首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
The Abitibi Volcanic Belt in eastern Superior Province of the Canadian Shield is the largest continuous greenstone belt in the world and is a key example of late Archean crust. This belt has, in general, suffered a low intensity of metamorphism and deformation, and, as a result, the stratigraphy and geology are well established. Tholeiitic and calc-alkaline series of igneous rocks are present in this belt in about equal proportions. However, the undersaturated potassic and leucitic volcanics of the Timiskaming Group are a unique feature of this belt.SmNd systematics were determined for twelve Timiskaming volcanic rocks. These rocks show nepheline, diopside and/or olivine plus leucite in the norm and a highly fractionated REE pattern. Sm and Nd concentrations range from 25 to 160 and 45 to 300 times the chondritic abundance, respectively. The Sm and Nd isotopic data yield an isochron age of 2702±105Ma for these volcanic rocks with an initial εNd of +1.9±1.6. This age establishes the Timiskaming alkalic rock to be one of the oldest of their kind. From stratigraphic relations, 2705 Ma is an upper limit for the age and the εNd values of +1.8 to +2.2 at this age for the twelve rocks are also upper limits. Further, this small but positive εNd value for the isochron, when compared to other mantle-derived Archean rocks in the Superior Province, indicates that the Archean mantle was heterogeneous beneath the Canadian Shield and that the Timiskaming alkalic lavas were derived from a depleted mantle.  相似文献   

2.
The Qinling Mountains in central China are the joint orogenic zone between the Sino-Korean (or North China) and the Yangtze craton blocks. The age and genesis of the Danfeng mafic volcanics in the north of the Shangzhou-Danfeng fault zone, i.e. the main suture zone in the Qinling orogenic belt, have been controverted for a long time because their age is closely related to the converged time of two blocks. The ages and the geochemical data of the Heihe pillow lavas for the Danfeng mafic volcanics in the Heihe River area in the Qinling orogen are reported in this paper. The obtained isochron age by the Sm-Nd isotopic data of the 13 whole-rock samples for the mafic pillow lavas is 963±130 () Ma, corresponding to INd = 0.51173±16 (),ɛ Nd(T)= +6.6, MSWD0.57. However, the Rb-Sr isotopic analytical results for the same samples as the Sm-Nd whole-rock ones are disperse. For the Sm-Nd isotopic systems were interfered during the later geological functions, the Sm-Nd isochron age for the whole-rock sample (Q9511WR) and the mineral phenocrystal samples: amphiboles (Hb) and plagioclases (Plag) presents the better uncertainty, whereas isochron ages of 930 Ma and 437 Ma are given if the WR-Plag and WR-Hb are calculated respectively, and their Rb-Sr isochron age is 268±47(2σ) Ma, Isr = 0.70475±11 (2σ), MSWD0.96. The major and trace elements for the lavas show that they were formed in the quasi-N-MORB setting.  相似文献   

3.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

4.
~~Characteristics of the mantle source region of sodium lamprophyres and petrogenetic tectonic setting in northeastern Hunan,China~~  相似文献   

5.
Well-preserved metalliferous sediments and pillow basalts of Lower Ordovician age (ca. 490 Ma) have been studied in an attempt to specify the Nd isotopic composition of Iapetus seawater. Initial143Nd/144Nd ratios of the pillow basalts are indistinguishable from published initial ratios for the 505-Ma Bay of Islands ophiolite complex and are within the anticipated range for MORB-type basalts 500 Ma ago. Metalliferous sediments occur both interstitial to basalt pillows and as well-developed sedimentary accumulations. The initial143Nd/144Nd ratios for the non-interstitial variety range from 0.511851 to 0.511712 Nd = ?2.7to?5.4) and are considered to provide an estimate of143Nd/144Nd in Iapetus seawater. The interstitial metalliferous sediments show evidence for a significant basalt-derived Nd component. Although volcanic activity occurred at the margin of Iapetus essentially contemporaneous with the formation of the metalliferous sediments, it is clear that arc-type volcanic material was not a major source of Nd in Iapetus seawater. Rather the source of Nd was from continental regions with a similar average age to those supplying material to the present-day Atlantic Ocean.  相似文献   

6.
The Yixian Formation at Sihetun in western Liao- ning Province has attracted considerable attention over the last two decades due to discovery of a wide range of well-preserved ‘feathered’ dinosaurs and primitive bird fossils[1―4]. This formation is dominated by vol- canic rocks, with fossil-bearing lacustrine sedimentary rocks at the upper part of the section[4]. The sedimen- tary rocks contain thin layers of tuff. According to previous studies[4], the total thickness of the Yixian Form…  相似文献   

7.
Measurements of143Nd/144Nd and147Sm/144Nd are reported for whole rocks and mineral separates from granulites of the Napier Complex at Fyfe Hills. Charnockites, leuconorites and gabbros yield a whole rock SmNd isochron age of3060 ± 160m.y. and an initial143Nd/144Nd ratio of0.50776 ± 10 (?Nd(3060m.y.) = ?2.0 ± 1.8). The negative ?Nd value and the presence of geologically induced dispersion in the data suggest that the isochron age does not represent the time of primary crystallization of the complex but instead indicates a time of later redistribution of Sm and Nd and partial re-equilibration of143Nd/144Nd ratios. This probably occurred during the upper granulite facies metamorphism which has also been dated at~ 3100m.y. by RbSr and UPb zircon studies [1]. Coexisting clinopyroxene, apatite and total rock fractions in two adjacent samples define an approximately linear array corresponding to an age of 2300 ± 300 m.y. This array indicates that redistribution of Sm and Nd and re-equilibration of143Nd/144Nd ratios occurred on an intermineral scale during the upper amphibolite to lower granulite facies metamorphism at~ 2450m.y.Due to the resetting of the SmNd system on both whole rock and mineral scales, the primary crystallization age of the igneous protolith is not well constrained by the present data, although it is clearly3100m.y. If it is assumed that the complex was derived initially from a depleted mantle reservoir(?Nd(T) ? 2), evolution of the negative ?Nd value of ?2.0 with the observed Sm/Nd ratios requires a prehistory of~ 380m.y. This implies a primary age of~ 3480m.y. However, substantially older primary ages can be inferred if the source reservoirs had?Nd(T) > 2 and/or substantial reductions in the Sm/Nd ratio occurred in whole rocks during the granulite facies metamorphism at 3100 m.y. Such an inferred reduction in the Sm/Nd ratio may have been the result of preferential loss of Sm relative to Nd, or introduction of a low Sm/Nd fluid with?Nd ≥ 0 during granulite facies metamorphism.  相似文献   

8.
Five samples from a biotite-hornblende granodiorite phase of the 42.5 Ma Quxu pluton, Gangdese batholith, southern Tibet, have been collected at 250 m vertical intervals. Biotite from these rocks yields monotonically decreasing40Ar/39Ar isochron ages with decreasing elevation of 26.8 ± 0.2, 23.3 ± 0.5, 19.7 ± 0.3, 18.4 ± 0.4,and17.8 ± 0.1Ma (Tc = 335°C). Coexisting K-feldspars have virtually identical minimum apparent40Ar/39Ar ages of 17.0 ± 0.4Ma (Tc = 285°C). These data indicate parts of southern Tibet experienced a pulse of uplift in the early Miocene with the rate of uplift rising from 0.07 to 4.4 mm/year in the interval 20 to 17 Ma. An apatite fission track age of 9.9 ± 0.9Ma from this locality constrains the average uplift rate at this site to about 0.81 mm/year between 17 and 9.9 Ma and 0.30 mm/year from 9.9 Ma to present. K-feldspar from the Dagze granite, 30 km to the east, near Lhasa, yields a minimum apparent40Ar/39Ar age of 35.9 ± 0.9Ma (Tc = 227°C) which indicates an average uplift rate there of 0.21 mm/year since then. The marked pulse of uplift of the Quxu granodiorite and the difference in uplift history between the Dagze and Quxu plutons suggests southern Tibet has experienced discrete pulses of uplift variable in both space and time. These data are not consistent with models which require a large proportion of uplift of the Tibetan plateau to have occurred in the last 2 Ma. The data support the suggestion that convergence between India and Asia was largely accommodated by tectonic escape during the opening of the South China Sea 32 to 17 Ma ago and permit distributed shortening as a mechanism for crustal thickening and uplift of this part of the Tibetan plateau subsequent to 20 Ma.  相似文献   

9.
The Central Tianshan Tectonic Zone (CTTZ) is anarrow domain between an early Paleozoic southernTianshan passive continental margin and a late Paleo-zoic northern Tianshan arc zone, which is character-ized by the presence of numerous Precambrian meta-morphic basement blocks. Proterozoic granitoidgneisses and metamorphic sedimentary rocks,namely Xingxingxia and Kawabulag and Tianhugroups, are the most important lithological assem-blages in these metamorphic basement blocks, and alittle of …  相似文献   

10.
SmNd isotopic data indicate that differential REE mobility occurred on a whole-rock scale during transitional amphibolite- to granulite-facies regional metamorphism ( 700°C, 7 kbar) in early Archaean rocks ( 3930 Ma) of the Napier Complex of Enderby Land, Antarctica. The degree of mobility is independent of metamorphic grade but correlates directly with development of tectonic fabric. Whole-rock samples with D3-M3 internal fabrics lie along an array corresponding to an age of 2410 ± 100Ma, whereas samples preserving only earlier fabrics preserve an older, albeit imprecisely defined isochron age. In contrast to a widely held belief, such changes did not require the presence of a large hydrous fluid flux. If the mechanism responsible for SmNd resetting at this locality (where TCHUR ages range from 1990 Ma to 6090 Ma) is more widespread than is currently recognised, isolated SmNd model ages, particularly in complex terrains should be treated with caution.  相似文献   

11.
Nd and Sr isotopic variations of Early Paleozoic oceans   总被引:4,自引:0,他引:4  
We report143Nd/144Nd and87Sr/86Sr isotopic data for Lower Paleozoic phosphatic brachiopod and conodont fossils. The data appear to represent the isotopic values of Early Paleozoic seawaters. We show that different paleoceanic water masses can be distinguished on the basis of their εNd signatures. Two sides of what is classically considered one circulating Iapetus Ocean have different εNd signatures from at least the Middle Cambrian until the Late Middle Ordovician. We infer two ocean basins between North America and Baltica separated by an island and/or shoal circulation barrier. Thus, it appears necessary to redefine the area of the Iapetus Ocean. The εNd signature of the redefined smaller Iapetus Ocean ranges from −5 to −9 and the εNd signature of the larger, coeval Panthalassa Ocean, including part of what was formerly called the Iapetus Ocean, ranges from −10 to −20. The first time that the εNd values are identical in these two water masses is coincident with the onset of the Taconic Orogeny of North America. The paleogeographic geometry we infer from this work is consistent with paleogeographic reconstructions having the Baltica continent at very high latitudes in the Early/Middle Ordovician. The εNd and faunal distribution support temperature-controlled conodont faunal provinciality. A rough mean age for exposed continental crust in the Early Paleozoic can be obtained from the average εNd value of Early Paleozoic Oceans. The data suggest that the mean age of the crust as a function of time has remained essentially constant or even decreased during the past 500 Ma, and suggest substantial additions of new crust to the continents through the Phanerozoic.  相似文献   

12.
The147Sm143Nd and146Sm142Nd isotope systematics have been investigated in five chondrites and the achondrites Moama and Angra dos Reis (ADOR). The new chondrite data and those we have reported before are all consistent with our previously reported reference values for CHUR (“chondritic uniform reservoir”) of (143Nd/144Nd)CHUR0 = 0.511847 and (147Sm/144Nd)CHUR0 = 0.1967. Most of the bulk chondrites analyzed have 143Nd/144Nd and 147Sm/144Nd within 0.5 ε-units and 0.15% of the CHUR values, respectively. This strongly suggests that the CHUR evolution is now known to within these error limits throughout the history of the solar system. The St. Severin chondrite yields an SmNd internal isochron age of T = 4.55 ± 0.33AE and an initial εNd = 0.11 ? 0.26. Much larger variations in Sm/Nd ratios were measured in mineral separates of the Moama and ADOR achondrites. Thus, very precise ages of 4.46 ± 0.03AE and4.564 ± 0.037AE were obtained for these meteorites, respectively. The initial εNd values obtained for Moama and ADOR are 0.03 ? 0.25and0.14 ? 0.20, respectively. The values obtained on these meteorites are fully consistent with the CHUR evolution curve. Initial εNd data on terrestrial igneous and meta-igneous rocks demonstrates that positive initial εNd values occur throughout the past 4 AE. This confirms our earlier report that a light rare earth element-depleted layer has existed throughout most of the Earth history and is the source of present-day mid-ocean ridge basalts. The inferred shape of the εNd vs. age curve for the depleted mantle suggests profound changes in tectonic regimes with time; in particular, it suggests a much higher rate of recycling of continental materials into the mantle during the Archean as compared to later time periods.146Sm142Nd systematics of ADOR and Moama are supportive of the hypothesis that146Sm was present in the early solar system and suggests a 146Sm/144Sm ratio of about 0.01 for the solar system ~ 4.56 AE ago. This inferred high146Sm abundance cannot be explained as a late injection from a supernova and must be due to galactic nucleo-synthesis.  相似文献   

13.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

14.
The Tadhak alkaline ring-complex of Permian age provides two whole rock UPb isochrons giving concordant ages in agreement within relative errors with the RbSr isochron age:235U207Pb isochron: 271 ± 32Ma(MSWD= 0.3);238U206Pb isochron: 254 ± 18Ma(MSWD= 7.8), both on 8 whole-rock samples. The existence of these isochrons indicates that in favorable conditions U (and Pb) can be immobile. This can be due either to the lack of hard oxidizing conditions and/or to the location of U, in very low concentrations, in weathering-resistant minerals. The initial ratios (206Pb/204Pb = 18.714 ± 70and207Pb/204Pb = 15.589 ± 16), corrected for their Permian age, lie in the range observed for oceanic island basalts or continental alkali basalts and indicate an origin in a similar mantle, without any significant crustal contamination. This was also suggested by the initial87Sr/86Sr ratio of 0.70457 ± 4. Moreover, these Sr and Pb isotopic characteristics belong to the field of the so-called “Dupal” anomaly and indicate that it existed already 270 Ma ago. This study shows the potential interest of isotopic investigations of within-plate alkaline ring-complexes to characterize subcontinental mantle compositions, particularly in the past.  相似文献   

15.
Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial εNd = +3.8 to −5.7; initial 87Sr/86Sr= 0.7044−0.7072; 206Pb/204Pb= 17.49−19.14; 207Pb/204Pb= 15.55−15.65; 208Pb/204Pb= 37.24−39.11. In PbPb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary PbPb isochron age of ≈ 1000 Ma (μ1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226−0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19–75) that are significantly greater than those of MORB, and low TiO2 (0.39–0.69%)].Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the PbPb and Sm/Nd isochron ages; and (3) the need for a method of introducing an ancient (> 2−3 Ga) Pb component into subcontinental mantle that cannot be much older than 1 Ga leads to a model whereby the MAT were generated by the melting of sediment-contaminated arc mantle that was incorporated into the continental lithosphere during arc activity preceding the Grenville Orogeny (≈ 1000 Ma).  相似文献   

16.
Abstract We present chemical and Sr–Nd–Pb isotopic compositions of three Triassic (226–241 Ma) calc‐alkaline granitoids (the Yeongdeok granite, Yeonghae diorite and Cheongsong granodiorite) and basement rocks in the northern Gyeongsang basin, south‐eastern Korea. These plutons exhibit typical geochemical characteristics of I‐type granitoids generated in a continental magmatic arc. The Yeongdeok and Yeonghae plutons have similar initial Sr, Nd and Pb isotope ratios (87Sr/86Srinitial = 0.7041 ~ 0.7050, ?Nd(t) = 2.3 ~ 4.0, 206Pb/204Pbfeldspar = 18.22 ~ 18.34), but distinct rare earth element patterns, suggesting that the two plutons formed from partial melting of a similar source material at different depths. The Cheongsong pluton has slightly more enriched Sr–Nd–Pb isotopic compositions (87Sr/86Srinitial = 0.7047 ~ 0.7065, ?Nd(t) = 3.9 ~ 2.8, 206Pb/204Pbfeldspar = 18.24 ~ 18.37) than the other two plutons. The Nd model ages of the basement rocks (1.1 ~ 1.4 Ga) are slightly older than those of the plutons (0.6 ~ 1.0 Ga). The initial Sr and Nd isotopic ratios of the plutons can be modeled by the mixing between the mid‐oceanic ridge basalt‐like depleted mantle component and the crustal component represented by basement rocks, which is also supported by Pb isotope data. The Sr and Nd isotope data from granitoids and basement rocks suggest that the Gyeongsang basin, the Hida belt and the inner zone of south‐western Japan share relatively young basement histories (middle Proterozoic), compared with those (early Proterozoic to Archean) of the Gyeonggi and Yeongnam massifs and the Okcheon belt. The Nd isotope data of basement rocks suggest that the Hida belt might be better correlated with the basement of the Gyeongsang basin than the Gyeonggi massif, the Okcheon belt or the Yeongnam massif, although it may represent an older continental margin of East Asia than the Gyeongsang basin considering its slightly older Nd model ages.  相似文献   

17.
Water samples were collected from Baffin Bay and surrounding areas in order to evaluate this region as a potential source of Nd from old continental material to Atlantic water. The isotopic data ranged from εNd(0) = −9.0 to −26 with most of the data around εNd(0) = −20 compared with values of North Atlantic Deep Water (NADW) with εNd(0) = −13.5. The concentration of Nd in Baffin Bay waters was as high as 6 × 10−12 g/g compared with 2.5 × 10−12 g/g for NADW. The combination of low εNd and high Nd concentration indicates that Baffin Bay may be a significant source of Nd from very old crustal material. A simple box model was used to evaluate the contribution to the Nd budget of NADW and it was concluded that a substantial fraction of the Nd from ancient crustal sources that is required to maintain the isotopic composition of NADW could be supplied by Baffin Bay outflow.  相似文献   

18.
Abstract Meatiq and Hafafit core complexes are large swells in the Eastern Desert of Egypt, comprising two major tectono‐stratigraphic units or tiers. The lower (infrastructure) unit is composed of variably cataclased gneissose granites and high‐grade gneisses and schists. It is structurally overlain by Pan–African ophiolitic mélange nappes (the higher unit). The two units are separated by a low‐angle sole thrust, along which mylonites are developed. Major and trace element data indicate formation of the gneissose granites in both volcanic arc and within‐plate settings. Nevertheless, all analyzed gneissose granites and other infrastructural rocks, exhibit low initial ratios (Sri) (<0.7027), positive εNd(t) (+4.9 to +10.3) and Neoproterozoic Nd model age (TDM) (592–831 Ma for the gneissose granite samples). Although these values are compatible with other parts of the Arabian– Nubian Shield considered to be juvenile, the εNd(t) values and several incompatible element ratios of the gneissose granites are too low to be derived from a mantle source without contribution from an older continental crust. Our geological, Sr–Nd isotopic and chemical data combined with the published zircon ages indicate the existence of a pre‐Neoproterozoic continent in the Eastern Desert that started to break up at ca 800 Ma. Rifting and subsequent events caused the formation of oceanic crust and emplacement within‐plate alkali basalts in the hinterland domains of the old continent. The emplacement of basaltic magma might have triggered melting of lower crust in the old continent and resulted in emplacement of the within‐plate granite masses between 700 Ma and 626 Ma. The granite masses and other rocks in the old continent have been subjected to deformation during the over‐thrusting of Pan–African nappes, probably because of the oblique convergence between East and West Gondwanaland. Rb–Sr isotopes of the gneissose granites in both Meatiq and Hafafit core complexes defines an isochron age of 619 ± 25 Ma with Sri of 0.7009 ± 0.0017 and mean squares of weighted deviates = 2.0. We interpret this age as the date of thrusting of the Pan–African nappes in the Eastern Desert. Continued oblique convergence between East and West Gondwanaland could have resulted in the formation northwest–southeast‐trending Meatiq and Hafafit anticlinoriums.  相似文献   

19.
New data for the direct measurement of the isotopic composition of neodymium in Atlantic Ocean seawater are compared with previous measurements of Pacific Ocean seawater and ferromanganese sediments from major ocean basins. Data for Atlantic seawater are in excellent agreement with Nd isotopic measurements made on Atlantic ferromanganese sediments and are distinctly different from the observed compositions of Pacific samples. These results clearly demonstrate the existence of distinctive differences in the isotopic composition of Nd in the waters of the major ocean basins and are characteristic of the ocean basin sampled. The average εNd(0) values for the major oceans as determined by data from seawater and ferromanganese sediments are as follows: Atlantic Ocean,εNd(0) ? ?12 ± 2; Indian Ocean,εNd(0) ? ?8 ± 2; Pacific Ocean,εNd(0) ? ?3 ± 2. These values are considerably less than εNd(0) value sources with oceanic mantle affinities indicating that the REE in the oceans are dominated by continental sources. The difference in the absolute abundance of143Nd between the Pacific and Atlantic Oceans corresponds to ~106 atoms143Nd per gram of seawater. The correspondence between the143Nd/144Nd in seawater and in the associated sediments suggests the possible application of this approach to paleo-oceanography.Distinctive differences in εNd(0) values are observed in the Atlantic Ocean between deep-ocean water associated with North Atlantic Deep Water and near-surface water. This suggests that North Atlantic Deep Water may be relatively well mixed with respect to Nd isotopic composition whereas near-surface water may be quite heterogeneous, reflecting different sources for surface waters relative to deep water. This suggests that it may be possible to distinguish the sources of water masses within an ocean basin on the basis of Nd isotopic composition.The Nd isotopic variations in seawater are used to relate the residence time of Nd and mixing rates between the oceans.  相似文献   

20.
Sm-Nd isotopic evolution of chondrites   总被引:8,自引:0,他引:8  
The143Nd/144Nd and147Sm/144Nd ratios have been measured in five chondrites and the Juvinas achondrite. The range in143Nd/144Nd for the analyzed meteorite samples is 5.3 ε-units (0.511673–0.511944) normalized to150Nd/142Nd= 0.2096. This is correlated with the variation of 4.2% in147Sm/144Nd (0.1920–0.2000). Much of this spread is due to small-scale heterogeneities in the chondrites and does not appear to reflect the large-scale volumetric averages. It is shown that none of the samples deviate more than 0.5 ε-units from a 4.6-AE reference isochron and define an initial143Nd/144Nd ratio at 4.6 AE of0.505828 ± 9. Insofar as there is a range of values of147Sm/144Nd there is no unique way of picking solar or average chondritic values. From these data we have selected a new set of self-consistent present-day reference values for CHUR (“chondritic uniform reservoir”) of (143Nd/144Nd)CHUR0 = 0.511836and(147Sm/144Nd)CHUR0 = 0.1967. The new147Sm/144Nd value is 1.6% higher than the previous value assigned to CHUR using the Juvinas data of Lugmair. This will cause a small but significant change in the CHUR evolution curve. Some terrestrial samples of Archean age show clear deviations from the new CHUR curve. If the CHUR curve is representative of undifferentiated mantle then it demonstrates that depleted sources were also tapped early in the Archean. Such a depleted layer may represent the early evolution of the source of present-day mid-ocean ridge basalts. There exists a variety of discrepancies with most earlier meteorite data which includes determination of all Nd isotopes and Sm/Nd ratios. These discrepancies require clarification in order to permit reliable interlaboratory comparisons. The new CHUR curve implies substantial changes in model ages for lunar rocks and thus also in the interpretation of early lunar chronology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号