首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stream–subsurface water interaction induced by natural riffles and constructed riffles/steps was examined in lowland streams in southern Ontario, Canada. The penetration of stream water into the subsurface was analysed using hydrometric data, and the zone of > 10% stream water was calculated from a chemical mixing equation using tracer injection of bromide and background chloride concentrations. The constructed riffles studied induced more extensive hyporheic exchange than the natural riffles because of their steeper longitudinal hydraulic head gradients and coarser streambed sediments. The depth of > 10% stream water zone in a small and a large constructed riffle extended to > 0·2 m and > 1·4 m depths respectively. Flux and residence time distribution of hyporheic exchange were simulated in constructed riffles using MODFLOW, a finite‐difference groundwater flow model. Hyporheic flux and residence time distribution varied along the riffles, and the exchange occurring upstream from the riffle crest was small in flux and had a long residence time. In contrast, hyporheic exchange occurring downstream from the riffle crest had a relatively short residence time and accounted for 83% and 70% of total hyporheic exchange flow in a small and large riffle respectively. Although stream restoration projects have not considered the hyporheic zone, our data indicate that constructed riffles and steps can promote vertical hydrologic exchange and increase the groundwater–surface water linkage in degraded lowland streams. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Stream restoration goals include improving habitat and water quality through reconstruction of morphological features found at analogous, pristine stream reaches. Enhancing hyporheic exchange may facilitate achieving these goals. Although hyporheic exchange at restoration sites has been explored in a few previous studies, comparative studies of restored versus reference or control streams are largely absent. We hypothesized that restoration cross‐vanes enhance hyporheic exchange, resulting in biogeochemical alteration of stream water chemistry in the streambed. Two streams restored using cross‐vanes to control erosion and improve habitat were compared with their associated reference reaches, which provided the basis for the restoration design. Thirteen temperature profile rods with vertically stacked sensors were installed at each site for 2 weeks. Heat tracing was used to quantify vertical flux in the streambed from the diurnal temperature fluctuations in the subsurface. Stream water and bed pore waters from mini‐piezometers were analysed for ion and nutrient chemistry. In general, mean vertical flux rates through the streambed were small throughout reference sites (?0.3 to 0.3 m/day) and at most locations at restored sites. Immediately adjacent to cross‐vanes, vertical flux rates were larger (up to 3.5 m/day). Geochemistry of pore waters shows distinct differences in the sources for the reference and restored sites. Strong downwelling zones adjacent to cross‐vanes showed high dissolved oxygen (10.75 mg/l) and geochemistry in the streambed similar to surface water. Reference sites had lower dissolved oxygen in the streambed (0.66–5.14 mg/l), and geochemical patterns suggest a mixture of discharging groundwater and surface water in the hyporheic zone. Restored sites also clearly show sulfate and nitrate reduction occurring in the streambed, which is not observed at the reference sites. The stream restoration sites studied here enhance rapid hyporheic exchange, but upwelling of groundwater has a stronger influence on streambed geochemistry at reference sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
B. Yellen  D.F. Boutt 《水文研究》2015,29(15):3261-3275
In humid regions, where gaining river conditions generally prevail, daily hydroelectric dam releases alter downstream surface water–groundwater interactions by reversing the head gradient between river and adjacent groundwater. Previously, it has been noted that artificial stage changes due to dam releases enhance hyporheic exchange. Here we investigate the regulated Deerfield River in northwestern Massachusetts at multiple scales to evaluate how changing downstream geologic conditions along the river mediate this artificial hyporheic pumping. Water budget analysis indicates that roughly 10% of bank‐stored water is permanently lost from the 19.5‐km river reach, likely as a result of transpiration by bank vegetation. An adjacent reference stream with similar dimensions and geomorphology, but without hydropeaking, shows predictable gaining conditions. Field observations from streambed piezometers and thermistors show that water losses are not uniform throughout the study reach. Riparian aquifer transmissivity in river sub‐reaches largely determines the magnitude of surface water–groundwater exchange as well as net water loss from the river. These newly documented losses from hydropeaking river systems should inform decisions by river managers and hydroelectric operators of additional tradeoffs of oscillatory dam‐release river management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface–groundwater exchange than standard particle-tracking simulations.  相似文献   

6.
Beaver dam analogues (BDAs) are a cost-effective stream restoration approach that leverages the recognized environmental benefits of natural beaver dams on channel stability and local hydrology. Although natural beaver dams are known to exert considerable influence on the hydrologic conditions of a stream system by mediating geomorphic processes, nutrient cycling, and groundwater–surface water interactions, the impacts of beaver-derived restoration methods on groundwater–surface water exchange are poorly characterized. To address this deficit, we monitored hyporheic exchange fluxes and streambed porewater biogeochemistry across a sequence of BDAs installed along a central Wyoming stream during the summer of 2019. Streambed fluxes were quantified by heat tracing methods and vertical hydraulic gradients. Biogeochemical activity was evaluated using major ion porewater chemistry and principal component analysis. Vertical fluxes of approximately 1.0 m/day were observed around the BDAs, as was the development of spatially heterogeneous zones of nitrate production, groundwater upwelling, and anaerobic reduction. Strong contrasts in hyporheic zone processes were observed across BDAs of differing sizes. This suggests that structures may function with size-dependent behaviour, only altering groundwater–surface water interactions after a threshold hydraulic step height is exceeded. Patterns of hyporheic exchange and biogeochemical cycling around the studied BDAs resemble those around natural beaver dams, suggesting that BDAs may provide comparable benefits to channel complexity and near-stream function over a 1-year period.  相似文献   

7.
Although there has been recent focus on understanding spatial variability in hyporheic zone geochemistry across different morphological units under baseflow conditions, less attention has been paid to temporal responses of hyporheic zone geochemistry to non‐steady‐state conditions. We documented spatial and temporal variability of hyporheic zone geochemistry in response to a large‐scale storm event, Tropical Storm Irene (August 2011), across a pool–riffle–pool sequence along Chittenango Creek in Chittenango, NY, USA. We sampled stream water as well as pore water at 15 cm depth in the streambed at 14 locations across a 30 m reach. Sampling occurred seven times at daily intervals: once during baseflow conditions, once during the rising limb of the storm hydrograph, and five times during the receding limb. Principal component analysis was used to interpret temporal and spatial changes and dominant drivers in stream and pore water geochemistry (n = 111). Results show the majority of spatial variance in hyporheic geochemistry (62%) is driven by differential mixing of stream and ground water in the hyporheic zone. The second largest driver (17%) of hyporheic geochemistry was temporal dilution and enrichment of infiltrating stream water during the storm. Hyporheic sites minimally influenced by discharging groundwater (‘connected’ sites) showed temporal changes in water chemistry in response to the storm event. Connected sites within and upstream of the riffle reflected stream geochemistry throughout the storm, whereas downstream sites showed temporally lagged responses in some conservative and biogeochemically reactive solutes. This suggests temporal changes in hyporheic geochemistry at these locations reflect a combination of changes in infiltrating stream chemistry and hyporheic flowpath length and residence time. The portion of the study area strongly influenced by groundwater discharge increased in size throughout the storm, producing elevated Ca2+ and concentrations in the streambed, suggesting zones of localized groundwater inputs expand in response to storms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Traditional characterization of hyporheic processes relies upon modelling observed in‐stream and subsurface breakthrough curves to estimate hyporheic zone size and infer exchange rates. Solute data integrate upstream behaviour and lack spatial coverage, limiting our ability to accurately quantify spatially heterogeneous exchange dynamics. Here, we demonstrate the application of near‐surface electrical resistivity imaging (ERI) methods, coupled with experiments using an electrically conductive stream tracer (dissolved NaCl), to provide in situ imaging of spatial and temporal dynamics of hyporheic exchange. Tracer‐labelled water in the stream enters the hyporheic zone, reducing electrical resistivity in the subsurface (to which subsurface ERI is sensitive). Comparison of background measurements with those recording tracer presence provides distributed characterization of hyporheic area (in this application, ∼0·5 m2). Results demonstrate the first application of ERI for two‐dimensional imaging of stream‐aquifer exchange and hyporheic extent. Future application of this technique will greatly enhance our ability to quantify processes controlling solute transport and fate in hyporheic zones, and provide data necessary to inform more complete numerical models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Characterizing the spatio-temporal distribution of groundwater–surface water (GW–SW) exchange fluxes is of paramount importance in understanding catchment behavior. A wide range of field-based techniques are available for such characterization. The objective of this study is to quantify the spatio-temporal distribution of the exchange fluxes along the Çakıt stream (Niğde, Turkey) through coupling a set of geophysical techniques and in-stream measurements in a hierarchical manner. First, geological and water quality information were combined at the catchment scale to determine key areas for reach-scale focus. Second, electromagnetic induction (EMI) surveys were conducted along the reach to pinpoint potential groundwater upwelling locations. EMI anomalies guided our focus to a 665 m-long reach of the stream. Along this selected reach, a fibre-optic distributed temperature sensing (FO-DTS) system was utilized to investigate streambed temperature profiles at fine spatial and temporal scales. Furthermore, vertical hydraulic gradients and exchange fluxes were investigated using nested piezometers and vertical temperature profiles, respectively, at two potential upwelling locations and a potential downwelling location identified by previous surveys. The results of the study reveal heterogeneity of vertical water-flow components with seasonal variability. The EMI survey was successful in identifying a localized groundwater upwelling location. FO-DTS measurements revealed a warm temperature anomaly during cold air temperature and low streamflow conditions at the same upwelling site. Our point-based methods, namely vertical temperature profiles and vertical hydraulic gradient estimates, however, did not always provide consistent results with each other and with EMI and FO-DTS measurements. This study, therefore, highlights the opportunities and challenges in incorporating multi-scale observations in a hierarchical manner in characterization of the GW–SW exchange processes that are known to be highly heterogeneous in time and space. Overall, a combination of different methods helps to overcome the limitations of each single method and increases confidence in the obtained results.  相似文献   

11.
Impact of a low-permeability lens on dune-induced hyporheic exchange   总被引:1,自引:0,他引:1  
Hyporheic exchange induced by dunes is a key process controlling water fluxes and biogeochemical processes in river networks. Owing to the limitations of instrumental detection at small spatial scales, previous studies have focused mainly on dune-induced hyporheic exchange in homogeneous systems. A low-permeability lens is a natural, widespread heterogeneity in stream beds, and probably affects the processes of water flow and contaminant transportation significantly. To quantitatively analyse the response mechanism of hyporheic exchange to a low-permeability lens, a two-dimensional dune-generated hyporheic exchange model was developed using the VS2DH model. The results indicate a lens in a stream bed can hinder or enhance hyporheic exchange processes, depending on its relative spatial location to dunes. Both the increase in length and thickness of the lens could strengthen its impacts on hyporheic exchange. Regional groundwater–surface water interactions of higher intensity suppress the flow of hyporheic exchange in a stream bed with a low-permeability lens.  相似文献   

12.
Knowledge on groundwater–surface water interaction and especially on exchange fluxes between streams and aquifers is an important prerequisite for the study of transport and fate of contaminants and nutrients in the hyporheic zone. One possibility to quantify groundwater–surface water exchange fluxes is by using heat as an environmlental tracer. Modern field equipment including multilevel temperature sticks and the novel open‐source analysis tool LPML make this technique ever more attractive. The recently developed LPML method solves the one‐dimensional fluid flow and heat transport equation by combining a local polynomial method with a maximum likelihood estimator. In this study, we apply the LPML method on field data to quantify the spatial and temporal variability of vertical fluxes and their uncertainties from temperature–time series measured in a Belgian lowland stream. Over several months, temperature data were collected with multilevel temperature sticks at the streambed top and at six depths for a small stream section. Long‐term estimates show a range from gaining fluxes of ?291 mm day?1 to loosing fluxes of 12 mm day?1; average seasonal fluxes ranged from ?138 mm day?1 in winter to ?16 mm day?1 in summer. With our analyses, we could determine a high spatial and temporal variability of vertical exchange fluxes for the investigated stream section. Such spatial and temporal variability should be taken into account in biogeochemical cycling of carbon, nutrients and metals and in fate analysis of contaminant plumes. In general, the stream section was gaining during most of the observation period. Two short‐term high stream stage events, seemingly caused by blockage of the stream outlet, led to a change in flow direction from gaining to losing conditions. We also found more discharge occurring at the outer stream bank than at the inner one indicating a local flow‐through system. With the conducted analyses, we were able to advance our understanding of the regional groundwater flow system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater surface water interaction in the hyporheic zone remains an important challenge for water resources management and ecosystem restoration. In heterogeneous stratified glacial sediments, reach‐scale environments contain an uneven distribution of focused groundwater flow occurring simultaneously with diffusely discharging groundwater. This results in a variation of stream‐aquifer interactions, where focused flow systems are able to temporally dominate exchange processes. The research presented here investigates the direct and indirect influences focused groundwater discharge exerts on the hyporheic zone during baseflow recession. Field results demonstrate that as diffuse sources of groundwater deplete during baseflow recession, focused groundwater discharge remains constant. During baseflow recession the hyporheic zone is unable to expand, while the high nitrate concentration from focused discharge changes the chemistry of the stream. The final result is a higher concentration of nitrate in the hyporheic zone as this altered surface water infiltrates into the subsurface. This indirect coupling of focused groundwater discharge and the hyporheic zone is unaccounted for in hyporheic studies at this time. Results indicate important implications for the potential reduction of agricultural degradation of water quality.  相似文献   

14.
A key ecological role hypothesized for the hyporheic zone is as a refugium that promotes survival of benthic invertebrates during adverse conditions in the surface stream. Many studies have investigated use of the hyporheic refugium during hydrological extremes (spates and streambed drying), and recent research has linked an increase in the abundance of benthic invertebrates within hyporheic sediments to increasing biotic interactions during flow recession in a temporary stream. This study examined spatial variability in the refugial capacity of the hyporheic zone in two groundwater-dominated streams in which flow permanence varied over small areas. Two non-insect taxa, Gammarus pulex and Polycelis spp. were common to both streams and were investigated in detail. Hydrological conditions in both streams comprised a four-month period of flow recession and low flows, accompanied by reductions in water depth and wetted width. Consequent declines in submerged benthic habitat availability were associated with increases in population densities of mobile benthic taxa, in particular G. pulex. The reduction in the spatial extent of the hyporheic zone was minimal, and this habitat was therefore a potential refugium from increasing biotic interactions in the benthic sediments. Concurrent increases in the hyporheic abundance and hyporheic proportion of a taxon’s total (benthic + hyporheic) population were considered as evidence of active refugium use. Such evidence was species-specific and site-specific, with refugium use being observed only for G. pulex and at sites dominated by downwelling water. A conceptual model of spatial variability in the refugial capacity of the hyporheic zone during habitat contraction is presented, which highlights the potential importance of the direction of hydrologic exchange.  相似文献   

15.
Significant attention has been given to hyporheic water fluxes induced by hydromorphologic processes in streambeds and the effects they have on stream ecology. However, the impact of hyporheic fluxes on regional groundwater flow discharge zones as well as the interaction of these flows are much less investigated. The groundwater-hyporheic interactive flow not only governs solute mass and heat transport in streams but also controls the retention of solute and contamination following the discharge of deep groundwater, such as naturally occurring solutes and leakage from geological waste disposal facilities. Here, we applied a physically based modeling approach combined with extensive hydrologic, geologic and geographical data to investigate the effect of hyporheic flow on groundwater discharge in the Krycklan catchment, located in a boreal landscape in Sweden. Regional groundwater modeling was conducted using COMSOL Multiphysics by considering geologic heterogeneity and infiltration constraint of the groundwater circulation intensity. Moreover, the hyporheic flow was analyzed using an exact spectral solution accounting for the fluctuating streambed topography and superimposed with the regional groundwater flow. By comparing the discharge flow fields with and without consideration of hyporheic flows, we found that the divergence of the discharge was substantially enhanced and the distribution of the travel times of groundwater was significantly shifted toward shorter times due to the presence of hyporheic flow. Particularly important is that the groundwater flow paths contract near the streambed interface due to the hyporheic flow, which leads to a phenomenon that we name “fragmentation” of coherent areas of groundwater upwelling in pinhole-shaped stream tubes.  相似文献   

16.
Small‐order streams have highly variable flows that can result in large temporal and spatial variation of the hyporheic zone. Dam construction along these intermittent headwater streams alters downstream flow and influences the hydrologic balance between stream water and the adjacent riparian zone. A 3‐year site study was conducted along an impounded second‐order stream to determine the water balance between stream, unsaturated zone, groundwater and riparian vegetation. The presence of the upstream impoundment provided near‐perennial water flow in the stream channel. The observed woody plant transpiration accounted for 71% of average annual water loss in the site. The overall contribution of stream water via the hyporheic zone to site water balance was 73 cm, or 44% of total inputs. This exceeded both rainfall and upland subsurface contribution to the site. A highly dynamic hyporheic zone was indicated by high water use from woody plants that fluctuated seasonally with stream water levels. We found leaf area development in the canopy layer to be closely coupled with stream and groundwater fluctuations, indicating its usefulness as a potential indicator of site water balance for small dam systems. The net result of upstream impoundment increased riparian vegetation productivity by influencing movement of stream water to storage in the groundwater system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Spatial and temporal variability in ground water–surface water interactions in the hyporheic zone of a salmonid spawning stream was investigated. Four locations in a 150‐m reach of the stream were studied using hydrometric and hydrochemical tracing techniques. A high degree of hydrological connectivity between the riparian hillslope and the stream channel was indicated at two locations, where hydrochemical changes and hydraulic gradients indicated that the hyporheic zone was dominated by upwelling ground water. The chemistry of ground water reflected relatively long residence times and reducing conditions with high levels of alkalinity and conductivity, low dissolved oxygen (DO) and nitrate. At the other locations, connectivity was less evident and, at most times, the hyporheic zone was dominated by downwelling stream water characterized by high DO, low alkalinity and conductivity. Substantial variability in hyporheic chemistry was evident at fine (<10 m) spatial scales and changed rapidly over the course of hydrological events. The nature of the hydrochemical response varied among locations depending on the strength of local ground water influence. It is suggested that greater emphasis on spatial and temporal heterogeneity in ground water–surface water interactions in the hyporheic zone is necessary for a consideration of hydrochemical effects on many aspects of stream ecology. For example, the survival of salmonid eggs in hyporheic gravels varied considerably among the locations studied and was shown to be associated with variation in interstitial chemistry. River restoration schemes and watershed management strategies based only on the surface expression of catchment characteristics risk excluding consideration of potentially critical subsurface processes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Effect of streamflow stochasticity on bedform-driven hyporheic exchange   总被引:1,自引:0,他引:1  
The interactions between the stream and the geomorphologic units that compose the stream channel result in an exchange of water, heat, and chemicals that is an important component of the flows of energy and nutrients in the river ecosystem. This exchange is characterized by complex spatial and temporal dynamics that depend on the characteristics of the stream flow and morphology. At present, many studies have addressed the development of spatial patterns of hyporheic exchange that are induced by many geomorphological factors at different scales. However, much less is known about the temporal evolution of the surface–subsurface exchange in response to the dynamics of the stream discharge. In order to investigate this problem, the present work analyzes the influence of streamflow variability on the hyporheic exchange induced by fluvial bedforms. A stochastic approach is employed to generate streamflow series whose statistical properties are representative of streams with different hydrological regimes. The resulting exchange fluxes and travel times are then computed, and the relationships between the streamflow regime and the dynamics of the exchange flux and travel times are investigated. The results show that the mean stream discharge can be used to estimate the average features of the temporal dynamics of hyporheic exchange. Moreover, exchange fluxes and residence times distributions exhibit significant fluctuations, which are tightly related to the coefficient of variation of the streamflow hydrograph.  相似文献   

19.
Temporal Hyporheic Zone Response to Water Table Fluctuations   总被引:1,自引:0,他引:1       下载免费PDF全文
Expansion and contraction of the hyporheic zone due to temporal hydrologic changes between stream and riparian aquifer influence the biogeochemical cycling capacity of streams. Theoretical studies have quantified the control of groundwater discharge on the depth of the hyporheic zone; however, observations of temporal groundwater controls are limited. In this study, we develop the concept of groundwater‐dominated differential hyporheic zone expansion to explain the temporal control of groundwater discharge on the hyporheic zone in a third‐order stream reach flowing through glacially derived terrain typical of the Great Lakes region. We define groundwater‐dominated differential expansion of the hyporheic zone as: differing rates and magnitudes of hyporheic zone expansion in response to seasonal vs. storm‐related water table fluctuation. Specific conductance and vertical hydraulic gradient measurements were used to map changes in the hyporheic zone during seasonal water table decline and storm events. Planar and riffle beds were monitored in order to distinguish the cause of increasing hyporheic zone depth. Planar bed seasonal expansion of the hyporheic zone was of a greater magnitude and longer in duration (weeks to months) than storm event expansion (hours to days). In contrast, the hyporheic zone beneath the riffle bed exhibited minimal expansion in response to seasonal groundwater decline compared to storm related expansion. Results indicated that fluctuation in the riparian water table controlled seasonal expansion of the hyporheic zone along the planar bed. This groundwater induced hyporheic zone expansion could increase the potential for biogeochemical cycling and natural attenuation.  相似文献   

20.
Recent models that couple three‐dimensional subsurface flow with two‐dimensional overland flow are valuable tools for quantifying complex groundwater/stream interactions and for evaluating their influence on watershed processes. For the modeler who is used to defining streams as a boundary condition, the representation of channels in integrated models raises a number of conceptual and technical issues. These models are far more sensitive to channel topography than conventional groundwater models. On all spatial scales, both the topography of a channel and its connection with the floodplain are important. For example, the geometry of river banks influences bank storage and overbank flooding; the slope of the river is a primary control on the behavior of a catchment; and at the finer scale bedform characteristics affect hyporheic exchange. Accurate data on streambed topography, however, are seldom available, and the spatial resolution of digital elevation models is typically too coarse in river environments, resulting in unrealistic or undulating streambeds. Modelers therefore perform some kind of manual yet often cumbersome correction to the available topography. In this context, the paper identifies some common pitfalls, and provides guidance to overcome these. Both aspects of topographic representation and mesh discretization are addressed. Additionally, two tutorials are provided to illustrate: (1) the interpolation of channel cross‐sectional data and (2) the refinement of a mesh along a stream in areas of high topographic variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号