首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metallic iron has been precipitated from a synthetic high-iron, high-titanium Apollo 11 composition glass powder in a furnace with the oxygen fugacity controlled by gas mixing techniques. Measurable quantities of iron, as determined with a vibrating sample magnetometer capable of detecting 0.01 wt% iron in the absence of ferromagnetic minerals, were produced in experiments at temperatures between 700°C and 1045°C, with run times between 3 hr and 95 hr, and oxygen fugacities between 1 and 2 orders of magnitude below the iron-wustite (IW) buffer curve. Such conditions of ?O2 and T are probably not greatly different from those occurring in a large lunar ejecta blanket. The oxygen fugacity determines the amount of iron produced for a given time and temperature, with about 1% produced if log ?O2 is 1.4 units below the IW buffer curve and about 3.5% produced if log ?O2 is 1.7 units below at 990°C. Above 950°C essentially all the iron is multidomain (>300Å) while below 950°C as much as 15% is single domain (150Å–300Å) and an appreciable quantity remains even smaller. Compaction of the sample slows the rate of reduction but does not influence the grain size of metal. The quantities and size distribution of the reduced iron in a number of the experimental runs are strongly analogous to certain lunar soils and breccias and indicate that reduction in an ejected blanket could partly account for the excess iron of lunar soils and breccias relative to the igneous rocks.  相似文献   

2.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

3.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

4.

With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.

  相似文献   

5.
With a detailed study on petrology, mineralogy and geochemistry of some important Ordovician carbonate well core samples in Tazhong uplift of Tarim Basin, the distinguishing symbols of hydrothermal karstification are first put forward as the phenomena of rock hot depigmentation, hot cataclasm and the appearance of typical hydrothermal minerals such as fluorite, barite, pyrite, quartz and sphalerite. The main homogenization temperatures of primary fluid inclusions in fluorite are from 260 to 310°C, indicating the temperature of hydrothermal fluid. The fluid affected the dissolved rocks and showed typical geochemistry features with low contents of Na and Mg, and high contents of Fe, Mn and Si. The ratio of 3He/4He is 0.02R a, indicating the fluid from the typical continental crust. The hydrothermal fluid karstification pattern may be described as follows: the hot fluid is from the Permian magma, containing dissolving ingredients of CO2 and H2S, and shifts along fault, ruptures and unconformity, and dissolves the surrounding carbonates while it flows. The mechanism of hydrothermal karstification is that the mixture of two or more fluids, which have different ion intensity and pH values, becomes a new unsaturated fluid to carbonates. The hydrothermal karstification is an important process to form hypo-dissolved pinholes in Ordovician carbonates of Tazhong uplift of Tarim Basin, and the forming of hydrothermal minerals also has favorable influence on carbonate reservoirs.  相似文献   

6.
The vent-hosted hydrothermal system of Ruapehu volcano is normally covered by a c. 10 million m3 acidic crater lake where volcanic gases accumulate. Through analysis of eruption observations, granulometry, mineralogy and chemistry of volcanic ash from the 1995–1996 Ruapehu eruptions we report on the varying influences on environmental hazards associated with the deposits. All measured parameters are more dependent on the eruptive style than on distance from the vent. Early phreatic and phreatomagmatic eruption phases from crater lakes similar to that on Ruapehu are likely to contain the greatest concentrations of environmentally significant elements, especially sulphur and fluoride. These elements are contained within altered xenolithic material extracted from the hydrothermal system by steam explosions, as well as in residue hydrothermal fluids adsorbed on to particle surfaces. In particular, total F in the ash may be enriched by a factor of 6 relative to original magmatic contents, although immediately soluble F does not show such dramatic increases. Highly soluble NaF and CaSiF6 phases, demonstrated to be the carriers of ‘available’ F in purely magmatic eruptive systems, are probably not dominant in the products of phreatomagmatic eruptions through hydrothermal systems. Instead, slowly soluble compounds such as CaF2, AlF3 and Ca5(PO4)3F dominate. Fluoride in these phases is released over longer periods, where only one third is leached in a single 24-h water extraction. This implies that estimation of soluble F in such ashes based on a single leach leads to underestimation of the F impact, especially of a potential longer-term environmental hazard. In addition, a large proportion of the total F in the ash is apparently soluble in the digestive system of grazing animals. In the Ruapehu case this led to several thousand sheep deaths from fluorosis.  相似文献   

7.
A two-year chemical monitoring program of Ruapehu Crater Lake shows that it has evolved considerably since the volcano's more active eruptive periods in the early 1970s. The present pH (20°C) of 0.6 is about one half unit more acid than the baseline values in the 1970s, whereas S/Cl ratios have increased markedly owing in part to declining HCl inputs into the lake, but also to absolute increases in SO4 levels which now stand at the highest values ever recorded. Increases in K/Mg and Na/Mg ratios over the 20-year period are attributed to hydrothermal reaction processes in the vent which are presently causing dissolution of previously formed alteration phases such as natroalunite. These observations, combined with results of a recent heat budget analysis of the lake, have led to the development of hydrothermal convection model for the upper portion of the vent. Possible vent/lake chemical reaction processes between end member reactants have been modelled with the computer code CHILLER. The results are consistent with the view that variations in lake chemistry, which are initiated by the introduction of fresh magmatic material into the vent, reflect the extent of dissolution reaction progress on the magmatic material and/or its alteration products. The results also provide insights into the role of such vent processes in the formation of high sulfidation-type ore deposits.  相似文献   

8.
Organic matter has been observed in cores of the Soultz-sous-Forêts granite (Alsace, France) at depths between 2158 and 2160 m, in a highly fractured and altered zone. The granite is overlain by a 1400-m-thick sedimentary cover containing petroleum (Pechelbronn oil field). The Soultz area is devoted to Hot Dry Rock geothermics thanks to a high geothermal gradient (up to 100 °C/km). During drilling operations, an artesian source produced oil in a fractured zone of the sedimentary cover (Buntsandstein). Its gas-chromatography and mass-spectrometry (GC-MS) analysis revealed the presence of normal alkanes (n-alkanes, i.e. linear hydrocarbons) centered on C17, branched alkanes with a major C19 peak, and few unsaturated hydrocarbons. The aromatic fraction is present in small amounts. In the Soultz granite, where it is altered, organic matter is exclusively associated with tosudite (interstratified clay mineral) which crystallized in plagioclase sites during a hydrothermal alteration episode. Organic matter has been later displaced and concentrated along veinlets in which illite and carbonates have crystallized during another hydrothermal alteration stage. The soluble organic matter analyzed by GC-MS is composed of aliphatic acids, n-alkanes with a bimodal C18 and C24-C25 centered distribution, alkylbenzenes and aromatic acids. Organic compounds in the granite would either originate from a single source (immature sediments) or from two sources (immature sediments and migration of the Pechelbronn oil). No real evidence was found to prove which hypothesis is the best one. The presence of organic matter in the granite shows the importance of fluid flows between the sedimentary cover and the granitic basement through major fractures. In addition, the impregnation of plagioclase pseudomorphs with organic matter is made possible due to their high interconnection degree and to the intergranular microfracturation of the granite. The succession of several hydrothermal events with different physico-chemical characteris- tics may also be inferred from the occurrence of organic matter found in association with neoformed clay minerals in the granite.  相似文献   

9.
To calculate accurately the pressure interval and mineral proportions (i.e. yields) across the olivine to wadsleyite and wadsleyite to ringwoodite transformations requires a detailed knowledge of the non-ideality of Fe-Mg mixing in these (Mg,Fe)2SiO4 solid solutions. In order to constrain the activity-composition relations that describe non-ideal mixing, Fe-Mg partitioning experiments have been conducted between magnesiowüstite and (Mg,Fe)2SiO4 olivine, wadsleyite and ringwoodite as a function of pressure at 1400°C. Using known activity-composition relations for magnesiowüstite the corresponding relations for the three polymorphs were determined from the partitioning data. In all experiments the presence of metallic iron ensured redox conditions compatible with the Earth’s transition zone. The non-ideality of the (Mg,Fe)2SiO4 solid solutions was found to decrease in the order WwadsleyiteFeMg>WringwooditeFeMg>WolivineFeMg. These partitioning data were used, along with published phase equilibria measurements for the Mg2SiO4 and Fe2SiO4 end-member transformations, to produce an internally consistent thermodynamic model for the Mg2SiO4-Fe2SiO4 system at 1400°C. Using this model the pressure interval of the olivine to wadsleyite transformation is calculated to be significantly smaller than previous determinations. By combining these results with Fe-Mg partitioning data for garnet, the widths of transition zone phase transformations in a peridotite composition were calculated. The olivine to wadsleyite transformation at 1400°C in dry peridotite was found to occur over a pressure interval equivalent to approximately 6 km depth and the mineral yields were found to vary almost linearly with depth across the transformation. This transformation is likely to be even sharper at higher temperatures or could be significantly broader in wet mantle or in regions with a significant vertical component of mantle flow. The entire range of estimated widths for the 410 km discontinuity (4-35 km) could, therefore, be explained by the olivine to wadsleyite transformation in a peridotite composition over a range of quite plausible mantle temperatures and H2O contents. The wadsleyite to ringwoodite transformation in peridotite mantle was calculated to take place over an interval of 20 km at 1400°C. This transformation yield was also found to be near linear.  相似文献   

10.
The Dixon Island Formation of the coastal Pilbara Terrane, Western Australia is a 3.2 Ga volcanic–sedimentary sequence influenced by syndepositional hydrothermal activity formed in an island‐arc setting. We documented lateral variations in stratigraphy, hydrothermal alteration, and biological activity recorded in the sedimentary rocks (over several kilometers), with the aim of identifying areas of biological activity and related small‐scale structures. The Dixon Island Formation comprises volcaniclastics, black chert, and iron‐rich chert within seven tectonic blocks. Based on detailed geological mapping, stratigraphic columns, carbon isotope composition, and organic carbon (Corg) content, we found lateral (>5 km) variations in stratigraphy and carbon isotope compositions in a black chert sequence above the Mesoarchean seafloor with hydrothermal activity. Two felsic tuff layers are used as stratigraphic marker beds within a black chert sequence, which was deposited on altered volcanic rocks. The black chert sequence in each tectonic block is 10–20 m thick. Thickness variations reflect topographical undulations in the paleo‐ocean floor due to faulting. Early‐stage normal faults indicate extensional conditions after hydrothermal activity. Black chert beds in the topographically subsided area contain higher Corg contents (about 0.4 wt%) than in areas around the depression (<0.1 wt%). Carbon isotope compositions for the black chert vary from ?40 to ?25‰, which are similar to values obtained for a black chert vein within the komatiite–rhyolite tuff sequence (underlying the black chert sequence). Those for other rock types in the Dixon Island Formation are ?33 to ?15‰. Results indicate that deformation occurred soon after the final stages of hydrothermal activity. After this early‐stage deformation, organic‐rich sediments were deposited over an area several kilometers across. The organic‐rich sediments indicate stagnant anoxic conditions that resulted in the deposition of siliceous and organic matter from hydrothermal vein systems. When hydrothermal activity terminated, normal faulting occurred and organic matter was deposited from the sea surface and silica from the seafloor.  相似文献   

11.
During monocrystalline growth experiments of Fe-poor phlogopite from hydrothermal potash aqueous solutions, the iron content of the mica has been found to be growth-rate-dependent. It is shown that in our experimental conditions this kinetic effect dominates possible changes of equilibrium iron content connected with variations of solution composition, oxygen fugacity and growth temperature. To a lesser extent, titanium is found to follow the same trend.  相似文献   

12.
The meteorite ALH84001, a sample of the ancient martian crust, contains small quantities (1%) of strongly chemically zoned carbonate. High spatial resolution (10 μm) ion microprobe analyses show that the chemical zoning is strongly correlated with variations in oxygen isotope ratios. Early formed Ca,Fe-rich cores have δ18O 7‰ increasing to 22‰ SMOW in the more Mg-rich outer cores and magnesite rims. Isolated areas of ankerite appear to be isotopically lighter with δ18O 1‰. The large range in δ18O requires a significant range in either fluid isotopic composition, or temperature, or both, in the course of the deposition sequence. Our data are inconsistent with formation of the zoned carbonates by closed system Rayleigh fractionation. There is no unique interpretation of the oxygen data, but the recent observation of existence of Δ17O excesses in the carbonate appears to rule out models which involve high temperature isotopic exchange with silicate. Comparison with terrestrial analogues suggests that ALH84001 carbonates formed in a hydrothermal system with T<400°C, and which, at least in the early stages of formation, may have involved water with δ18O < 0‰ SMOW. The later stages of deposition probably occurred at temperatures below 150°C, a conclusion which does not preclude the co-existence of thermophilic bacteria; temperatures during earlier stages of deposition are less likely to have been hospitable to bacteria.  相似文献   

13.
Pyrite is rapidly accumulating at the contact between the Cretaceous limestones of the Florida Platform and the hemipelagic sediments of the abyssal Gulf of Mexico. Sediments sampled with the submersible “Alvin” in 3266 m of water are associated with a dense community of organisms that depend on chemosynthetic primary production as a food source. Analysis of the chemistry, mineralogy, and textural composition of these sediments indicate that iron sulfide mineralization is occurring at the seafloor within an anoxic micro-habitat sustained by the advection of hydrogen sulfide-charged saline brines from the adjacent platform. The chemosynthetic bacteria that directly overlie the sediments oxidize hydrogen sulfide for energy and provide elemental sulfur that reacts with iron monosulfide to form some of the pyrite. The sediments are mixtures of pyrite ( 30 wt.%), BaSr sulfates ( 4 wt.%), clays, and locally derived biogenic carbonates and are progressively being cemented by iron sulfides. Oxidation of hydrogen sulfide produces locally acidic conditions that corrode the adjacent limestones. Potential sources of S, H2S, Fe, Ba, and Sr are discussed.  相似文献   

14.
In the 1960s, E. Schreiber and his colleagues pioneered the use of hot-pressed polycrystalline aggregates for studies of the pressure and temperature dependence of the elastic wave velocities in minerals. We have extended this work to the high-pressure polymorphs of mantle minerals by developing techniques to fabricate large polycrystalline specimens in a 2000-ton uniaxial split-sphere apparatus. A new cell assembly has been developed to extend this capability to pressures of 20 GPa and temperatures of 1700°C. Key elements in the new experimental design include: a telescopic LaCrO3 forT>1200°C; Toshiba Tungaloy grade F tungsten carbide anvils; and the use of homogeneous glasses or seeded powder mixtures as starting material to enhance reactivity and maximize densities. Cell temperatures are linearly related to electrical power to 1700°C and uniform throughout the 3 mm specimens. Pressure calibrations at 25°C and 1700°C are identical to 15 GPa. Cylindrical specimens of the beta and spinel phases of Mg2SiO4, stishovite (SiO2-rutile), and majorite-pyrope garnets have been synthesized within their stability fields in runs of 1–4 hr duration and recovered at ambient conditions by simultaneously decompressing and cooling along a computer-controlledP-T path designed to preserve the high-pressure phase and to relax intergranualar stress in the polycrystalline aggregate. These specimens are single-phased, fine-grained (<5 micron), free of microcracks and preferred orientation, and have bulk densities greater than 99% of X-ray density. The successful fabrication of these high-quality polycrystalline specimens has made possible experiments to determine the pressure dependence of acoustic velocities in the ultrasonics laboratory of S. M. Rigden and I. Jackson at the Australian National University.CHiPR: NSF Science and Technology Center for High Pressure Research.  相似文献   

15.
Studies of sublimation of complex ices prepared by deposition of gaseous CO, CH4, N2, and NH3 molecules on a cold plate have been performed. The low pressure and low temperature system was used: 10?9–10?5 mbar and the lowermost temperature 10 K. Diagnostic of composition of evaporates (at an actual temperature) was done by means of the mass spectrometer. The latter allowed following simultaneously the partial pressure of five different ions or radicals escaping from the substrate. It has been found that highly volatile molecules that were used simultaneously with the low volatile ones to form the complex ices (mixtures or clathrates) present a different sublimation pattern than the sublimation of pure high-volatile ices. In particular, the high-volatile component sublimes at two or even three different temperature regimes: At low temperature that is typical for sublimation of this component, as well as at much higher temperatures. This effect seems to be important when degassing and outbursts from cometary nuclei are considered. It can be also important for modeling of cryovolcanic processes on the icy satellites.  相似文献   

16.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Interstitial waters were extracted from cores at three locations in the eastern equatorial Pacific and analyzed for nutrients, dissolved carbonate species, Mn and Fe. From the depth variation in pore water chemistry, we infer that organic matter oxidation reactions occur with depth in the following sequence: O2 reduction, NO3? and MnO2 reduction, and then ferric iron reduction. From NO3? results we infer that O2 is largely or totally consumed within the top few centimeters of sediment. NO3? is completely reduced at a sediment depth of 20 cm at a site near the crest of the East Pacific Rise, but is preserved at levels of 20–30 μmol/kg at 40 cm depth at a Guatemala Basin site.We have calculated the alkalinity for pore water samples assuming ions diffuse according to relative ionic diffusion coefficients, that the stoichiometry of organic matter oxidation reactions is that of “Redfield” organic matter, and that the pore waters are saturated throughout with respect to CaCO3. The measured alkalinity increase is only about half of the predicted value. The difference is probably a result of either enhanced mixing of the pore water in the top few centimeters of sediments by biological or physical processes, or the occurrence of an inorganic reaction which consumes alkalinity.At depths of oxygen and nitrate reduction in the sediments, the ion concentration product of CaCO3 is the same, within the analytical error, as the solubility product of Ingle et al. [34] at 1 atm and 4°C. This result indicates CaCO3 resaturation on pressure change during coring. Where pore water Mn concentrations become measurable, the ion concentration product increases, indicating either supersaturation with respect to calcite or that another phase is controlling the carbonate solubility.  相似文献   

18.
Degradation of an anthraquinone dye, disperse blue E‐4R, by zero‐valent iron (ZVI)/ozone (O3) was carried out in a series of laboratory‐scale experiments. The obtained results indicated that this method was much more effective than single ZVI or single O3 at removal of color, chemical oxygen demand, total organic carbon, and adsorbable organic halogen. The effect of several related operational parameters, including O3 dosage, zero valent iron dosage, temperature, pH value, and ZVI particle size were also discussed. Finally, we tried to decontaminate some actual samples with this method, which showed high treatment efficiency to the sample pretreated by conventional activated sludge.  相似文献   

19.
There may have been three stages in the growth of oxygen in the terrestrial atmosphere. Prior to the origin of photosynthesis the only source of oxygen was photolysis of water vapor followed by escape of hydrogen to space. The rate of this process was probably less than the rate of release of reduced gases (principally hydrogen) from volcanoes, so the oxygen partial pressure was held to negligibly low values by photochemical reactions with an excess of hydrogen. The photosynthetic source of oxygen was probably in operation as long ago as 3.8 billion years. It released oxygen to the ocean. Presumably most of this oxygen was destroyed in the ocean as long as its rate of supply was less than the rate of supply of readily oxidizable material (principally Fe2+) provided by the weathering of rocks. This phase appears to have lasted until about 2 billion years ago, during which period most banded iron formations were deposited. During this period the production of oxygen by algae was limited by competition with photosynthetic bacteria, which preempted the supply of nutrient phosphorus as long as reduced chemicals were available in the environment. Once the photosynthetic oxygen source exceeded the rate of supply of reduced minerals exposed by erosion and weathering, the accumulation of oxygen in the ocean and atmosphere could be controlled only by reaction of oxygen with reduced organic material. This is the stabilization mechanism that operates today. It seems unlikely that oxygen could be consumed at a significant rate by this process until oxygen levels sufficiently high to support respiration had been achieved. I therefore suggest that atmospheric oxygen rose rapidly from essentially zero to approximately its present value (within a factor of 10) when the photosynthetic source of oxygen rose above the weathering source of reduced minerals, probably about 2 billion years ago. The ozone layer and the ultraviolet screen were absent prior to this time and essentially fully developed after this time.Presented at IAGA/IAMAP Symposium on Minor Neutral Constituents in Middle Atmosphere-Chemistry and Transport, Seattle, August, 1977.  相似文献   

20.
Calculated univariant equilibria and oxygen isotope compositions of silicates and carbonates support the proposal that the “Mottled Zone Event” is a low-pressure (1–25 atm), high-temperature (200° < T < 1300°C) metamorphism of calcareous siliceous sediments in which the thermal energy is provided by combustion of organic matter. δ18O of silicates decreases systematically with increasing metamorphic grade from averages of 18.1‰ in protolith shales, to 16.6‰ in grossular-diopside-zeolite rocks, 15.6‰ in wollastonite and anorthite-diopside-gehlenite-grossular fels, 14.1‰ in spurrite-brownmillerite marbles and 11.7‰ in the highest-grade larnite-gehlenite-brownmillerite assemblages. Decarbonation is the principal mechanism influencing the oxygen isotope compositions. The progressive decrease of δ18O in silicates can be modelled as a Rayleigh distillation of CO2 approximately 16‰ enriched in 18O relative to whole rock assemblages i.e., of initial isotopic composition 8.5‰ heavier than the parent carbonates. The mineral assemblage of one sample with an unusual granoblastic texture is in apparent isotopic equilibrium at a temperature of 540°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号