首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西昆仑阿什火山机构及岩石学、矿物学特征   总被引:4,自引:1,他引:3       下载免费PDF全文
阿什库勒盆地位于NE向阿尔金断裂与NW向康西瓦断裂的"弧形"交会处,构造活动十分活跃,盆地内发育10余座火山,其中阿什火山为该火山群中最新活动的火山。文中从火山地质、熔岩和斑晶成分、显微结构特征及地质温压计4个方面对阿什火山进行了详细研究。结果表明,阿什火山由火山锥和熔岩流组成,锥体由早期的渣锥和晚期的溅落锥组成,熔岩流分布面积约33km2,可划分为4个流动单元。熔岩属于钾玄岩系列,岩性为粗安岩,显微镜下呈斑状结构。斑晶以长石(主要为中长石)和辉石(包括普通辉石、古铜辉石和紫苏辉石)为主;基质为玻璃质、隐晶质、微晶质,部分含有大量的长石和辉石。斑晶与岩浆的平衡温度为1 104~1 194℃,压力为570~980MPa,对应的岩浆房深度为18.92~32.29km。  相似文献   

2.
龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估   总被引:1,自引:0,他引:1  
空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法。本文根据改进的Suzuki(1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序。通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性。根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图。本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据。  相似文献   

3.
The lava flow hazard is an important and frequent disaster for residents in the volcanic area. In this paper, we focus on the lava flow inundation hazard zoning based on the example case of the Ashikule volcano in Xinjiang, China. Firstly, the parameters of magma such as density, viscosity and temperature are calculated by the empirical formula of magma utilizing results of previous field geological survey and petrology analysis. Then, using the kinematic thermo-rheological model, we simulated the inundation area of lava flow from Ashi volcano at the effusion rates of 200m3/s and 500m3/s. The simulation results of Ashi volcano well coincide to the geological map and verify that the method and parameters are valid. Then the applied simulations were carried out to calculate the lava flow inundation area in future eruption at Ashi, Wuluke and Daheishan crater with different effusion rates. At last, according to the analysis of the applied simulation results and drawing lessons from the foreign disaster zoning method, the four-level hazard zoning was built and set with different colors. The first level with red color is the extra-dangerous zone that is always inundated in any eruption but only distributes near the lava spillway of the crater. The second level with orange color is the dangerous zone that is inundated in the medium scale eruption. The third level with yellow color is the sub-dangerous zone that is corresponding to the large eruption. The fourth level with blue color is the potential dangerous zone that is only inundated in the extra-large eruption. In addition, we put forward the suggestion to respond to and avoid the disaster in future. Although China has not been affected by the lava flow for nearly three hundred years, the prospective study in this paper will lay the foundation for the study of related disasters, and provide the reference for the major construction projects in the volcanic area.  相似文献   

4.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

5.
In a companion paper, a methodology for ranking volcanic hazards and events in terms of risk was presented, and the likelihood and extent of potential hazards in the Auckland Region, New Zealand investigated. In this paper, the effects of each hazard are considered and the risk ranking completed. Values for effect are proportions of total loss and, as with likelihood and extent, are based on order of magnitude.Two outcomes were considered – building damage and loss of human life. In terms of building damage, tephra produces the highest risk by an order of magnitude, followed by lava flows and base surge. For loss of human life, risk from base surge is highest. The risks from pyroclastic flows and tsunami are an order of magnitude smaller. When combined, tephra fall followed by base surge produces the highest risk. The risks from lava flows and pyroclastic flows are an order of magnitude smaller. For building damage, the risk from Mt. Taranaki volcano, 280 km from the Auckland CBD, is largest, followed by Okataina volcanic centre, an Auckland volcanic field eruption centred on land, then Tongariro volcanic centre. In terms of human loss, the greatest risk is from an Auckland eruption centred on land. The risks from an Auckland eruption centred in the ocean, Okataina volcanic centre, and Taupo volcano are more than an order of magnitude smaller. When combined, the risk from Mt. Taranaki remains highest, followed by an Auckland eruption centred on land. The next largest risks are from the Okataina and Tongariro volcanic centres, followed by Taupo volcano.Three alternative situations were investigated. As multiple eruptions may occur from the Auckland volcanic field, it was assumed that a local event would involve two eruptions. This increased risk of a local eruption occurring on land so that it was equal to that of an eruption from Mt. Taranaki. It is possible that a future eruption may be of a similar, or larger size, to the previous Rangitoto eruption. Risk was re-calculated for local eruptions based on the extent of hazards from Rangitoto. This increased the risk of lava flow to greater than that of base surge, and the risk from an Auckland land eruption became greatest. The relative probabilities used for Mt. Taranaki volcano and the Auckland volcanic field may only be minimum values. When the probability of these occurring was increased by 50%, there was no change in either ranking.Editorial responsibility: J. S. Gilbert  相似文献   

6.
在野外地质资料基础上,利用火山形态学方法,探讨了大兴安岭焰山、高山火山的喷发型式。结果表明,大兴安岭哈拉哈河-绰尔河火山群中的焰山和高山火山不同于斯通博利式喷发形成的火山,其早期爆破喷发的火山碎屑形成火山渣锥、空降火山碎屑席和小型火山碎屑流,晚期溢出大量熔岩。两火山具有较高大的锥体(标高200~300m以上),在结构上,松散火山砾、火山弹等构成下部的降落锥,熔结集块岩构成上部的溅落锥。由火山砾和火山灰组成的空降火山碎屑席分布在火山锥体周围。两火山溢出的熔岩经历了从结壳熔岩→翻花石→渣状熔岩的演变。根据喷发产物可推断焰山和高山火山具有以下喷发特征:爆破喷发形成持续的喷发柱→斯通博利式喷发→熔岩喷泉喷溢,其中以持续时间较长的喷发柱区别于典型的斯通博利式喷发。类似焰山、高山火山的喷发特征,在龙岗第四纪火山群、镜泊湖全新世火山群中也都有个例,这是中国大陆火山作用中一种新的喷发型式。  相似文献   

7.
Principal and subsidiary building structure characteristics and their distribution have been inventoried in Icod, Tenerife (Canary Islands) and used to evaluate the vulnerability of individual buildings to three volcanic hazards: tephra fallout, volcanogenic earthquakes and pyroclastic flows. The procedures described in this paper represent a methodological framework for a comprehensive survey of all the buildings at risk in the area around the Teide volcano in Tenerife. Such a methodology would need to be implemented for the completion of a comprehensive risk assessment for the populations under threat of explosive eruptions in this area. The information presented in the paper is a sample of the necessary data required for the impact estimation and risk assessment exercises that would need to be carried out by emergency managers, local authorities and those responsible for recovery and repair in the event of a volcanic eruption. The data shows there are micro variations in building stock characteristics that would influence the likely impact of an eruption in the area. As an example of the use of this methodology for vulnerability assessment, we have applied a deterministic simulation model of a volcanic eruption from Teide volcano and its associated ash fallout which, when combined with the vulnerability data collected, allows us to obtain the vulnerability map of the studied area. This map is obtained by performing spatial analysis with a Geographical Information System (GIS). This vulnerability analysis is included in the framework of an automatic information system specifically developed for hazard assessment and risk management on Tenerife, but which can be also applied to other volcanic areas. The work presented is part of the EU-funded EXPLORIS project (Explosive Eruption Risk and Decision Support for EU Populations Threatened by Volcanoes, EVR1-2001-00047).  相似文献   

8.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

9.
Volcanic eruptions typically produce a number of hazards, and many regions are at risk from more than one volcano or volcanic field. So that detailed risk assessments can be carried out, it is necessary to rank potential volcanic hazards and events in terms of risk. As it is often difficult to make accurate predictions regarding the characteristics of future eruptions, a method for ranking hazards and events has been developed that does not rely on precise values. Risk is calculated individually for each hazard from each source as the product of likelihood, extent and effect, based on the parameters order of magnitude. So that multiple events and outcomes can be considered, risk is further multiplied by the relative probability of the event occurring (probabilitye) and the relative importance of the outcome (importanceo). By adding the values obtained, total risk is calculated and a ranking can be carried out.This method was used to rank volcanic hazards and events that may impact the Auckland Region, New Zealand. Auckland is at risk from the Auckland volcanic field, Okataina volcanic centre, Taupo volcano, Tuhua volcano, Tongariro volcanic centre, and Mt. Taranaki volcano. Relative probabilities were determined for each event, with the highest given to Mt. Taranaki. Hazards considered were, for local events: tephra fall, scoria fall and ballistic impacts, lava flow, base surge and associated shock waves, tsunami, volcanic gases and acid rain, earthquakes and ground deformation, mudflows and mudfills, lightning and flooding; and for distal events: tephra fall, pyroclastic flows, poisonous gases and acid rain, mudflows and mudfills, climate variations and earthquakes. Hazards from each source were assigned values for likelihood, with the largest for tephra fall from all sources, earthquakes and ground deformation, lava flows, scoria fall and base surge for an Auckland eruption on land, and earthquakes and ground deformation from an Auckland eruption in the ocean. The largest values for extent were for tephra fall and climate variation from each of the distal centres. However, these parameters do not give a true indication of risk. In a companion paper the effect of each hazard is fully investigated and the risk ranking completed.  相似文献   

10.
 The ca. 10,500 years B.P. eruptions at Ruapehu volcano deposited 0.2–0.3 km3 of tephra on the flanks of Ruapehu and the surrounding ring plain and generated the only known pyroclastic flows from this volcano in the late Quaternary. Evidence of the eruptions is recorded in the stratigraphy of the volcanic ring plain and cone, where pyroclastic flow deposits and several lithologically similar tephra deposits are identified. These deposits are grouped into the newly defined Taurewa Formation and two members, Okupata Member (tephra-fall deposits) and Pourahu Member (pyroclastic flow deposits). These eruptions identify a brief (<ca. 2000-year) but explosive period of volcanism at Ruapehu, which we define as the Taurewa Eruptive Episode. This Episode represents the largest event within Ruapehu's ca. 22,500-year eruptive history and also marks its culmination in activity ca. 10,000 years B.P. Following this episode, Ruapehu volcano entered a ca. 8000-year period of relative quiescence. We propose that the episode began with the eruption of small-volume pyroclastic flows triggered by a magma-mingling event. Flows from this event travelled down valleys east and west of Ruapehu onto the upper volcanic ring plain, where their distal remnants are preserved. The genesis of these deposits is inferred from the remanent magnetisation of pumice and lithic clasts. We envisage contemporaneous eruption and emplacement of distal pumice-rich tephras and proximal welded tuff deposits. The potential for generation of pyroclastic flows during plinian eruptions at Ruapehu has not been previously considered in hazard assessments at this volcano. Recognition of these events in the volcanological record is thus an important new factor in future risk assessments and mitigation of volcanic risk at Tongariro Volcanic Centre. Received: 5 July 1998 / Accepted: 12 March 1999  相似文献   

11.
The Nevado de Toluca is a quiescent volcano located 20 km southwest of the City of Toluca and 70 km west of Mexico City. It has been quiescent since its last eruptive activity, dated at ∼ 3.3 ka BP. During the Pleistocene and Holocene, it experienced several eruptive phases, including five dome collapses with the emplacement of block-and-ash flows and four Plinian eruptions, including the 10.5 ka BP Plinian eruption that deposited more than 10 cm of sand-sized pumice in the area occupied today by Mexico City. A detailed geological map coupled with computer simulations (FLOW3D, TITAN2D, LAHARZ and HAZMAP softwares) were used to produce the volcanic hazard assessment. Based on the final hazard zonation the northern and eastern sectors of Nevado de Toluca would be affected by a greater number of phenomena in case of reappraisal activity. Block-and-ash flows will affect deep ravines up to a distance of 15 km and associated ash clouds could blanket the Toluca basin, whereas ash falls from Plinian events will have catastrophic effects for populated areas within a radius of 70 km, including the Mexico City Metropolitan area, inhabited by more than 20 million people. Independently of the activity of the volcano, lahars occur every year, affecting small villages settled down flow from main ravines.  相似文献   

12.
A set of grey-purple layered volcanic rocks are found widely distributed from the mountain flank to the main peak of Daliuchong volcano, but it's difficult to identify whether they are volcaniclastic rock or lava rock just by field investigation and the crystal structure observation under microscope. The study of matrix microstructure of the volcanic rocks can help to identify the volcanic facies. We recognize the eruptive facies rocks through observation of the matrix microstructure and pore shape with comparison to those of the volcanic vent facies, extrusive facies and effusive facies rocks under microscope, thus the mentioned layered volcanic rocks could be named as dacitic crystal fragment tuff. Combining the joint work of field investigation, systematic sampling, chemical analyzing and microscopic observation, we summary the Daliuchong volcanic facies as follows:1. The effusive facies lava constitutes the base of Daliuchong volcano and was produced by early eruption.2. The explosive facies is composed of dacite crystal fragment welded tuff and volcanic breccia and mainly distributes on the W, S and NE flank of the volcanic cone.3. The volcanic conduit with its diameter more than one hundred meters is located about 100 meters south of the main peak of the Daliuchong volcano.4. The extrusive facies rock is only exposed near the peak of Daliuchong volcano.Therefore, the volcanism of Daliuchong volcano can be speculated as:Large-scale lava overflowing occurred in the early eruption period; then explosive eruptions happened; at last, the volcanisms ceased marked with magma extrusion as lava dome and plug.  相似文献   

13.
One of largest eruptions in the Tianchi volcano during the Holocene occurred in about 1000 years ago[1―3]. The volcanic ash erupted had been found in Japan, which is more than 1000 km from the Tianchi volcanic vent[4,5]. Moreover, this eruption has been recognized in the study of Greenland ice core (GISP2)[6,7]. There have been many studies about eruption products of the Tianchi volcano, which dominantly focused on petrological, geochemical and volcanic eruptive dynamic aspects[8―10]. On…  相似文献   

14.
One active and ten extinct Quaternary volcanoes are described from the Cape Hoskins area, on the north coast of New Britain. They are mostly strato volcanoes built up of lava flows, lava domes, pyroclastic flows, lahars, tephra, and derived alluvial sediments. The volcanic products range in composition from basalt to rhyolite, but basaltic andesite and andesite predominate. Much of the area is covered by tephra, several metres thick, consisting mainly of rhyolitic pumice. The active volcano, Pago, is built up of several glacier-like lava flows, the last of which was formed during an eruption in 1914–18. Pago lies within a well-preserved caldera forming the central part of a broad low-angle cone, named Witori, which consists largely of welded and unwelded pyroclastic flow deposits. C-14 dates obtained on charcoal indicate that the caldera eruption occurred about 2500 years B. P. Another caldera of similar age lies south of Witori. Of the other eight volcanoes described four are relatively well-preserved steep-sided cones formed mainly of lava flows, one is a remnant of a low-angle cone with a caldera, and three are deeply eroded cones which have none of their constructional surfaces preserved.  相似文献   

15.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   

16.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

17.
本文讨论了与我国大陆火山地区相关的主要火山灾害类型,即火山空降物、火山碎屑流、火山泥石流、火山熔岩穹与熔岩流的成灾机制和灾害效应,并回顾了国际上火山灾害区划的研究现状,在此基础上,提出了适合我国具体情况的具有概率含义的火山灾害区划图的编图思路。  相似文献   

18.
我国火山灾害的主要类型及火山灾害区划图编制现状探讨   总被引:5,自引:0,他引:5  
通过对《核电厂厂址选择中的地震问题》(HAF0101(1))有关条款的详细剖析,发震构造包括两个方面的含义:一是曾经是地震震源的地质构造;二是未来可能发生破坏性地震的地质构造。地震重演原则和构造类比原则是判定发震构造的两条基本依据,但在实际工作中构造类比原则的应用往往存在较大难度,对中强地震发震构造的判定尤其如此。文中提出:对中强地震构造带地貌差异性和第四纪地层分布特征的研究有可能提供识别发生中强地震地质构造的标志。  相似文献   

19.
天池火山东北侧造盾玄武岩可划分出8个流动单元,熔岩流的流动距离主要集中在30~50km,熔岩流宽度以5km左右为主。通过由野外调查获得的天池火山东北侧不同熔岩流单元的地表坡度、熔岩流厚度等,结合温度、密度与黏度等物理参数,按照熔岩流速度公式恢复的头道组和早白山组0.5m厚晶体含量5%的玄武岩熔岩流流速集中在0~1m/s之间。晶体含量为30%、厚度为0.5m的晚白山组和老房子小山组玄武岩熔岩流的流动速度集中在0~0.12m/s之间。厚度增大至2m左右,晶体含量不变的头道组和早白山组的玄武岩熔岩流流动速度可加快至11m/s。天池火山2m厚的碱性熔岩流在12h内达到或接近了它的最远距离,而各组内2m厚拉斑玄武岩熔岩流在20h内接近了最远距离。0.5m厚的熔岩流在10d内接近最大距离。50km是预计的熔岩流长度,在未来制定减灾措施时,可将此长度作为重要依据之一。天池火山熔岩流灾害主要表现为熔岩流动时对房屋建筑、农田、道路、林地、电站的毁坏,火灾及大量的人口伤亡  相似文献   

20.
The eruptive history of Kuju volcano on Kyushu, Japan, during the past 15,000 years has been determined by tephrochronology and 14C dating. Kuju volcano comprises isolated lava domes and cones of hornblende andesite together with aprons of pyroclastic-flow deposits on its flanks. Kuju volcano produced tephras at roughly 1000-yr intervals during the past 5000 years and 70% of the domes and cones have formed during the past 15,000 years. The youngest magmatic activity of Kuju volcano was the 1.6 km3 andesite eruption about 1600 years ago which emplaced a lava dome and block-and-ash flow. Kuju volcano shows a nearly constant long-term eruption rate (0.7–0.4 km3 for 1000 years) during the past 15,000 years. This rate is within the range of estimated average eruption rates of late Quaternary volcanoes in the Japanese Arc, but is about one order of magnitude higher than the eruption rate of Unzen volcano. Kuju volcano has been in phreatic eruption since October 1995. The late Quaternary history of Kuju indicates that it poses a significant volcanic hazard, primarily due to block-and-ash flows from collapsing lava domes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号