neglected as a target for magnetostratigraphic studies despite diagenetic growth of secondary minerals may mask the primary signal.  相似文献   

2.
The Middle Ordovician Volginsky and Kirensky fossil zones were sampled in the Krivaya Luka section (Krivolutsky suite) that outcrops along the Lena river in Siberia. The Volginsky and Kirensky zones are coeval to the Llandeilo in the global geologic time scale. The Krivaya Luka section consists of siltstones, clays, sandstones, and limestones, and displays a remarkably distinct sedimentary cyclicity, especially in its reddish middle part.Stepwise thermal demagnetization yields three NRM components. Component A, isolated in the 100—250°C interval can be either normal or reversed. The normal A-component has a direction close to recent local magnetic field. The reversed A-component directions are scattered around a direction close to that of the lower Triassic Siberian traps. Component B has unblocking temperatures that range from 400 to 500°C and is represented mainly by normal polarity directions. The B-component, isolated from rocks of the middle part of the section is of a normal polarity with D = 176.5°, I = 30.0° and a North pole position at 16.2°S, 111.3°E. The other parts of the section are characterized by intermediate B-directions, which resulted possibly by partially overlapping A- and C-components. The highest temperature dual-polarity component C was isolated in the 550—670°C interval, resulting in the detection of two complete polarity zones and three magnetic reversals. The C-component is characterized by the following mean directions: for the reversed component D = 335.7°, I = 6.9°, and for the normal component D = 188.6°, I = 28.0°, which is very close to the normal polarity directions of the B-component. The corresponding paleomagnetic North pole for reversed polarity rocks is 32.6°S, 137°E, which is typical of Middle Ordovician rocks from Siberia – the mean pole for Llanvirn-Llandeilo is 30°S, 136°E (cf. Smethurst et al., 1998) – whereas for normal polarity rocks the pole position 17.2°S, 99.1°E is markedly different. Nevertheless, we assume that the C-component records the ancient geomagnetic field of Ordovician times, even though it does not pass the reversals test. This could be explained by overlapping NRM unblocking temperature spectra for the B and C components. In this case, the paleomagnetic pole positions should be interpreted with some caution.In addition, the section was logged and sampled in detail for cyclostratigraphic purposes. Spectral analysis in the depth domain using the high-field susceptibility as input parameter showed that the observed cyclicity is most likely orbitally forced. Detected spectral peaks (significant at the 95% confidence level) were close to the expected positions of the periodicities of precession, obliquity and eccentricity for the Ordovician. Consequently, the average sediment accumulation rate is estimated at 3.5 cm/kyr. Extrapolating this sedimentation rate yields a total duration of at least 1 Myr for the Volginsky fossil zone and 1.2 Myr for the entire Krivaya Luka section.  相似文献   

3.
Polarity zones of sedimentary sections reflect a pattern of alternating polarity of the geomagnetic field recorded by the remanent magnetization of rocks. Unfortunately, this pattern can have been modified by the variable sedimentation rate, which complicates the identification of polarity zones against the reference geomagnetic polarity time scale. To avoid this obstacle, the present paper suggests a transform applied to both the sequence of levels of polarity reversal horizons and the sequence of ages of polarity reversals before computing their cross-correlation. This transform usually reduces the impact of the variable sedimentation rate so that a sequence of more than eight polarity reversal horizons may be identified without biostratigraphic constraints. Numerical experiments involving random processes to simulate both the duration of polarity reversals and the sedimentation rate proved, however, that not all the parts of a hypothetical stratigraphic section spanning the past 165 Ma would be equally suitable for dating by magnetic polarity stratigraphy. A program performing both the compilation of polarity zones from the directions of the primary magnetization sampled along a section and subsequent identification of these polarity zones is made available online.  相似文献   

4.
The Fisherman's Cliff and Bone Gulch Local Faunas are the second and third oldest mammalian fossil assemblages known in the Murray Basin of southeastern Australia. The determination of well constrained ages for these two faunas has been plagued by a lack of diagnostic microfossils or material suitable for isotopic age determinations. Based on previous paleomagnetic data [1,2] the ages of the Fisherman's Cliff and Bone Gulch local faunas were assigned to the Gauss and lower Matuyama Chrons, respectively. However, these dates were not tested by direct magnetostratigraphic studies at either locality. In order to make direct correlations, 22 paleomagnetic and five paleomagnetic sites, respectively, were collected from Fisherman's Cliff and Bone Gulch. Results indicate that the Fisherman's Cliff Local Fauna occurs within a zone of normal magnetic polarity whilst the Bone Gulch Local Fauna occurs within a zone of reversed polarity. By correlation to the Chowilla section, these zones are interpreted to represent the Gauss and lower Matuyama Chrons and ages of 2.47–2.92 and 1.88–2.47 Myr are indicated for the Fisherman's Cliff and Bone Gulch Local Faunas, respectively.  相似文献   

5.
The study of rock samples from the Upper Permian Khei-Yaga River section revealed an r-n-r-n-r magnetic polarity succession based on the prefolding characteristic component of natural remanent magnetization. With account for stratigraphic and previous magnetostratigraphic data on Lower Triassic rocks from the Khei-Yaga River section, the examined strata of the Pechora Group (Silova Formation) may be compared with magnetic zones R1P2u and N1P3t in the magnetostratigraphic scale of European Russia. The gap in the paleomagnetic record, which corresponds in the examined section to the interval of the mid-Severodvinian Stage to basal Induan Stage, Zone N1T included, is estimated to be 10 Ma long. It is assumed that this hiatus represents one of the local signs of the global Permian-Triassic crisis.  相似文献   

6.
We summarize the ammonoid, conodont and halobiid biochronology of the Upper Carnian to Lower Norian, based on a discussion of data in the Alps, Sicily, Balkans, Turkey, Himalayas and Timor. With this integrated biostratigraphic scale, the Pizzo Mondello section (Sicily) can be recalibrated and the Carnian-Norian boundary more precisely located there. As a result, the magnetostratigraphy of this section is now in good agreement with previous results from Turkey, although the latter series are more condensed. Cross-correlation of available magnetostratigraphic data from marine Tethyan sections allow us to construct a composite Upper Carnian to Upper Norian geomagnetic polarity time scale (GPTS). This GPTS leads us to question previously proposed magnetobiostratigraphic and chronostratigraphic correlations within the Upper Triassic Newark non-marine sedimentary sequence.  相似文献   

7.
New contributions to Chinese Plio-Pleistocene magnetostratigraphy   总被引:14,自引:0,他引:14  
A new collection of over 500 orientated hand-samples (of which 180 are red clays) from a 195 m loess/red clay section near Xian (109° 12′ E, 34° 12′ N), China, has been dated by magnetic stratigraphy. Biostratigraphic and previous magnetostratigraphic investigations gave a maximum age for the Chinese loess of 2.4 Ma, implying that the underlying Red Clay Formation is Pliocene in age. The present study yields a clearly defined magnetic polarity stratigraphy in good agreement with a polarity time scale developed by earlier workers. An interpretation of this magnetostratigraphy suggests a basal age for the loess series in this region of 2.5 Ma, and a minimum age for the base of the Red Clay Formation, which is also the base of the section, of 5.0 Ma.  相似文献   

8.
The ages of polarity chrons in previous M-sequence magnetic polarity time scales were interpolated using basal sediment ages in suitably drilled DSDP holes. This method is subject to several sources of error, including often large paleontological age ranges. Magnetostratigraphic results have now tied the Early Cretaceous and Late Jurassic paleontological stage boundaries to the M-sequence of magnetic polarity. The numeric ages of most of these boundaries are inadequately known and some have been determined largely by intuition. An examination of relevant data suggests that 114 Ma, 136 Ma and 146 Ma are optimum estimates for the ages of the Aptian/Barremian, Cretaceous/Jurassic and Kimmeridgian/Oxfordian stage boundaries, respectively. Each of these boundaries has a good correlation to the M-sequence of magnetic reversals. The magnetostratigraphic tie-level ages are linearly related to the spreading distance and have been used to calculate a new magnetic polarity time scale for the Early Cretaceous and Late Jurassic. All stage boundaries in this time interval were correlated by magnetic stratigraphy to the proposed new time scale which was then used to estimate their numeric ages. These are, with the approximate relative errors of placement within the M-sequence:The absolute errors of these interpolated stage boundary ages depend on the accuracy of the tie-level ages.  相似文献   

9.
We present new magnetostratigraphic results obtained from a well-dated Ordovician key section located along the Angara River, near the terminus of the Rozhkova River (southern Siberian platform). More than 220 samples were thermally demagnetized up to 670°C in order to isolate their characteristic ancient magnetization. Samples from the Arenig, the Llanvirn and the Llandeilo stages are all (but two) of reversed magnetic polarity. In contrast, samples dated of the Caradoc yield a sequence of several magnetic polarity intervals. These new data therefore confirm the occurrence of a long reversed magnetic polarity interval during the Ordovician, the so-called Moyero superchron, which ended during the middle or late Llandeilo.  相似文献   

10.
Sheridan and Suydam [1] raise several important points, which are primarily related to the origin of reported magnetic anomalies within the Jurassic magnetic quiet zone of the ocean crust, and therefore are not directly relevant to our magnetostratigraphic study of Oxfordian sediments [2]. We will discuss only two points: (1) the consistency of our Oxfordian results with other evidence of mixed polarity, and (2) the factors complicating the resolution of rapid magnetic reversals in the anomaly record of deep Jurassic crust.  相似文献   

11.
Late Triassic magnetostratigraphic investigations in southwestern Turkey have suggested that parts of the Antalya Nappes are constituted of a melange of blocks originally deposited either in the vicinity of the northern tip of Arabia or, more surprisingly, directly north of India, in the southern hemisphere. In order to ascertain this result more clearly, we have correlated the Turkish series with Austrian sections of corresponding age from the Northern Calcareous Alps, for which the hemisphere of deposition is beyond doubt. The new magnetostratigraphic results obtained from the Scheiblkogel section (Austria) confirm the previously suggested middle to late Norian magnetic polarity sequence and support the heterogeneous character of the Antalya Nappes.  相似文献   

12.
Paleomagnetic studies of the basalt samples of Mid-Atlantic Ridge recovered during DSDP Leg 45 and the FAMOUS Project have led to a revision of our view of the oceanic igneous crust as a recorder of geomagnetic field reversals. The discovery of several magnetic polarity reversals with depth in the crust has indicated that oceanic igneous basement should not necessarily be considered magnetized uniformly in direction, or even polarity, in a given vertical cross section. Statistical arguments, based on the ratio of the average time of crustal formation to the average length of a magnetic polarity interval, indicate that magnetic reversals with depth are to be expected in typical ocean crust, but also that this does not conflict with current theories of plate tectonics or exclude the upper layers of the crust from making a major contribution to the overlying linear magnetic anomalies. Certain ratios of average crustal formation time to average polarity interval do, however, result in an effective zero magnetization for the oceanic crust and these conditions may be responsible for the reduced amplitude of magnetic anomalies in some areas.  相似文献   

13.
塔北阿瓦特剖面磁性地层的构建:天山的脉动式隆升   总被引:1,自引:0,他引:1       下载免费PDF全文
晚新生代以来天山造山带的构造演化过程仍缺少准确的年龄限制.南天山山前新生界地层普遍缺乏古生物化石以及岩浆活动等定年依据,然而地层沉积连续,适合于磁性地层定年.对阿瓦特地区3700 m厚的晚新生代地层进行了详细的磁性地层研究,建立了该地区西域组底部至吉迪克组顶部的磁极性变化序列,共识别出26个负极性和26个正极性带,与C...  相似文献   

14.
Remanent coercivity spectra derived from IRM acquisition curves and thermal demagnetization of the IRM indicate that magnetite, haematite and minor amounts of goethite determine the magnetic properties of the Pliensbachian limestones at Bakonycsernye. These limestones have been sampled at approximately 7-cm intervals along a 10-m stratigraphic section which covers the whole Pliensbachian stage (Lower Jurassic) without any recognizable break in sedimentation. The primary natural remanent magnetization (NRM) is carried by detrital particles of magnetite and haematite, but it is seriously overprinted by a normal magnetization which originates from secondary haematite with a wide range of blocking temperatures. This haematite is believed to have formed diagenetically during one of the Mesozoic periods of normal polarity. However, the reversal pattern obtained after NRM thermal demagnetization at temperatures ≥450°C is thought to be characteristic of the Pliensbachian stage.  相似文献   

15.
Paleomagnetic polarity data were obtained from nine sections of the Verde Formation, a late Tertiary carbonate-bearing lacustrine unit in central Arizona. This study tested the applicability of magnetostratigraphy as a geochronologic technique in a restricted terrestrial sedimentary basin, and its objective was to better define the age of the Verde Formation.Intensities of natural remanent magnetism (NRM) ranged from <10?7 to >10?4 gauss. Although secondary components of viscous magnetization commonly were observed, alternating field demagnetization was successful in revealing the polarity of the primary NRM at almost all sites. Thermomagnetic analysis, partial thermal demagnetization of NRM, and polished section analysis together indicate that the primary NRM is a depositional remanence carried by detrital magnetite. Intrabasin stratigraphic correlation of the sections, together with K-Ar ages on interbedded and underlying volcanic rocks has allowed construction of a composite magnetostratigraphic column for the Verde Formation that is correlated with the late Cenozoic polarity time scale. The correlation indicates nearly continuous sedimentation in the Verde basin from ~7.5 to ~2.5 m.y. ago.  相似文献   

16.
The behavior of the main magnetic field components during a polarity transition is investigated using the α2-dynamo model for magnetic field generation in a turbulent core. It is shown that rapid reversals of the dipole field occur when the helicity, a measure of correlation between turbulent velocity and vorticity, changes sign. Two classes of polarity transitions are possible. Within the first class, termed component reversals, the dipole field reverses but the toroidal field does not. Within the second class, termed full reversals, both dipole and toroidal fields reverse. Component reversals result from long term fluctuations in core helicity; full reversals result from short term fluctuations. A set of time-evolution equations are derived which govern the dipole field behavior during an idealized transition. Solutions to these equations exhibit transitions in which the dipole remains axial while its intensity decays rapidly toward zero, and is regenerated with reversed polarity. Assuming an electrical conductivity of 3 × 105 mho m?1 for the fluid core, the time interval required to complete the reversal process can be as short as 7500 years. This time scale is consistent with paleomagnetic observations of the duration of reversals. A possible explanation of the cause of reversals is proposed, in which the core's net helicity fluctuates in response to fluctuations in the level of turbulence produced by two competing energy sources—thermal convection and segregation of the inner core. Symmetry considerations indicate that, in each hemisphere, helicity generated by heat loss at the core-mantle boundary may have the opposite sign of helicity generated by energy release at the inner core boundary. Random variations in rates of energy release can cause the net helicity and the α-effect to change sign occasionally, provoking a field reversal. In this model, energy release by inner core formation tends to destabilize stationary dynamo action, causing polarity reversals.  相似文献   

17.
New paleomagnetic investigation was carried out on the late Neogene fluviolacustrine sequence of the Yuanmou Basin, located near the southeastern margin of the Tibetan Plateau. Magnetostratigraphic results indicate nine reverse magnetozones (R1 to R9) and eight normal magnetozones (N1 to N8) in the sedimentary profile, which can be correlated to the geomagnetic polarity timescale from C3n.3r to C1r.1r. The age of the sedimentary sequence of the Yuanmou Basin can thus be paleomagnetically constrained to an interval from early Pliocene to Pleistocene, with sedimentation rates varying from 12.5 to 55 cm/kyr. In addition to its highly resolved magnetostratigraphic sequence, the Yuanmou Basin provides a record of Plio-Pleistocene tectono- and climato-sedimentary processes. The mean declinations of the seventeen polarity units (excluding samples with transitional directions) can be grouped into three distinct directional intervals, Group I (2.58–1.37 Ma), Group II (4.29–2.58 Ma) and Group III (4.91–4.29 Ma). These directions indicate that the Yuanmou Basin has probably experienced vertical-axis clockwise rotation of about 12° from 1.4 Ma to 4.9 Ma, which may be related to slip activity of the Red River fault to the southwest and the Xianshuihe–Xiaojiang fault to the east.  相似文献   

18.
Two pelagic limestone sections in the Southern Alps spanning the Kimmeridgian (Late Jurassic) to Barremian (Early Cretaceous) interval yield magnetostratigraphies which can be correlated to oceanic magnetic anomalies M1–M3 and M8–M23. This includes the interval M11–M13 which has not previously been correlated to a sedimentary section. Detailed investigations of nanofossils and calpionellids in these sequences allow precise correlation of polarity chrons to biostratigraphic events and these results compare favorably to those of previous studies. The close correspondence in polarity pattern between that interpreted from the M8 to M15 interval in the Hawaiian lineations and that recorded at the Capriolo section, suggests that sedimentation rates in this sequence and spreading rates in the Hawaiian lineations were rather constant during this interval. In contrast, the sedimentation rate at the Xausa section appears to increase up-section with the facies transition from the Rosso Ammonitico to the Maiolica Formation.  相似文献   

19.
Four sections in Majocian-Bathonian (Middle Jurassic) pelagic limestone with standard ammonite zonation have yielded magnetic polarity sequences. Magnetic directions in these red to white limestones were obtained by thermal demagnetization and were stable from about 300°C to in excess of 450°C. The polarity patterns indicate that the majority of the Bajocian and Bathonian is characterized by quite frequent reversals of the magnetic field. Lengthy periods of constant polarity, particularly constant normal polarity, were not observed. The average frequency of reversals is about 6 per ammonite zone, which roughly may be interpreted as a frequency of a reversal every 260,000 years, a rate comparable to that of the Miocene-Pliocene. Paleolatitudes of these sites (25–28°) are about 10° south of their present positions; variable clockwise block rotations within the Subbectic region have rotated these sites relative to stable Iberia.  相似文献   

20.
Marine magnetic anomalies 33 and 34, corresponding to the first two reversals following the long normal polarity interval in the Cretaceous, are anomalously skewed by 30° to 40° throughout the North and South Atlantic. This phenomenon is most likely related to some aspect of the dipole paleomagnetic field. Specifically the magnetic field at the time of anomalies 33 and 34 appears to be characterized by the following: the dipole field gradually decreases in average intensity between reversals and/or there is an increase in the frequency or duration of undetected short polarity events toward the end of long periods (>106 years) of predominantly one polarity. Such long-period trends in the field are in conflict with the popular model for the generation of the earth's magnetic field that treats reversals as a Poisson process and assumes that the core has no memory greater than about 104 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号