首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The delineation of wellhead protection areas (WHPAs) under uncertainty is still a challenge for heterogeneous porous media. For granular media, one option is to combine particle tracking (PT) with the Monte Carlo approach (PT‐MC) to account for geologic uncertainties. Fractured porous media, however, require certain restrictive assumptions under this approach. An alternative for all types of media is the capture probability (CP) approach, which is based on the solution of the standard advection‐dispersion equation in a backward mode, making use of the analogy between forward and backward transport processes. Within this context, we review the current controversy about the correct form of the conceptual model for transport, finding that the advection‐diffusion model, which represents the diffusive interchange between streamtubes with differing velocities, is more physically realistic than the conventional advection‐dispersion model. For mildly to moderately heterogeneous materials, stochastic theories and simulation experiments show that this process converges at the field scale to an effective advection‐dispersion process that can be simulated with conventional transport models using appropriate macrodispersivity values. For highly heterogeneous materials, stochastic theories do not yet exist but there is no reason why the process should not converge naturally as well. Macrodispersivities appear to be formation‐specific. The advection‐dispersion model can be used for capture zone delineation in heterogeneous granular media. For fractured porous systems, hybrid equivalent porous medium and discrete fracture network or CP‐based approaches may have potential. In general, capture zones delineated by PT without MC will always be too small and should not be used as a basis for land‐use decisions.  相似文献   

2.
We consider the problem of upscaling transient real gas flow through heterogeneous bounded reservoirs. One of the commonly used methods for deriving effective permeabilities is based on stochastic averaging of nonlinear flow equations. Such an approach, however, would require rather restrictive assumptions about pressure-dependent coefficients. Instead, we use Kirchhoff transformation to linearize the governing stochastic equations prior to their averaging. The linearized problem is similar to that used in stochastic analysis of groundwater flow. We discuss the effects of temporal localization of the nonlocal averaged Darcy's law, as well as boundary effects, on the upscaled gas permeability. Extension of the results obtained by means of small perturbation analysis to highly heterogeneous porous formations is also discussed.  相似文献   

3.
We develop a one-equation non-equilibrium model to describe the Darcy-scale transport of a solute undergoing biodegradation in porous media. Most of the mathematical models that describe the macroscale transport in such systems have been developed intuitively on the basis of simple conceptual schemes. There are two problems with such a heuristic analysis. First, it is unclear how much information these models are able to capture; that is, it is not clear what the model's domain of validity is. Second, there is no obvious connection between the macroscale effective parameters and the microscopic processes and parameters. As an alternative, a number of upscaling techniques have been developed to derive the appropriate macroscale equations that are used to describe mass transport and reactions in multiphase media. These approaches have been adapted to the problem of biodegradation in porous media with biofilms, but most of the work has focused on systems that are restricted to small concentration gradients at the microscale. This assumption, referred to as the local mass equilibrium approximation, generally has constraints that are overly restrictive. In this article, we devise a model that does not require the assumption of local mass equilibrium to be valid. In this approach, one instead requires only that, at sufficiently long times, anomalous behaviors of the third and higher spatial moments can be neglected; this, in turn, implies that the macroscopic model is well represented by a convection–dispersion–reaction type equation. This strategy is very much in the spirit of the developments for Taylor dispersion presented by Aris (1956). On the basis of our numerical results, we carefully describe the domain of validity of the model and show that the time-asymptotic constraint may be adhered to even for systems that are not at local mass equilibrium.  相似文献   

4.
Although recognized as important, measures of connectivity (i.e. the existence of high-conductivity paths that increase flow and allow for early solute arrival) have not yet been incorporated into methods for upscaling hydraulic conductivities of porous media. We present and evaluate a binary upscaling formula that utilizes connectivity information. The upscaled hydraulic conductivity (K) of binary media is determined as a function of the proportions and conductivities of the two materials, the geometry of the inclusions, and the mean distance between them. The use of a phase interchange theorem renders the formula equally applicable to two-dimensional media with inclusions of low K and high K as compared with the matrix. The new upscaling formula is tested on two-dimensional binary random fields spanning a broad range of spatial correlation structures and conductivity contrasts. The computed effective conductivities are compared to what is obtained using self-consistent effective medium theory, the coated ellipsoids approximation, and to a streamline approach. It is shown that, although simple, the proposed formula performs better than available methods for binary upscaling. The use of connectivity information leads to significantly improved behavior close to the percolation threshold. The proposed upscaling formula depends exclusively on parameters that are obtainable from field investigations.  相似文献   

5.
Renormalization group analysis of permeability upscaling   总被引:1,自引:1,他引:0  
The heterogeneity of the subsurface permeability is considered as the most influential factor in determining groundwater flow and the transport of toxic contaminants. Numerical simulators cannot handle the large grids required to represent the small-scale variability of permeability, and thus explicit estimates of the large-scale behavior in terms of coarse-grained parameters are often required. Perturbation formulations of the effective permeability are based on simplifying assumptions that are valid only for certain probability distributions and weak heterogeneity. A generalized perturbation ansatz that involves higher orders has been proposed (Gelhar and Axness, 1983), but to our knowledge its validity has not been rigorously proved before in three dimensions. In this work we propose a general upscaling formulation valid for strong heterogeneity, general permeability distributions, and media with impermeable zones. We show that the effective permeability is determined by the self-energy series of the permeability fluctuations at zero frequency. Using the diagrammatic representation, we obtain a Dyson equation that involves only irreducible diagrams of the proper self-energy series. We develop a renormalization group (RG) analysis for isotropic lognormal media that proves the generalized perturbation ansatz to all orders. We show that the RG result accurately estimates laboratory permeability measurements in limestone (strong heterogeneity) and sandstone (weak heterogeneity). We also propose an explicit RG estimate for the preasymptotic effective permeability. We compare our results with an approach based on a leading order Green's function expansion (Paleologos et?al., 1996), which, however, requires intensive numerical computations. Finally, we investigate the relation between the RG expression and the algebraic means used in numerical upscaling.  相似文献   

6.
本文提出了地下流体渗流问题的三维解粗化算法,在粗网格内流体压强分布用直接解法求解三维渗流方程,用这些解计算粗网格的等效渗透率,在流体流速大的区域仍采用精细网格的计算方法.用所得等效渗透率计算了粗化网格的渗流场的压强分布,结果表明渗流方程的三维粗化解非常逼近采用精细网格的解,但计算的速度比采用精细网格提高了100多倍.  相似文献   

7.
Stochastic and deterministic upscaling techniques are developed that upscale saturated conductivity at the support of 0.04 m2 to representative actual infiltration (Ib) for support units (blocks) of 101–104 m2, as a function of steady state rainfall and runon to the block, under Hortonian runoff (infiltration excess overland flow). Parameters in the upscaling techniques represent the surface runoff flow pattern and the spatial probability distribution of saturated conductivity within the 101–104 m2 block. The stochastic upscaling technique represents the spatial process of infiltration and runoff using a simple process-imitating model, estimating Ib using Monte Carlo simulation. The deterministic upscaling technique aggregates these processes by a deterministic function relating rainfall and runon to Ib. The stochastic upscaling technique is shown to be capable to upscale saturated conductivity derived from ring infiltrometers to Ib values of plots (1 m2) corresponding to measured Ib values using rainfall simulators. It is shown that both upscaling techniques can be used to estimate Ib for each time step and each block in transient rainfall–runoff models, giving better estimates of cumulative runoff from a hillslope and a small catchment than model runs that do not use upscaling techniques.  相似文献   

8.
In this work we propose upscaling method for nonlinear Forchheimer flow in heterogeneous porous media. The generalized Forchheimer law is considered for incompressible and slightly-compressible single-phase flows. We use recently developed analytical results (Aulisa et al., 2009) [1] and formulate the resulting system in terms of a degenerate nonlinear flow equation for the pressure with the nonlinearity depending on the pressure gradient. The coarse scale parameters for the steady state problem are determined so that the volumetric average of velocity of the flow in the domain on fine scale and on coarse scale are close. A flow-based coarsening approach is used, where the equivalent permeability tensor is first evaluated following streamline methods for linear cases, and modified in order to take into account the nonlinear effects. Compared to previous works (Garibotti and Peszynska, 2009) [2], (Durlofsky and Karimi-Fard) [3], this approach can be combined with rigorous mathematical upscaling theory for monotone operators, (Efendiev et al., 2004) [4], using our recent theoretical results (Aulisa et al., 2009) [1]. The developed upscaling algorithm for nonlinear steady state problems is effectively used for variety of heterogeneities in the domain of computation. Direct numerical computations for average velocity and productivity index justify the usage of the coarse scale parameters obtained for the special steady state case in the fully transient problem. For nonlinear case analytical upscaling formulas in stratified domain are obtained. Numerical results were compared to these analytical formulas and proved to be highly accurate.  相似文献   

9.
This work presents a rigorous numerical validation of analytical stochastic models of steady state unsaturated flow in heterogeneous porous media. It also provides a crucial link between stochastic theory based on simplifying assumptions and empirical field and simulation evidence of variably saturated flow in actual or realistic hypothetical heterogeneous porous media. Statistical properties of unsaturated hydraulic conductivity, soil water tension, and soil water flux in heterogeneous soils are investigated through high resolution Monte Carlo simulations of a wide range of steady state flow problems in a quasi-unbounded domain. In agreement with assumptions in analytical stochastic models of unsaturated flow, hydraulic conductivity and soil water tension are found to be lognormally and normally distributed, respectively. In contrast, simulations indicate that in moderate to strong variable conductivity fields, longitudinal flux is highly skewed. Transverse flux distributions are leptokurtic. the moments of the probability distributions obtained from Monte Carlo simulations are compared to modified first-order analytical models. Under moderate to strong heterogeneous soil flux conditions (σ2y≥1), analytical solutions overestimate variability in soil water tension by up to 40% as soil heterogeneity increases, and underestimate variability of both flux components by up to a factor 5. Theoretically predicted model (cross-)covariance agree well with the numerical sample (cross-)covarianaces. Statistical moments are shown to be consistent with observed physical characteristics of unsaturated flow in heterogeneous soils.©1998 Elsevier Science Limited. All rights reserved  相似文献   

10.
This paper presents a stochastic model for multicomponent competitive monovalent cation exchange in hierarchical porous media. Reactive transport in porous media is highly sensitive to heterogeneities in physical and chemical properties, such as hydraulic conductivity (K), and cation exchange capacity (CEC). We use a conceptual model for multimodal reactive mineral facies and develop a Eulerian-based stochastic theory to analyze the transport of multiple cations in heterogeneous media with a hierarchical organization of reactive minerals. Numerical examples investigate the retardation factors and dispersivities in a chemical system made of three monovalent cations (Na+, K+, and Cs+). The results demonstrate how heterogeneity influences the transport of competitive monovalent cations, and highlight the importance of correlations between K and CEC. Further sensitivity analyses are presented investigating how the dispersion and retardation of each cation are affected by the means, variances, and integral scales of K and CEC. The volume fraction of organic matter is shown to be another important parameter. The Eulerian stochastic framework presented in this work clarifies the importance of each system parameters on the migration of cation plumes in formations with hierarchical organization of facies types. Our stochastic approach could be used as an alternative to numerical simulations for 3D reactive transport in hierarchical porous media, which become prohibitively expensive for the multicomponent applications considered in this work.  相似文献   

11.
Modeling dispersion in homogeneous porous media with the convection–dispersion equation commonly requires computing effective transport coefficients. In this work, we investigate longitudinal and transverse dispersion coefficients arising from the method of volume averaging, for a variety of periodic, homogeneous porous media over a range of particle Péclet (Pep) numbers. Our objective is to validate the upscaled transverse dispersion coefficients and concentration profiles by comparison to experimental data reported in the literature, and to compare the upscaling approach to the more common approach of inverse modeling, which relies on fitting the dispersion coefficients to measured data. This work is unique in that the exact microscale geometry is available; thus, no simplifying assumptions regarding the geometry are required to predict the effective dispersion coefficients directly from theory. Transport of both an inert tracer and non-chemotactic bacteria is investigated for an experimental system that was designed to promote transverse dispersion. We highlight the occurrence of transverse dispersion coefficients that (1) depart from power-law behavior at relatively low Pep values and (2) are greater than their longitudinal counterparts for a specific range of Pep values. The upscaling theory provides values for the transverse dispersion coefficient that are within the 98% confidence interval of the values obtained from inverse modeling. The mean absolute error between experimental and upscaled concentration profiles was very similar to that between the experiments and inverse modeling. In all cases the mean absolute error did not exceed 12%. Overall, this work suggests that volume averaging can potentially be used as an alternative to inverse modeling for dispersion in homogeneous porous media.  相似文献   

12.
We consider heterogeneous media whose properties vary in space and particularly aquifers whose hydraulic conductivity K may change by orders of magnitude in the same formation. Upscaling of conductivity in models of aquifer flow is needed in order to reduce the numerical burden, especially when modeling flow in heterogeneous aquifers of 3D random structure. Also, in many applications the interest is in average values of the dependent variables over scales larger or comparable to the conductivity length scales. Assigning values of the conductivity Kb to averaging domains, or computational blocks, is the topic of a large body of literature, the problem being of wide interest in various branches of physics and engineering. It is clear that upscaling causes loss of information and at best it can render a good approximation of the fine scale solution after averaging it over the blocks.The present article focuses on upscaling approaches dealing with random media. It is not meant to be a review paper, its main scope being to elucidate a few issues of principle and to briefly discuss open questions. We show that upscaling can be usually achieved only approximately, and the result may depend on the particular upscaling scheme adopted. The typically scarce information on the statistical structure of the fine-scale conductivity imposes a strong limitation to the upscaling problem. Also, local upscaling is not possible in nonuniform mean flows, for which the upscaled conductivity tensor is generally nonlocal and it depends on the domain geometry and the boundary conditions. These and other limitations are discussed, as well as other open topics deserving further investigation.  相似文献   

13.
An analytical tool which facilitates the analysis of stochastic groundwater problems without resorting to Monte Carlo analysis can be developed using an approach analogous to that used in the field of applied mathematics to investigate the propagation of waves in random media. The fundamental assumption of this approach is that the random part of the porous medium property is small compared to the non-random part. This assumption allows us to treat the problem of solving a partial differential equation with stochastic coefficients using perturbation theory.  相似文献   

14.
The coupling upscaling finite element method is developed for solving the coupling problems of deformation and consolidation of heterogeneous saturated porous media under external loading conditions. The method couples two kinds of fully developed methodologies together, i.e., the numerical techniques developed for calculating the apparent and effective physical properties of the heterogeneous media and the upscaling techniques developed for simulating the fluid flow and mass transport properties in heterogeneous porous media. Equivalent permeability tensors and equivalent elastic modulus tensors are calculated for every coarse grid block in the coarse-scale model of the heterogeneous saturated porous media. Moreover, an oversampling technique is introduced to improve the calculation accuracy of the equivalent elastic modulus tensors. A numerical integration process is performed over the fine mesh within every coarse grid element to capture the small scale information induced by non-uniform scalar field properties such as density, compressibility, etc. Numerical experiments are carried out to examine the accuracy of the developed method. It shows that the numerical results obtained by the coupling upscaling finite element method on the coarse-scale models fit fairly well with the reference solutions obtained by traditional finite element method on the fine-scale models. Moreover, this method gets more accurate coarse-scale results than the previously developed coupling multiscale finite element method for solving this kind of coupling problems though it cannot recover the fine-scale solutions. At the same time, the method developed reduces dramatically the computing effort in both CPU time and memory for solving the transient problems, and therefore more large and computational-demanding coupling problems can be solved by computers.  相似文献   

15.
Stochastic analysis is commonly used to address uncertainty in the modeling of flow and transport in porous media. In the stochastic approach, the properties of porous media are treated as random functions with statistics obtained from field measurements. Several studies indicate that hydrological properties depend on the scale of measurements or support scales, but most stochastic analysis does not address the effects of support scale on stochastic predictions of subsurface processes. In this work we propose a new approach to study the scale dependence of stochastic predictions. We present a stochastic analysis of immiscible fluid–fluid displacement in randomly heterogeneous porous media. While existing solutions are applicable only to systems in which the viscosity of one phase is negligible compare with the viscosity of the other (water–air systems for example), our solutions can be applied to the immiscible displacement of fluids having arbitrarily viscosities such as NAPL–water and water–oil. Treating intrinsic permeability as a random field with statistics dependant on the permeability support scale (scale of measurements) we obtained, for one-dimensional systems, analytical solutions for the first moments characterizing unbiased predictions (estimates) of system variables, such as the pressure and fluid–fluid interface position, and we also obtained second moments, which characterize the uncertainties associated with such predictions. Next we obtained empirically scale dependent exponential correlation function of the intrinsic permeability that allowed us to study solutions of stochastic equations as a function of the support scale. We found that the first and second moments converge to asymptotic values as the support scale decreases. In our examples, the statistical moments reached asymptotic values for support scale that were approximately 1/10000 of the flow domain size. We show that analytical moment solutions compare well with the results of Monte Carlo simulations for moderately heterogeneous porous media, and that they can be used to study the effects of heterogeneity on the dynamics and stability of immiscible flow.  相似文献   

16.
17.
The Buckingham–Darcy Law is used to describe fluid flow in unsaturated porous media at low Reynolds number. In order to provide a priori corrections to this law, a process thermodynamic approach is utilized to ascertain the functional dependence. Using this knowledge, corrections to the hydraulic conductivity coefficient are proposed and compared with available data. The proposed corrections substantially predict the observed behavior of flow of high concentration (saturated) sodium chloride solutions in porous media. During the derivation, physical principles consistent with the thermodynamics of the system were utilized. A review of these principles and their results provides an alternative form of the generalized Gibbs–Duhem Relation for continuous processes, indicating that the identical equivalence to zero is unlikely to occur for dissipative processes. Further, the postulated Gibbs and Gibbs–Duhem Relations indicate that special differential operators need to be used for continuous processes rather than the usual use of a generic differential.  相似文献   

18.
We present a method to determine equivalent permeability of fractured porous media. Inspired by the previous flow-based upscaling methods, we use a multi-boundary integration approach to compute flow rates within fractures. We apply a recently developed multi-point flux approximation Finite Volume method for discrete fracture model simulation. The method is verified by upscaling an arbitrarily oriented fracture which is crossing a Cartesian grid. We demonstrate the method by applying it to a long fracture, a fracture network and the fracture network with different matrix permeabilities. The equivalent permeability tensors of a long fracture crossing Cartesian grids are symmetric, and have identical values. The application to the fracture network case with increasing matrix permeabilities shows that the matrix permeability influences more the diagonal terms of the equivalent permeability tensor than the off-diagonal terms, but the off-diagonal terms remain important to correctly assess the flow field.  相似文献   

19.
A numerical procedure for the analysis of Rayleigh waves in saturated porous elastic media is proposed by use of the finite element method. The layer stiffness matrix, the layer mass matrix and the layer damping matrix in a layered system are presented for the discretized form of the solid-fluid equilibrium equation proposed by Biot. In order to consider the influence of the permeability coefficient on the behavior of Rayleigh waves, attention is focused on the following states: ‘drained’ state, ‘undrained’ state and the states between two extremes of ‘drained’ and ‘undrained’ states. It is found from computed results that the permeability coefficient exerts a significant effect on dispersion curves and displacement distributions of Rayleigh waves in saturated porous media.  相似文献   

20.
Transport in porous media is often characterized by the advection–dispersion equation, with the dispersion coefficient as the most important parameter that links the hydrodynamics to the transport processes. Morphological properties of any porous medium, such as pore size distribution, network topology, and correlation length control transport. In this study we explore the impact of correlation length on transport regime using pore-network modelling. Earlier direct simulation studies of dispersion in carbonate and sandstone rocks showed larger dispersion compared to granular homogenous sandpacks. However, in these studies, isolation of the impact of correlation length on transport regime was not possible due to the fundamentally different pore morphologies and pore-size distributions. Against this limitation, we simulate advection–dispersion transport for a wide range of Péclet numbers in unstructured irregular networks with “different” correlation lengths but “identical” pore size distributions and pore morphologies. Our simulation results show an increase in the magnitudes of the estimated dispersion coefficients in correlated networks compared to uncorrelated ones in the advection-controlled regime. The range of the Péclet numbers which dictate mixed advection–diffusion regime considerably reduces in the correlated networks. The findings emphasize the critical role of correlation length which is depicted in a conceptual transport phase diagram and the importance of accounting for the micro-scale correlation lengths into predictive stochastic pore-scale modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号