首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Mesoscale eddies exist almost everywhere in the ocean and play important roles in the ocean circulation of the world. These eddies may cause sound spread singular regions and bring great influences to the upwater ship and underwater aircraft. Due to the lack of hydrographic survey datasets, study of mesoscale eddies has been greatly restricted. Fortunately, satellite altimeter provided an effective way to study mesoscale eddies. An automatic detection algorithm is introduced to detect mesoscale eddies of specific intensity and spatial/temporal scale based on satellite sea surface height (SSH) data and the algorithm is applied in a strong eddy activity region: the South China Sea and the Northwest Pacific. The algorithm includes four steps. The first step is preprocessing of the SSH image, which includes elimination of error SSH data and interpolation. The second step is to detect suspected mesoscale eddies from preprocessed SSH images by dynamic threshold adjustment and morphological method, and the suspected mesoscale eddy detection includes two procedures: suspected mesoscale eddy core region detection and suspected mesoscale eddy brim extraction. The third step is to pick out mesoscale eddies satisfied with specified criteria from suspected mesoscale eddies. The criteria include three items, that is, intensity criterion, spatial scale, criterion and temporal scale criterion. The last step is algorithm performance analysis and verification. The algorithm has the capability of adaptive parameter adjustment, and can extract mesoscale eddies of interested intensity and spatial/temporal scale. The paper can provide a basis for analyzing space-time characteristics of mesoscale eddy in the South China Sea and the Northwest Pacific.  相似文献   

2.
The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ° horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This “eddy-permitting” resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.  相似文献   

3.
A complex and highly dynamical ocean region, the Agulhas Current System plays an important role in the transfer of energy, nutrients and organic material from the Indian to the Atlantic Ocean. Its dynamics are not only important locally, but affect the global ocean-atmosphere system. In working towards improved ocean reanalysis and forecasting capabilities, it is important that numerical models simulate mesoscale variability accurately—especially given the scarcity of coherent observational platforms in the region. Data assimilation makes use of scarce observations, a dynamical model and their respective error statistics to estimate a new, improved model state that minimises the distance to the observations whilst preserving dynamical consistency. Qualitatively, it is unclear whether this minimisation directly translates to an improved representation of mesoscale dynamics. In this study, the impact of assimilating along-track sea-level anomaly (SLA) data into a regional Hybrid Coordinate Ocean Model (HYCOM) is investigated with regard to the simulation of mesoscale eddy characteristics. We use an eddy-tracking algorithm and compare the derived eddy characteristics of an assimilated (ASSIM) and an unassimilated (FREE) simulation experiment in HYCOM with gridded satellite altimetry-derived SLA data. Using an eddy tracking algorithm, we are able to quantitatively evaluate whether assimilation updates the model state estimate such that simulated mesoscale eddy characteristics are improved. Additionally, the analysis revealed limitations in the dynamical model and the data assimilation scheme, as well as artefacts introduced from the eddy tracking scheme. With some exceptions, ASSIM yields improvements over FREE in eddy density distribution and dynamics. Notably, it was found that FREE significantly underestimates the number of eddies south of Madagascar compared to gridded altimetry, with only slight improvements introduced through assimilation, highlighting the models’ limitation in sustaining mesoscale activity in this region. Interestingly, it was found that the threshold for the maximum eddy propagation velocity in the eddy detection scheme is often exceeded when data assimilation relocates an eddy, causing the algorithm to interpret the discontinuity as eddy genesis, which directly influences the eddy count, lifetime and propagation velocity, and indirectly influences other metrics such as non-linearity. Finally, the analysis allowed us to separate eddy kinetic energy into contributions from detected mesoscale eddies and meandering currents, revealing that the assimilation of SLA has a greater impact on mesoscale eddies than on meandering currents.  相似文献   

4.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

5.
During mid-May to early June 2016, a cold eddy and a warm eddy were captured on the continental slope of the northern South China Sea by the in situ measurements. A salty lens-shaped water mass in the subsurface layer existed in these two detected eddies, which indicated they had a Kuroshio water origin. The trajectories of the observed eddies from satellite altimeter data show that the cold eddy was generated in the central part of the Luzon Strait, while the warm eddy was formed southwest of Taiwan. The genesis of the cold eddy is related to a weak Kuroshio loop current, while that of the warm eddy is associated with a strong Kuroshio loop current. The warm eddy east of the Luzon Strait may trigger the Kuroshio from a leaping path to a looping path. During the evolution of these detected eddies, they had interactions with the Kuroshio and Luzon Gyre. Energy analysis from ocean reanalysis data showed that the baroclinic conversion between the cold eddy and the Kuroshio was stronger than that between the cold eddy and Luzon Gyre. During the eddy shedding stage, the warm eddy mainly acquired energy from the Kuroshio loop current through the baroclinic conversion.  相似文献   

6.
Trott  Corinne B.  Metzger  E. Joseph  Yu  Zhitao 《Ocean Dynamics》2021,71(6-7):679-698
Ocean Dynamics - The circulation in the northern South China Sea (SCS) strongly responds to anticyclonic eddies that shed from the Kuroshio intruding across Luzon Strait. An eddy tracking algorithm...  相似文献   

7.
海洋中尺度涡与内波的地震图像   总被引:10,自引:5,他引:5       下载免费PDF全文
海洋反射地震通常用于调查、研究海底地质构造,勘探油气与天然气水合物资源.近期研究表明多道反射地震方法也可以对水柱的热盐细结构成像.中尺度涡与内波是重要的物理海洋现象,但是常规的物理海洋调查是在间隔若干公里的离散测站上进行的,水平分辨率较低,因此对中尺度涡的结构与内波的横向分布了解较差.本文利用在大西洋东部、南海采集的地震数据给出了低频反射地震可以对中尺度涡与内波清晰成像的新的证据.反射地震方法较传统海洋观测手段,具有明显的优势,主要体现在高的水平分辨率和短时间内对整个海水剖面进行成像方面.从地震剖面上,能够清楚地观测到中尺度涡、内波造成的反射特征变化,从而有助于改进对能量在不同尺度的海水运动之间传递过程的认识.  相似文献   

8.
海洋中普遍存在的涡旋对全球海洋热、盐通量有重要贡献.一条于2000年6月在中美洲鹦鹉湾采集的地震剖面L115捕获到了一个海水次表层透镜状反射结构.透镜状反射的宽度约150 km,厚度约500 m,深度从100 m延伸到约600 m,核心深约200 m.结合和地震采集时间近同步的再分析数据中的流速和海水温度数据以及计算的Rossby数和Okubo-Weiss参数,将其解释为气旋涡,且可能是亚中尺度相干涡(SCV).由于地震剖面并未穿过涡旋核心水,涡旋顶底与核心水外层水团的双扩散作用使得剖面上的气旋涡中心表现为上下相邻的强反射双核结构.同航次采集的与L115大致正交的其他几条地震剖面也捕捉到了这个气旋涡.这些剖面整体的反射特征一致性较好,但和L115差异较大,涡旋内部普遍表现为近水平的中等强度反射.涡旋上边界为倾斜的强反射,这是气旋涡的等温线上凸引起的,这里也是亚中尺度锋面的发育区.这些地震剖面的涡旋反射特征的差异表明了该气旋涡空间结构的不对称性和时间演化特征.  相似文献   

9.
In the framework of the eddy dynamic model developed in two previous papers (Dubovikov, M.S., Dynamical model of mesoscale eddies, Geophys. Astophys. Fluid Dyn., 2003, 97, 311–358; Canuto, V.M. and Dubovikov, M.S., Modeling mesoscale eddies, Ocean Modelling, 2004, 8, 1–30 referred as I–II), we compute the contribution of unresolved mesoscale eddies to the large-scale dynamic equations of the ocean. In isopycnal coordinates, in addition to the bolus velocity discussed in I–II, the mesoscale contribution to the large scale momentum equation is derived. Its form is quite different from the traditional down-gradient parameterization. The model solutions in isopycnal coordinates are transformed to level coordinates to parameterize the eddy contributions to the corresponding large scale density and momentum equations. In the former, the contributions due to the eddy induced velocity and to the residual density flux across mean isopycnals (so called Σ-term) are derived, both contributions being shown to be of the same order. As for the large scale momentum equation, as well as in isopycnal coordinates, the eddy contribution has a form which is quite different from the down-gradient expression.  相似文献   

10.
An eddy-resolving Indo-Pacific ocean circulation model was applied to highlight the behavior of eddies throughout the Indonesian seas. The complexity of the topography and coastline at the entrance of the Makassar Strait induce an eddy-type throughflow, instead of a straightforward flow. A sill and a narrow passage in the Makassar strait creates a barrier and impedes the continuation of eddies from the Pacific ocean, but the existence of a steep deep basin (>500 m depth) between the Java and Flores seas indicates a possible area for eddies. Based on our numerical results, we described the presence of a unique eddy structure north of Lombok Island, which we designated the “Lombok Eddy” and verified it by performing a drifter release field experiment and reviewing monthly mean climatology data from the World Ocean Atlas 2001 and XBT PX2 track data. NCEP/NCAR reanalysis, satellite observation data, and mixed layer depth analysis were also used to confirm these processes. By analyzing numerical simulation results and available temperature datasets, two additional eddies were found. All eddies form primarily due to eastward local winds correlated with seasonal monsoon winds during the austral summer. These eddies vary synchronously at an interannual time scale. Together, they are referred to as the Lombok Eddy Train (LET), which affects the surface layer down to a depth of 60 m, and the intensity of the eddy system is strongly affected by mixed layer depth variability from December to February.  相似文献   

11.
Application of altimetry data assimilation on mesoscale eddies simulation   总被引:3,自引:0,他引:3  
Mesoscale eddy plays an important role in the ocean circulation. In order to improve the simulation accuracy of the mesoscale eddies, a three-dimensional variation (3DVAR) data assimilation system called Ocean Variational Analysis System (OVALS) is coupled with a POM model to simulate the mesoscale eddies in the Northwest Pacific Ocean. In this system, the sea surface height anomaly (SSHA) data by satellite altimeters are assimilated and translated into pseudo temperature and salinity (T-S) profile data. Then, these profile data are taken as observation data to be assimilated again and produce the three-dimensional analysis T-S field. According to the characteristics of mesoscale eddy, the most appropriate assimilation parameters are set up and testified in this system. A ten years mesoscale eddies simulation and comparison experiment is made, which includes two schemes: assimilation and non-assimilation. The results of comparison between two schemes and the observation show that the simulation accuracy of the assimilation scheme is much better than that of non-assimilation, which verified that the altimetry data assimilation method can improve the simulation accuracy of the mesoscale dramatically and indicates that it is possible to use this system on the forecast of mesoscale eddies in the future.  相似文献   

12.
Abstract

For the purpose of deriving an analytical parametrization, oceanic mesoscale eddies are represented as a horizontally propagating wave field in a non-uniform environment. The mathematical analysis rests upon the assumption of scale disparity between a short eddy scale and a long mean-flow scale. The novelty resides in the treatment of finite-amplitude eddies, which, moreover, form either a band-like or a cell-like pattern. A barotropic ocean is chosen as a first step to illustrate the mathematical analysis, but dissipation is included. The main result is an analytical derivation of a mesoscale-eddy parametrization: the mean-flow equation contains Reynolds-stress terms which are computed from parameters of the eddy field, which, in turn, are predicted by separate evolution equations. Due to restrictive assumptions (barotropy, orthogonal waves,…), the parametrization established here should be viewed only as a first step toward the design of a more practical parameterization for large-scale modelling.  相似文献   

13.
The relationship between the Kuroshio volume transport east of Taiwan (~24°N) and the impinging mesoscale eddies is investigated using 8-year reanalysis of a primitive equation ocean model that assimilates satellite altimetry and SST data. The mean and fluctuations of the model Kuroshio transport agree well with the available observations. Analysis of model dynamic heights and velocity fields reveals three dominant eddy modes. The first mode describes a large eddy of ~500 km in diameter, centered at ~22° N. The second mode describes a pair of the north–south counter-rotating eddies of?~?400 km in diameter each, centered at 23° and 20° N, respectively. The third mode describes a pair of the east–west counter-rotating eddies of?~?300 km in diameter each, centered at 21° N. The associated velocity fields indicate eddies extending to 600–700 m in depth with vertical shears concentrated in the upper 400 m. All three modes and the model Kuroshio transport have similar dominant timescales of 70–150 days and generally are coherent. The decreased Kuroshio volume transports typically are associated with the impinging cyclonic eddies and the increased transports with the anticyclonic eddies. Selected drifter trajectories are presented to illustrate the three eddy modes and their correspondence with the varying Kuroshio transports.  相似文献   

14.
 The circulation of the Southern Ocean is studied in the eddy-resolving model POP (Parallel Ocean Program) by an analysis of zonally integrated balances. The TEM formalism (Transformed Eulerian Mean) is extended to include topography and continental boundaries, thus deviations from a zonally integrated state involve transient and standing eddies. The meridional circulation is presented in terms of the Eulerian, eddy-induced, and residual streamfunctions. It is shown that the splitting of the meridional circulation into Ekman and geostrophic transports and the component induced by subgrid and Reynolds stresses is identical to a particular form of the zonally integrated balance of zonal momentum. In this balance, the eddy-induced streamfunctions represent the interfacial form stresses by transient and standing eddies and the residual streamfunction represents the acceleration of the zonal current by density fluxes in a zonally integrated frame. The latter acceleration term is directly related to the surface flux of density and interior fluxes due to the resolved and unresolved eddies. The eddy-induced circulation is extremely vigorous in POP. In the upper ocean a shallow circulation, reversed in comparison to the Deacon cell and mainly due to standing eddies, appears to the north of Drake Passage latitudes, and in the Drake Passage belt of latitudes a deep-reaching cell is induced by transient eddies. In the resulting residual circulation the Deacon cell is largely cancelled and the residual advection of the zonal mean potential density is balanced by diapycnal eddy and subgrid fluxes which are strong in the upper few hundred meters but small in the ocean interior. The balance of zonal momentum is consistent with other eddy-resolving models; a new aspect is the clear identification of density effects in the zonally integrated balance. We show that the wind stress and the stress induced by the residual circulation drive the eastward current, whereas both eddy species result in a braking. Finally, we extend the Johnson–Bryden model of zonal transport to incorporate all relevant terms from the zonal momentum balance. It is shown that wind stress and induction by the residual circulation carry an eastward transport while bottom form stress and the stress induced by standing eddies yield westward components of transport. Received: 26 June 2001 / Accepted: 2 November 2001  相似文献   

15.
Coastal mesoscale eddies were evidenced during a high-frequency radar campaign in the Gulf of Lions (GoL), northwestern Mediterranean Sea, from June 2005 to January 2007. These anticyclonic eddies are characterized by repeated and intermittent occurrences as well as variable lifetime. This paper aims at studying the link between these new surface observations with similar structures suggested at depth by traditional acoustic Doppler current profiler measurements and investigates the eddy generation and driving mechanisms by means of an academic numerical study. The influence of the wind forcing on the GoL circulation and the eddy generation is analyzed, using a number of idealized configurations in order to investigate the interaction with river discharge, buoyancy, and bathymetric effects. The wind forcing is shown to be crucial for two different generation mechanisms: A strong northerly offshore wind (Mistral) generates a vortex column due to the bathymetric constraint of a geostrophic barotropic current, which can surface after the wind relaxes; a southerly onshore wind generates a freshwater bulge from the Rhône river discharge, which detaches from the coast and forms a well-defined surface anticyclonic eddy based on buoyancy gradients. These structures are expected to have important consequences in terms of dispersion or retention of biogeochemical material at local scales.  相似文献   

16.
Tidal residual eddies and their effect on water exchange in Puget Sound   总被引:1,自引:0,他引:1  
Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its subbasins was evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other subbasins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.  相似文献   

17.
Combining Argo observations with satellite remote sensing data during the period of 2002–2014, the mean three-dimensional structures of mesoscale eddies on both sides of the Luzon Strait (LS) were obtained via a composite method and analyzed to statistically examine the influences of background marine environment and the Kuroshio current on the eddy structures. The significant signals of temperature and salinity anomalies within the composite eddies extend much deeper in the region east of the LS (zone E) than those in the region west of the strait (zone W) because of stronger eddy intensity and larger vertical gradients of background temperature and salinity in the deep layer in zone E. In the vertical structure of temperature anomaly within the eddies, two cores occur at around 200 and 400 dbar depths, respectively, in zone E and only one core is centered at about 100 dbar in zone W. There is a clear three-core sandwich pattern in the vertical structure of salinity anomaly within the eddies in zone E. The Kuroshio water trapped in the eddy is responsible for abnormally positive salinity anomaly in the surface layer of the anticyclonic eddy center in zone W. On both sides of the LS, an asymmetric dipole structure in the surface layer gradually turns into a monopole one at depths, which resulted from the competition between horizontal advection effect and eddy pumping effect. The Kuroshio current influences the distribution patterns of isotherms and isohalines and enhances background temperature and salinity horizontal gradients on both sides of the LS, determining the orientations of dipole temperature and salinity structures within eddies.  相似文献   

18.
An eddy-resolving multidecadal ocean model hindcast simulation is analyzed to investigate time-varying signals of the two recirculation gyres present respectively to the north and south of the Kuroshio Extension (KE) jet. The northern recirculation gyre (NRG), which has been detected at middepth recently by profiling float and moored current meter observations, is a major focus of the present study. Low-frequency variations in the intensity of the recirculation gyres are overall highly correlated with decadal variations of the KE jet induced by the basin-wide wind change. Modulation of the simulated mesoscale eddies and its relationship with the time-varying recirculation gyres are also evaluated. The simulated eddy kinetic energy in the upstream KE region is inversely correlated with the intensity of the NRG, consistent with previous observational studies. Eddy influence on the low-frequency modulation of the NRG intensity at middepth is further examined by a composite analysis of turbulent Sverdrup balance, assuming a potential vorticity balance between the mean advection and the convergent eddy fluxes during the different states of the recirculation gyre. The change in the NRG intensity is adequately explained by that inferred by the turbulent Sverdrup balance, suggesting that the eddy feedback triggers the low-frequency modulation of the NRG intensity at middepth.  相似文献   

19.
Insight regarding the mean and eddy motion in the Skagerrak/northern North Sea area is gained through an analysis of model-simulated currents, hydrography, kinetic energy and relative vorticity for the 2 years 2000 and 2001. In this a -coordinate ocean model is used. Since the tidal currents are generally strong in the area, care is exercised to distinguish the mesoscale (eddy) motion from higher-frequency motion such as tides, before computing the mean and eddy kinetic energy. The model-simulated response is first compared with available knowledge of the circulation in the area, and when available, also with sea-surface temperature obtained from satellite imagery. It is concluded that the model appears to faithfully reproduce most of what is known, in particularly the upper mixed layer circulation. An analysis of the mean and eddy kinetic energy reveals that many of the mesoscale structures found in the area are recurrent. This is particularly true for the structures off the southern tip of Norway. Also in general, areas of strong mean and eddy kinetic energy are co-located. The exception is the area off the southern tip of Norway, where the eddy kinetic energy is much larger than its mean counterpart. An analysis of the relative vorticity reveals that the variability found is due to the occurrence of recurrent anticyclonic eddies. It is hypothesized that these eddies are generated due to an offshore veering of the Norwegian coastal current (NCC) as it reaches the eastern end of the Norwegian Trench plateau. Here it becomes a free jet, which is then vulnerable to either barotropic instability caused by the horizontal shear in the jet-like structure of the NCC at this point, or a baroclinic (frontal) instability. The latter may come into play when the NCC veers offshore and its relatively fresh water meets the inflowing saline water of Atlantic origin, a frontogenesis that may become strong enough for cyclogenesis to take place. Due to the depth-independent nature of the model-generated eddies, the barotropic instability is the most likely candidate. It remains to resolve the reason for the offshore veering of the NCC. The most likely candidate mechanisms are vortex squeezing or simply that the coastline curvature is large enough for the NCC to separate from the coast in a hydraulic sense.Responsible Editor: Phil Dyke  相似文献   

20.
The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for ~?190 days at ~?2 km day?1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of ~?67% California Current waters and ~?33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy’s core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号