首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

2.
The sequence of formation of the Motojuku-type cauldron (Fujita et al., 1970) is summarized as follows: (1) doming due to ascent of a magma body; (2) development of normal faults which produce a polygonal cauldron; and (3) eruption of acidic to intermediate pyroclastic material. Model experiments on a scale of 1/200,000 reveal that ascent of the magma body, which was imitated by a ball of hardened putty, produced a polygonal cauldron composed of radial and concentrically arranged short fractures on the roof of a dome. No ring fractures were formed. This type of cauldron develops near the surface. On the other hand, emission of magma which was imitated by evaporation of a ball of dry ice in brittle powdered material, caused ring faults dipping outward and a circular cauldron without up- or downwarping. This type of cauldron develops upward from the magma body. The former model is equated to the Motojuku-type cauldron, and the latter model to the other types of cauldrons with ring fractures.  相似文献   

3.
The late-seventeenth century BC Minoan eruption of Santorini discharged 30–60 km3 of magma, and caldera collapse deepened and widened the existing 22 ka caldera. A study of juvenile, cognate, and accidental components in the eruption products provides new constraints on vent development during the five eruptive phases, and on the processes that initiated the eruption. The eruption began with subplinian (phase 0) and plinian (phase 1) phases from a vent on a NE–SW fault line that bisects the volcanic field. During phase 1, the magma fragmentation level dropped from the surface to the level of subvolcanic basement and magmatic intrusions. The fragmentation level shallowed again, and the vent migrated northwards (during phase 2) into the flooded 22 ka caldera. The eruption then became strongly phreatomagmatic and discharged low-temperature ignimbrite containing abundant fragments of post-22 ka, pre-Minoan intracaldera lavas (phase 3). Phase 4 discharged hot, fluidized pyroclastic flows from subaerial vents and constructed three main ignimbrite fans (northwestern, eastern, and southern) around the volcano. The first phase-4 flows were discharged from a vent, or vents, in the northern half of the volcanic field, and laid down lithic-block-rich ignimbrite and lag breccias across much of the NW fan. About a tenth of the lithic debris in these flows was subvolcanic basement. New subaerial vents then opened up, probably across much of the volcanic field, and finer-grained ignimbrite was discharged to form the E and S fans. If major caldera collapse took place during the eruption, it probably occurred during phase 4. Three juvenile components were discharged during the eruption—a volumetrically dominant rhyodacitic pumice and two andesitic components: microphenocryst-rich andesitic pumices and quenched andesitic enclaves. The microphenocryst-rich pumices form a textural, mineralogical, chemical, and thermal continuum with co-erupted hornblende diorite nodules, and together they are interpreted as the contents of a small, variably crystallized intrusion that was fragmented and discharged during the eruption, mostly during phases 0 and 1. The microphenocryst-rich pumices, hornblende diorite, andesitic enclaves, and fragments of pre-Minoan intracaldera andesitic lava together form a chemically distinct suite of Ba-rich, Zr-poor andesites that is unique in the products of Santorini since 530 ka. Once the Minoan magma reservoir was primed for eruption by recharge-generated pressurization, the rhyodacite moved upwards by exploiting the plane of weakness offered by the pre-existing andesite–diorite intrusion, dragging some of the crystal-rich contents of the intrusion with it.  相似文献   

4.
Four volcano-structural stages have accompanied the building of Piton des Neiges: 1) Emergent growth stage of the island. The major eruptive system is a rift zone trending N 120°, associated with dextral strike-slip faults trending N 30° and en-echelon extensional fissures trending N 70°. Breccias and lava tubes produced by aerial and phreatomagmatic activity are injected with outward-dipping dike-swarms along ring fractures suggesting a mechanism analogous to cauldron subsidence. 2) Shield building stages of growth are related to fissures along the main rift zone and three minor rifts trending N 160°, N 45° and N 10°. The summit of the basaltic shield volcano is stretched and collapsed in a graben-like caldera depression along normal and antithetic faults. 3) Differentiated lavas are erupted during two stages separated by the opening of a new caldera corresponding to an explosive activity, a silicic cone-sheet system and a collapse structure. 4) Younger volcanic activity restricted to the inside caldera, has presumably emptied the underlying magma reservoir, building a central volcano collapsed along ring internal dip fractures. The relationships between magnetic anomalies and transform faults in the Mascarene basin and observed fissure and faults on Piton des Neiges suggest that volcanism would be structurally controlled. Active volcanism occurring possibly as a result of tension at the intersection of an northeast-southwest fracture zone with the paleorift axis (dated by the magnetic anomaly 27). Models illustrating the gradual evolution of Piton des Neiges would explain successive caldera collapses controlled by the size, the shape and the depth of the magma reservoir.  相似文献   

5.
 Diverse subsidence geometries and collapse processes for ash-flow calderas are inferred to reflect varying sizes, roof geometries, and depths of the source magma chambers, in combination with prior volcanic and regional tectonic influences. Based largely on a review of features at eroded pre-Quaternary calderas, a continuum of geometries and subsidence styles is inferred to exist, in both island-arc and continental settings, between small funnel calderas and larger plate (piston) subsidences bounded by arcuate faults. Within most ring-fault calderas, the subsided block is variably disrupted, due to differential movement during ash-flow eruptions and postcollapse magmatism, but highly chaotic piecemeal subsidence appears to be uncommon for large-diameter calderas. Small-scale downsag structures and accompanying extensional fractures develop along margins of most calderas during early stages of subsidence, but downsag is dominant only at calderas that have not subsided deeply. Calderas that are loci for multicyclic ash-flow eruption and subsidence cycles have the most complex internal structures. Large calderas have flared inner topographic walls due to landsliding of unstable slopes, and the resulting slide debris can constitute large proportions of caldera fill. Because the slide debris is concentrated near caldera walls, models from geophysical data can suggest a funnel geometry, even for large plate-subsidence calderas bounded by ring faults. Simple geometric models indicate that many large calderas have subsided 3–5 km, greater than the depth of most naturally exposed sections of intracaldera deposits. Many ring-fault plate-subsidence calderas and intrusive ring complexes have been recognized in the western U.S., Japan, and elsewhere, but no well-documented examples of exposed eroded calderas have large-scale funnel geometry or chaotically disrupted caldera floors. Reported ignimbrite "shields" in the central Andes, where large-volume ash-flows are inferred to have erupted without caldera collapse, seem alternatively interpretable as more conventional calderas that were filled to overflow by younger lavas and tuffs. Some exposed subcaldera intrusions provide insights concerning subsidence processes, but such intrusions may continue to evolve in volume, roof geometry, depth, and composition after formation of associated calderas. Received: 13 February 1997 / Accepted: 9 August 1997  相似文献   

6.
Through examination of the vent region of Volcán Huaynaputina, Peru, we address why some major explosive eruptions do not produce an equivalent caldera at the eruption site. Here, in 1600, more than 11 km3 DRE (VEI 6) were erupted in three stages without developing a volumetrically equivalent caldera. Fieldwork and analysis of aerial photographs reveal evidence for cryptic collapse in the form of two small subsidence structures. The first is a small non-coherent collapse that is superimposed on a cored-out vent. This structure is delimited by a partial ring of steep faults estimated at 0.85 by 0.95 km. Collapse was non-coherent with an inwardly tilted terrace in the north and a southern sector broken up along a pre-existing local fault. Displacement was variable along this fault, but subsidence of approximately 70 m was found and caused the formation of restricted extensional gashes in the periphery. The second subsidence structure developed at the margin of a dome; the structure has a diameter of 0.56 km and crosscuts the non-coherent collapse structure. Subsidence of the dome occurred along a series of up to seven concentric listric faults that together accommodate approximately 14 m of subsidence. Both subsidence structures total 0.043 km3 in volume, and are much smaller than the 11 km3 of erupted magma. Crosscutting relationships show that subsidence occurred during stages II and III when ∼2 km3 was erupted and not during the main plinian eruption of stage I (8.8 km3). The mismatch in erupted volume vs. subsidence volume is the result of a complex plumbing system. The stage I magma that constitutes the bulk of the erupted volume is thought to originate from a ∼20-km-deep regional reservoir based on petrological constraints supported by seismic data. The underpressure resulting from the extraction of a relatively small fraction of magma from the deep reservoir was not sufficient enough to trigger collapse at the surface, but the eruption left a 0.56-km diameter cored-out vent in which a dome was emplaced at the end of stage II. Petrologic evidence suggests that the stage I magma interacted with and remobilized a shallow crystal mush (∼4–6 km) that erupted during stage II and III. As the crystal mush erupted from the shallow reservoir, depressurization led to incremental subsidence of the non-coherent collapse structure. As the stage III eruption waned, local pressure release caused subsidence of the dome. Our findings highlight the importance of a connected magma reservoir, the complexity of the plumbing system, and the pattern of underpressure in controlling the nature of collapse during explosive eruptions. Huaynaputina shows that some major explosive eruptions are not always associated with caldera collapse. Editorial responsibility: J Stix  相似文献   

7.
The Superior volcanic field occupies approximately 8,000 square kilometers of central Arizona in the zone between the southern Basin and Range Province and the Colorado Plateaus Province. The primary structural elements of an eruptive center in the western part of this field are: 1) volcanic plateau, 2) ring fracture zone, and 3) resurgent caldera core. A northwest trending graben controls the location of three small subsided blocks, the Willow Springs cauldron (2 km diameter), the Black Mesa cauldron (4 km diameter), and the Florence Junction cauldron (8 km diameter), which were centers for rhyolite ash and lava eruption. These late features are superimposed on a much larger volcano-tectonic structure, the Superstition resurgent cauldron which subsided at an earlier stage following the extrusion of quartz latite welded tuff. The history of the volcanic center is as follows: An early ring of dacite domes of up to 900 meters in relief formed a semi-circular are 7 km in diameter on the western margin of the caldera. The last phases of dome building were contemporaneous with the extrusion of a vast quartz latite welded tuff (22.6 m.y.). The plateau formed by the welded tuff collapsed to a maximum depth of 800 meters along a northwest trending graben which is the locus of three small cauldrons. These late cauldrons were the source of rhyolitic magma which produced non-welded ash flows, lava (21 m.y.), and a thick sequence of epiclastic breccias. The rhyolitic volcanism was followed by intrusion of domes and extrusion of glassy lavas (20 m.y.) of quartz latite composition in a 270° are 16 km in diameter concentric to the arc of older dacite domes. Following deposition of the epiclastic breccia and intrusion of the ring fracture dikes was the extrusion of mafic lava (18 m.y.) into low places in the graben. The mafic lava composition ranges from basalt to basanite.  相似文献   

8.
Calderas worldwide have been classified according to their dominant collapse styles, although there is a good deal of speculation about the processes involved. Recent laboratory experiments have tried to constrain these processes by modelling magma withdrawal and observing the effects on overlying materials. However, many other factors also contribute to final caldera morphology. Rotorua Caldera formed during the eruption of the Mamaku Ignimbrite. Collapse structure and evolution of Rotorua Caldera is interpreted based its geophysical response, geology and geomorphology, and the stratigraphy of the Mamaku Ignimbrite. Rotorua Caldera is situated at the edge of the extensional Taupo Volcanic Zone, in which major faults strike NE-SW. A second, less dominant fault set strikes NW-SE. These two fault sets have a strong influence on the morphology of Rotorua Caldera. No one style of collapse can be applied to Rotorua Caldera; it was formed during a single eruption, but subsided as many blocks and shows features of trapdoor, piecemeal and downsag types of collapse. Here Rotorua Caldera is described, according to its composition, activity and geometry, as a rhyolitic, single event, asymmetric, multiple-block, single locus collapse structure. The Mamaku Ignimbrite is the only ignimbrite to have erupted from Rotorua Caldera. Extracaldera thickness of the Mamaku Ignimbrite is up to 145 m, whereas inside the caldera it may be greater than 1 km thick. The Mamaku Ignimbrite can be separated into a basal tephra sequence and main ignimbrite sequence. The main ignimbrite sequence contains no observable flow unit boundaries but can be split into lower, middle and upper parts (LMI, mMI, uMI respectively) based on crystal content, welding, jointing, devitrification and vapour phase alteration. Juvenile clasts within the ignimbrite comprise three consanguineous silicic pumice types and andesitic fragments. Only the most evolved pumice type occurs in the basal tephra sequence. All three pumice types occur together throughout the main ignimbrite sequence, whereas the andesitic fragments are only present in uMI. Lithic lag breccias in uMI indicate a late stage of caldera collapse. Concentration of lithic fragments increases towards the middle of the ignimbrite, and may also reflect increased subsidence rate during an earlier stage. Collapse of Rotorua Caldera is thought to have occurred throughout the eruption of the main ignimbrite sequence of the Mamaku Ignimbrite, allowing simultaneous eruption of all the different pumice types and causing the abrupt transition from deposition of the basal tephra sequence to the main ignimbrite sequence.  相似文献   

9.
The authors have visited Suswa, a complex caldera-volcano situated thirty miles north-west of Nairobi, a feature surprisingly neglected by geologists. While they do not pretend to do more than present an introductory account of the general geology of this unique volcano, they are able to augment the brief references of earlier workers, Gregory, Spink and Richard. The principal rock types are described in general terms, and are found to include unusual rhomb-porphyry types of lava, vitrophyres of phonolitic composition (closely related to the kenytes, but devoid of modal nepheline). The earliest eruptions were of quite normal lava type, phonolites of Kenya type, erupted over a wide area in central Kenya in Plio-Pleistocene times (not later than 1.7 m.y. ago), and the rhomb-porphyries are restricted to a secondary eruptive sequence, of probable Pleistocene age. There was a minor reactivation in recent times, represented by restricted, bare, fresh flows, of type at present unknown. Chemical analyses of representative specimens of the two major suites are provided, and are supported by modal analyses of related specimens. Two summit calderas have been recognised, both apparently subsidence structures related to cauldron subsidence in depth. The earlier and larger caldera covers about 40 square miles, and is interpreted as ofGlencoe type with weakly developedKrakatoan characteristics. The inner caldera covers seven square miles, and is interpreted as aGlencoe type structure: it is not a simple caldera but contains an island — block of four square miles extent — a feature which may perhaps be reasonably compared with island features within the Lake Toba cauldron, Sumatra and Nyamlagira caldera, Congo. The terminal eruptions of the first volcano seem to have largely stemmed from a ring feeder, analogous with a body reported from Crater Lake caldera, Oregon, U.S.A. The outer caldera is now partly obscured by products of later eruption, from a secondary cone eccentric to the first caldera — Ol Doinyo Nyukie — and from minor parasitic vents. Ol Doinyio Nyukie volcano possessed an axial pit-crater, nearly a mile in diameter, now transected by the boundary fault of the inner caldera: this might reasonably be regarded as a third,Kilauean, summit caldera, since it was apparently drained by low-level, adventive eruptions. Fumarolic activity is rife within Suswa at the present time: steam is being emitted, probably derived from meteoric water but charged with CO2 and probably nitrogen. Analogies between the Suswa pattern of calderas and certain lunar crater patterns are briefly mentioned.  相似文献   

10.
A core drilled within the northern part of the city of Napoli has offered the unique opportunity to observe in one single sequence the superposition of the four pyroclastic flow units emplaced during the Campanian Ignimbrite (CI) eruption. Such a stratigraphic succession has never been encountered before in natural or in man made exposures. Therefore the CI sequence was reconstructed only on the basis of stratigraphic correlations and compositional data (in literature). The occurrence of four superposed CI flows, together with all the data available (in literature) allowed us to better constrain the chemical stratigraphy of the deposit and the compositional structure of the CI magma chamber. The CI magma chamber includes two cogenetic magma layers, separated by a compositional gap. The upper magma layer was contaminated by interaction with radiogenic fluids. The two magma layers were extruded either individually or simultaneously during the course of the eruption. In the latter case they produced a hybrid magma. But no evidence of input of new geochemically and isotopically distinct magma batches just prior or during the eruption has been found. Comparison with the exposed CI deposits has permitted reconstruction of variable eruption phases and related magma withdrawal and caldera collapse episodes. The eruption was likely to have began with phreatomagmatic explosions followed by the formation of a sustained plinian eruption column fed by the simultaneous extraction from both magma layers. Towards the end of this phase the upward migration of the fragmentation surface and the decrease in magma eruption rate and/or activation of fractures formed an unstable pulsating column that was fed only by the most-evolved magma layer. This plinian phase was followed by the collapse of the eruption column and the beginning of caldera formation. At this stage expanded pyroclastic flows fed by the upper magma layer in the chamber generated. During the following major caldera collapse episode, the maximum mass discharge rate was reached and both magma layers were tapped, generating expanded pyroclastic flows. Towards the end of the eruption, only the deeper and less differentiated magma layer was tapped producing more concentrated pyroclastic flows that traveled short distances.  相似文献   

11.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

12.
Geology of the peralkaline volcano at Pantelleria,Strait of Sicily   总被引:1,自引:1,他引:1  
Situated in a submerged continental rift, Pantelleria is a volcanic island with a subaerial eruptive history longer than 300 Ka. Its eruptive behavior, edifice morphologies, and complex, multiunit geologic history are representative of strongly peralkaline centers. It is dominated by the 6-km-wide Cinque Denti caldera, which formed ca. 45 Ka ago during eruption of the Green Tuff, a strongly rheomorphic unit zoned from pantellerite to trachyte and consisting of falls, surges, and pyroclastic flows. Soon after collapse, trachyte lava flows from an intracaldera central vent built a broad cone that compensated isostatically for the volume of the caldera and nearly filled it. Progressive chemical evolution of the chamber between 45 and 18 Ka ago is recorded in the increasing peralkalinity of the youngest lava of the intracaldera trachyte cone and the few lavas erupted northwest of the caldera. Beginning about 18 Ka ago, inflation of the chamber opened old ring fractures and new radial fractures, along which recently differentiated pantellerite constructed more than 25 pumice cones and shields. Continued uplift raised the northwest half of the intracaldera trachyte cone 275 m, creating the island's present summit, Montagna Grande, by trapdoor uplift. Pantellerite erupted along the trapdoor faults and their hingeline, forming numerous pumice cones and agglutinate sheets as well as five lava domes. Degassing and drawdown of the upper pantelleritic part of a compositionally and thermally stratified magma chamber during this 18-3-Ka episode led to entrainment of subjacent, crystal-rich, pantelleritic trachyte magma as crenulate inclusions. Progressive mixing between host and inclusions resulted in a secular decrease in the degree of evolution of the 0.82 km3 of magma erupted during the episode.The 45-Ka-old caldera is nested within the La Vecchia caldera, which is thought to have formed around 114 Ka ago. This older caldera was filled by three widespread welded units erupted 106, 94, and 79 Ka ago. Reactivation of the ring fracture ca. 67 Ka ago is indicated by venting of a large pantellerite centero and a chain of small shields along the ring fault. For each of the two nested calderas, the onset of postcaldera ring-fracture volcanism coincides with a low stand of sea level.Rates of chemical regeneration within the chamber are rapid, the 3% crystallization/Ka of the post-Green Tuff period being typical. Highly evolved pantellerites are rare, however, because intervals between major eruptions (averaging 13–6 Ka during the last 190 Ka) are short. Benmoreites and mugearites are entirely lacking. Fe-Ti-rich alkalic basalts have erupted peripherally along NW-trending lineaments parallel to the enclosing rift but not within the nested calderas, suggesting that felsic magma persists beneath them. The most recent basaltic eruption (in 1891) took place 4 km northwest of Pantelleria, manifesting the long-term northwestward migration of the volcanic focus. These strongly differentiated basalts reflect low-pressure fractional crystallization of partial melts of garnet peridotite that coalesce in small magma reservoirs replenished only infrequently in this continental rift environment.  相似文献   

13.
Three major cycles of volcanism during the Miocene and Pliocene formed a layered succession of calc-alkaline eruptive materials in the western San Juan Mountains nearly 1.5 miles thick and having a volume greater than 1,000 cubic miles. Each cycle was characterised by major eruptions followed by subsidence in the vent areas, and the resulting structure was a great volcanic plateau surrounding a complex of nested cauldrons. In the first cycle, cruption of several hundred cubic miles of tuff breccia and subordinate lavas was followed by subsidence that created the San Juan volcanic depression, about 15 miles wide and 30 miles long. During the second cycle, pyroclastic rocks and lava flows accumulated within this depression and on its borders, and the depression subsided further. During the third cycle, ash flows spead widely from centres within the depression, and their eruption resulted in formation and subsidence of the nearly circular comagmatic Silverton and Lake City cauldrons, each about 10 miles across, within the earlier depression. Cauldron subsidence in the second and third cycles was followed by resurgence and doming of the central blocks. Keystone grabens formed along the distended crests of the domed floors; graben faults formed in the third cycle were in part controlled by those formed in the second cycle. The distribution of post-cauldron radial and concentric fractures, dikes, and intrusive plutons, particularly around the Silverton cauldron, suggests that the underlying magma chamber must have been appreciably larger than the associated cauldrons.  相似文献   

14.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

15.
The Ol Doinyo Nyokie complex is of late Pleistocene age and occurs in the floor of the south Kenya rift valley. It consists of a shallow depression 5 km long and 3 km wide occupied by ash-flows, surrounded by a zone of trachyte dykes, and with a dome-shaped ignimbrite vent at its eastern end. The complex began to form approximately 0.7 m.y. ago with eruption of ash-flows from fissures accompanied by subsidence, followed by emplacement of dykes in the fissures and the growth of a steep-sided ignimbrite tuff-ring. The rocks are all of quartz trachyte compositions similar to those of the flood lavas upon which the complex is built. Detailed geochemical evidence indicates that the ignimbrite magma was derived from the flood lava magma by alkali feldspar fractionation.  相似文献   

16.
The recently discovered La Pacana caldera, 60 × 35 km, is the largest caldera yet described in South America. This resurgent caldera of Pliocene age developed in a continental platemargin environment in a major province of ignimbrite volcanism in the Central Andes of northern Chile at about 23° S latitude. Collapse of La Pacana caldera was initiated by the eruption of about 900 km3 of the rhyodacitic Atana Ignimbrite. The Atana Ignimbrite was erupted from a composite ring fracture system and formed at least four major ash-flow tuff units that are separated locally by thin air-fall and surge deposits; all four sheets were emplaced in rapid succession about 4.1 ± 0.4 Ma ago. Caldera collapse was followed closely by resurgent doming of the caldera floor, accompanied by early postcaldera eruptions of dacitic to rhyolitic lava domes along the ring fractures. The resurgent dome is an elongated, asymmetrical uplift, 48.5 × 12 km, which is broken by a complex system of normal faults locally forming a narrow discontinuous apical graben. Later, postcaldera eruptions produced large andesitic and dacitic stratocones along the caldera margins and dacitic domes on the resurgent dome beginning about 3.5 Ma ago and persisting into the Quaternary. Hydrothermally altered rocks occur in the eroded cores of precaldera and postcaldera stratovolcanoes and along fractures in the resurgent dome, but no ore deposits are known. A few warm springs located in salars within the caldera moat appear to be vestiges of the caldera geothermal system.  相似文献   

17.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

18.
New investigations of the geology of Crater Lake National Park necessitate a reinterpretation of the eruptive history of Mount Mazama and of the formation of Crater Lake caldera. Mount Mazama consisted of a glaciated complex of overlapping shields and stratovolcanoes, each of which was probably active for a comparatively short interval. All the Mazama magmas apparently evolved within thermally and compositionally zoned crustal magma reservoirs, which reached their maximum volume and degree of differentiation in the climactic magma chamber 7000 yr B.P.The history displayed in the caldera walls begins with construction of the andesitic Phantom Cone 400,000 yr B.P. Subsequently, at least 6 major centers erupted combinations of mafic andesite, andesite, or dacite before initiation of the Wisconsin Glaciation 75,000 yr B.P. Eruption of andesitic and dacitic lavas from 5 or more discrete centers, as well as an episode of dacitic pyroclastic activity, occurred until 50,000 yr B.P.; by that time, intermediate lava had been erupted at several short-lived vents. Concurrently, and probably during much of the Pleistocene, basaltic to mafic andesitic monogenetic vents built cinder cones and erupted local lava flows low on the flanks of Mount Mazama. Basaltic magma from one of these vents, Forgotten Crater, intercepted the margin of the zoned intermediate to silicic magmatic system and caused eruption of commingled andesitic and dacitic lava along a radial trend sometime between 22,000 and 30,000 yr B.P. Dacitic deposits between 22,000 and 50,000 yr old appear to record emplacement of domes high on the south slope. A line of silicic domes that may be between 22,000 and 30,000 yr old, northeast of and radial to the caldera, and a single dome on the north wall were probably fed by the same developing magma chamber as the dacitic lavas of the Forgotten Crater complex. The dacitic Palisade flow on the northeast wall is 25,000 yr old. These relatively silicic lavas commonly contain traces of hornblende and record early stages in the development of the climatic magma chamber.Some 15,000 to 40,000 yr were apparently needed for development of the climactic magma chamber, which had begun to leak rhyodacitic magma by 7015 ± 45 yr B.P. Four rhyodacitic lava flows and associated tephras were emplaced from an arcuate array of vents north of the summit of Mount Mazama, during a period of 200 yr before the climactic eruption. The climactic eruption began 6845 ± 50 yr B.P. with voluminous airfall deposition from a high column, perhaps because ejection of 4−12 km3 of magma to form the lava flows and tephras depressurized the top of the system to the point where vesiculation at depth could sustain a Plinian column. Ejecta of this phase issued from a single vent north of the main Mazama edifice but within the area in which the caldera later formed. The Wineglass Welded Tuff of Williams (1942) is the proximal featheredge of thicker ash-flow deposits downslope to the north, northeast, and east of Mount Mazama and was deposited during the single-vent phase, after collapse of the high column, by ash flows that followed topographic depressions. Approximately 30 km3 of rhyodacitic magma were expelled before collapse of the roof of the magma chamber and inception of caldera formation ended the single-vent phase. Ash flows of the ensuing ring-vent phase erupted from multiple vents as the caldera collapsed. These ash flows surmounted virtually all topographic barriers, caused significant erosion, and produced voluminous deposits zoned from rhyodacite to mafic andesite. The entire climactic eruption and caldera formation were over before the youngest rhyodacitic lava flow had cooled completely, because all the climactic deposits are cut by fumaroles that originated within the underlying lava, and part of the flow oozed down the caldera wall.A total of 51−59 km3 of magma was ejected in the precursory and climactic eruptions, and 40−52 km3 of Mount Mazama was lost by caldera formation. The spectacular compositional zonation shown by the climactic ejecta — rhyodacite followed by subordinate andesite and mafic andesite — reflects partial emptying of a zoned system, halted when the crystal-rich magma became too viscous for explosive fragmentation. This zonation was probably brought about by convective separation of low-density, evolved magma from underlying mafic magma. Confinement of postclimactic eruptive activity to the caldera attests to continuing existence of the Mazama magmatic system.  相似文献   

19.
The formation of ring faults yields important implications for understanding the structural and dynamic evolution of collapse calderas and potentially associated ash-flow eruptions. Caldera collapse occurred in 2000 at Miyakejima Island (Japan) in response to a lateral intrusion. Based on geophysical data it is inferred that a set of caldera ring faults was propagating upward. To understand the kinematics of ring-fault propagation, linkage, and interaction, we describe new laboratory sand-box experiments that were analyzed through Digital Image Correlation (DIC) and post-processed using 2D strain analysis. The results help us gain a better understanding of the processes occurring during caldera subsidence at Miyakejima. We show that magma chamber evacuation induces strain localization at the lateral chamber margin in the form of a set of reverse faults that sequentially develops and propagates upwards. Then a set of normal faults initiates from tension fractures at the surface, propagating downwards to link with the reverse faults at depth. With increasing amounts of subsidence, interaction between the reverse- and normal-fault segments results in a deactivation of the reverse faults, while displacement becomes focused on the outer normal faults. Modeling results show that the area of faulting and collapse migrates successively outward, as peak displacement transfers from the inner ring faults to later developed outer ring faults. The final structural architecture of the faults bounding the subsiding piston-like block is hence a consequence of the amount of subsidence, in agreement with other caldera structures observed in nature. The experimental simulations provide an analogy to the observations and seismic records of caldera collapse at Miyakejima volcano, but are also applicable to caldera collapse in general.  相似文献   

20.
Volcán Las Navajas, a Pliocene-Pleistocene volcano located in the northwestern portion of the Mexican volcanic belt, erupted lavas ranging in composition from alkali basalt through peralkaline rhyolite, and is the only volcano in mainland Mexico known to have erupted pantellerites. Las Navajas is located near the northwestern end of the Tepic-Zacoalco rift and covers a 200-m-thick pile of alkaline basaltic lavas, one of which has been dated at 4.3 Ma. The eruptive history of the volcano can be divided into three stages separated by episodes of caldera formation. During the first stage a broad shield volcano made up of alkali basalts, mugearites, benmoreites, trachytes, and peralkaline rhyolites was constructed. Eruption of a chemically zoned ash flow then caused collapse of the structure to form the first caldera. The second stage consisted of eruptions of glassy pantellerite lavas that partially filled the caldera and overflowed its walls. This stage ended about 200 000 years ago with the eruption of pumice falls and ash flows, which led to the collapse of the southern portion of the volcano to form the second caldera. During the third stage, two benmoreite cinder cones and a benmoreite lava flow were emplaced on the northwestern flank of the volcano. Finally, the calc-alkaline volcano Sanganguey was built on the southern flank of Las Lavajas. Alkaline volcanism continued in the area with eruptions of alkali basalt from cinder cones located along NW-trending fractures through the area. Although other mildly peralkaline rhyolites are found in the rift zones of western Mexico, only Las Navajas produced pantellerites. Greater volumes of basic alkaline magma have erupted in the Las Navajas region than in the other areas of peralkaline volcanism in Mexico, a factor which may be necessary to provide the initial volume of material and heat to drive the differentiation process to such extreme peralkaline compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号