首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   

2.
Isotopic and biochemical features of suspended particulate organic matter (POM) in the water column and of sedimentary organic matter (SOM) were investigated seasonally in the Bay of Marseilles. Biochemical compounds (carbohydrates, lipids and proteins) were consistently more concentrated in POM than in SOM, with SOM mainly composed of insoluble carbohydrates. POM displayed lower δ(13)C and higher δ(15)N values than SOM. Phytoplanktonic production represented the major contributor of POM year-round with spatial and seasonal variations. Climatic parameters and wind-induced currents created differences in POM contributions, with more important inputs of terrestrial OM at one sampling site. Spatial and seasonal variations were lower for SOM. The composition of this pool appeared to be linked with the permanent inputs of phytoplankton and Posidonia oceanica detritus. The combined use of biochemical and isotopic analyses was a useful tool to characterize OM pools and would help understanding the trophic functioning of this coastal environment.  相似文献   

3.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

4.
This study aimed to understand changes in the biogeochemical processing of organic matter (OM) in response to multiple stressors (e.g., littoral area expansion, wastewater input, and hydrological regulation) in East Dongting Lake (Central China) over the past 60 years, using analyses of total organic carbon (TOC), total nitrogen (TN), C/N ratios, δ13C, δ15N, and diatoms from 2 sediment cores collected from the littoral and central parts of the lake. OM mainly originated from phytoplankton and C3 plant‐derived soil OM based on the ranges of C/N ratios (from 7 to 11) and δ13C (between ?27‰ and ?23‰). Littoral area expansion due to siltation caused an increasing influx of terrestrial soil OM in the 1980s and the 1990s, subsequently lowering δ13C values and rising C/N ratios in both sediment cores. Meanwhile, higher δ15N was linked to a high influx of isotopically heavy nitrate from urban and agricultural wastewaters. After 2000, slight decreases in TOC and TN in the littoral area were attributable to reducing inputs of external OM, likely linked to declining sediment influx from the upper reaches resulting from the Three Gorges Dam impoundment. Contrasting increases in TOC, TN, and C/N ratios in the central part indicated a high influx of terrestrial soil OM due to the declining distance from the shoreline with littoral area expansion. Declining δ15N values after 2000 indicated an increase in N2‐fixing cyanobacteria with eutrophication. Changes in diatom assemblages in both the littoral and central zones reflected nutrient enrichment and hydrological alterations. These results indicate that littoral expansion, declining riverine influx, and anthropogenic nutrient inputs are potential driving forces for the biogeochemical processing of OM in floodplain lakes. This study provides sedimentary biogeochemical clues for tracking past limnological conditions of floodplain lakes that are subjected to increasing disturbances from hydrological regulation and eutrophication.  相似文献   

5.
Elemental (carbon and nitrogen) ratios and stable carbon and nitrogen isotope ratios (δ13C and δ15N) are examined in sediments and suspended particulate matter from Hudson Bay to study the influence of river inputs and autochthonous production on organic matter distribution. River-derived particulate organic matter (POM) is heterogeneous, nitrogen-poor and isotopically depleted, consistent with expectations for OM derived from terrestrial C3 vascular plant sources, and distinct from marine OM sources. Both δ13C and C/N source signatures seem to be transmitted to sediments with little or no modification, therefore making good tracers for terrigenous OM in Hudson Bay. They suggest progressively larger contributions from marine sources with distance from shore and secondarily from south to north, which broadly corresponds to the distribution of river inputs to Hudson Bay. Processes other than mixing of marine and terrigenous OM influence sedimentary δ15N values, including variability in the δ15N of phytoplankton in the Bay's surface waters due to differences in relative nitrate utilization, and post-production processes, which bring about an apparently constant 15N-enrichment between surface waters and underlying sediments. Variability in the δ15N of phytoplankton in the Bay's surface waters, in contrast, seems to be organized spatially with a pattern that suggests an inshore–offshore difference in surface water nitrogen conditions (open- vs. closed-system) and hence the δ15N value of phytoplankton. The δ15N patterns, supported by a simple nitrate box-model budget, suggest that in inshore regions of Hudson Bay, upwelling of deep, nutrient-rich waters replenishes surface nitrate, resulting in ‘open system’ conditions which tend to maintain nitrate δ15N at low and constant values, and these values are reflected in the sinking detritus. River inflow, which is constrained to inshore regions of Hudson Bay, appears to be a relatively minor source of nitrate compared to upwelling of deep waters. However, river inflow may contribute indirectly to enhanced inshore nutrient supply by supporting large-scale estuarine circulation and consequently entrainment and upwelling of deep water in this area. In contrast to previous proposals that Hudson Bay is oligotrophic because it receives too much fresh water (Dunbar, 1993), our results support most of the primary production being organized around the margin of the Bay, where river flow is constrained.  相似文献   

6.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The dynamic responses of wetlands to upstream water conservancy projects are becoming increasingly crucial for watershed management. Poyang Lake is a dynamic wetland system of critical ecological importance and connected with the Yangtze river. However, in the context of disturbed water regime in Poyang Lake resulting from human activities and climate change, the responses of vegetation dynamics to the Three Gorges Dam (TGD) have not been investigated. We addressed this knowledge gap by using daily water level data and Landsat images from 1987 to 2018. Landsat images were acquired between October and December to ensure similar phenological conditions. Object-oriented Artificial Neural Network Regression for wetland classification was developed based on abundant training and validation samples. Interactions between vegetation coverage and water regimes pre and post the operation of the TGD were compared using classification and regression trees and the random forest model. Since the implementation of the TGD in 2003, Poyang Lake has become drier, especially during the dry season. A more rapid plant growth rate was observed post TGD (44.74 km2 year−1) compared to that of the entire study period (12.9 km2 year−1). Average water level for the antecedent 20 days most significantly affected vegetation before 2003, whereas average water level for the antecedent 5 or 10 days was more important after 2003. The impoundment of the TGD after the flood season accelerated the drawdown processes of Poyang Lake, and the rapidly exposed wetlands accelerated vegetation expansion during the dry seasons, resulting in shrinkage and degradation of the lake area. This study deepens our knowledge of the influences of newly developed dams on lakes and rivers.  相似文献   

8.
Global peatlands store an unparalleled proportion of total global organic carbon but it is vulnerable to erosion into fluvial systems. Fluvial networks are being recognized as areas of carbon transformation, with eroded particulate organic carbon processed to dissolved organic carbon and CO2. Existing studies indicate biodegradation and photodegradation as key processes controlling the transformation of organic carbon in fluvial systems, with initial concentrations of dissolved organic carbon (DOC) identified as a control on the rate of carbon mineralization. This study manipulates temperature and incident light intensity to investigate carbon mineralization rates in laboratory simulations of peatland sediment transport into fluvial systems. By directly measuring gaseous CO2 emissions from sampled stream water, the relationship of temperature and light intensity with carbon efflux is identified. In simulations where sediment (as particulate organic matter, POM) is absent, temperature is consistently the dominant factor influencing carbon efflux rates. This influence is independent of the initial DOC concentration of the water sample. In simulations where POM was added, representing a peatland river receiving eroded terrestrial sediment, initial DOC concentration predicts 79% of the variation in total gaseous carbon efflux whereas temperature and light intensity predict 12% and 3%, respectively. When sampled stream water's mineralization rates in the presence of added POM are analysed independently, removing DOC as a model variable, the dominant variable affecting CO2 efflux is opposite for each sample. This study presents novel data suggesting peatland erosion introduces further complexity to dynamic stream systems where rates of carbon transformation processes and the influence of specific environmental variables are interdependent. Anthropogenic climate change is identified as a leading risk factor perpetuating peatland erosion; therefore, understanding the fate of terrestrial sediment in rivers and further quantifying the benefits of protecting peatland soils will be of increasing importance to carbon budgeting and ecosystem function studies.  相似文献   

9.
Ecosystems can act as both sources and sinks of allochthonous nutrients and organic matter. In this sense, fjord ecosystems are a typical interface and buffer zone between freshwater systems, glaciated continents, and the coastal ocean. In order to evaluate the potential sources and composition of organic matter across fjord ecosystems, we characterized particulate organic matter along a lake–river–fjord corridor in the Chilean Patagonia using stable isotope (δ13C) and lipid (fatty acid composition) biomarker analyses. Furthermore, estimates of zooplankton carbon ingestion rates and measurements of δ13C and δ15N in zooplankton (copepods) were used to evaluate the implications of allochthonous subsidies for copepods inhabiting inner fjord areas. Our results showed that riverine freshwater flows contributed an important amount of dissolved silicon but, scarce nitrate and phosphate to the brackish surface layer of the fjord ecosystem. Isotopic signatures of particulate organic matter from lakes and rivers were distinct from their counterparts in oceanic influenced stations. Terrestrial allochthonous sources could support around 68–86% of the particulate organic carbon in the river plume and glacier melting areas, whereas fatty acid concentrations were maximal in the surface waters of the Pascua and Baker river plumes. Estimates of carbon ingestion rates and δ13C in copepods from the river plume areas indicated that terrestrial carbon could account for a significant percentage of the copepod body carbon (20–50%) during periods of food limitation. Particulate organic matter from the Pascua River showed a greater allochthonous contribution of terrigenous/vascular plant sources. Rivers may provide fjord ecosystems with allochthonous contributions from different sources because of the distinct vegetation coverage and land use along each river’s watershed. These observations have significant implications for the management of local riverine areas in the context of any human project that may modify terrestrial habitats as well as the productivity, food webs, and community structure of rivers, lakes, fjords, and the coastal ocean in the Chilean Patagonia.  相似文献   

10.
11.
长三角地区大部分湖泊为非通江湖泊,地势低平,港汊及闸坝众多,水流宣泄不畅,水力滞留时间较长,加之周边地区城镇人口稠密.因此与水滞留时间短的通江湖泊相比,非通江湖泊的有色可溶性有机物(CDOM)来源和组成具有差异性.本文选取了3个重要的中型非通江供水湖泊——滆湖、淀山湖和阳澄湖,对枯水期、平水期、丰水期3种水文情景下CDOM组成结构变化特征进行分析,从而进一步揭示该类湖泊CDOM来源和对水文情景响应的内在机理.结果表明:滆湖、淀山湖和阳澄湖通过平行因子分析法得到2种类腐殖质(C1和C4)和2种类蛋白质(C2和C3),湖泊CDOM结构受到降雨事件和人类活动的双重影响.三个湖泊类蛋白质的高值在空间上主要集中在人类活动频繁的湖区,并且类蛋白质平均荧光强度与叶绿素a浓度相关性较差,说明湖泊类蛋白质组分受到内源藻类降解、外源人类生产生活排放双重作用的影响.三个湖泊类蛋白质的平均荧光强度和总氮浓度均在枯水期显著高于丰水期,说明降雨量的增加可以稀释湖泊有机质浓度;同时,陆源类腐殖质C1与溶解性有机碳、总氮、总磷、叶绿素a浓度呈显著正相关,并且随着降雨量增加,类蛋白质的占比逐渐降低,滆湖从86.84%降低至62.49%,淀山湖从96.53%降低至90.56%,阳澄湖从98.40%降低至96.26%,说明降雨事件也可以增强径流的冲刷作用,携带更多腐殖化程度高的陆源有机质进入湖泊.本研究发现降雨过程和人类活动共同作用于滆湖、淀山湖和阳澄湖CDOM库,研究结果可以为进一步保障太湖流域人类用水安全提供参考依据.  相似文献   

12.
Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi River locations, in 2007-2008. The range of CDOM was 0.092 m−1 at Barataria in June 2008 to 11.225 m−1 at Mississippi in February 2008. An indicator of organic matter quality was predicted by the spectral slope of absorption coefficients from 350 to 412 nm which was between 0.0087 m−1 at Mississippi in May 2008 and 0.0261 m−1 at Barataria in June 2008. CDOM was the dominant component of light attenuation at Terrebonne and Barataria. Detritus and CDOM were the primary components of light attenuation at Vermilion, Atchafalaya, and Mississippi. DOC ranged between 65 and 1235 μM. PIM ranged between 1.1 and 426.3 mg L−1 and POM was between 0.3 and 49.6 mg L−1.  相似文献   

13.
高邮湖、南四湖和东平湖作为南水北调东线枢纽湖泊,其水质状况对保障调水安全起到关键性作用本文运用三维荧光光谱平行因子分析法(EEMs-PARAFAC)分析了3个湖泊在不同水文情景下有色可溶性有机物(CDOM)吸收、荧光光谱特征以及荧光组分与主要水质参数的相关性,以探究3个湖泊CDOM来源组成特征结果表明,平行因子分析法解析CDOM三维荧光图谱,得到陆源类腐殖质C1、类色氨酸C2和类酪氨酸C3不同水文情景对高邮湖CDOM来源与结构组成影响较明显,丰水期其类腐殖质荧光强度显著大于枯水期(t-test,P0.01),并且与a(254)呈正相关(R~2=0.85,P0.01),表明类腐殖质是CDOM主要部分,该荧光组分贡献率可达50%[F_(max)C1/(F_(max)C1+F_(max)C2+F_(max)C3)×100%],高邮湖受到入湖河流来水的影响较大,丰水期入湖口附近荧光强度明显高于其他水域东平湖和南四湖CDOM来源组成特征相似,丰水期东平湖和南四湖组分C2和C3显著低于枯水期(t-test,P0.01),两湖泊枯水期工农业等人为污染源影响较大相关性分析表明高邮湖中类腐殖质荧光特征在一定程度是能反演DOC浓度,并且类腐殖质的输入会增加湖泊总磷、总氮和叶绿素a浓度而东平湖和南四湖CDOM荧光特征与主要水质参数的相关性较差,这与高邮湖水体存在较大差异.  相似文献   

14.
Ciliate composition and its seasonal changes in seston depending on the discharge regime were analyzed in the lower rhithral area of the river Sava. Higher values for ciliate density, dry biomass, index of species diversity and concentration of particulate organic matter (POM) were associated with discharge peaks. Using the power model: y = axb ± c a significant positive correlation was found between POM and ciliate dry biomass (as dependent variables) and discharge (as independent variable). The ciliate drift constitutes 0.78% of the total annual POM transport. Depending on the discharge regime, the composition of ciliate drift reflects the temporal and structural changes in periphytic community.  相似文献   

15.
16.
Carbon and nitrogen stable isotope ratios of particulate organic matter (POM) in surface water and 63–200 μm-sized microphytoplankton collected at the fluorescence maximum were studied in four sites in the Gulf of Lions (NW Mediterranean), a marine area influenced by the Rhone River inputs, in May and November 2004. Some environmental (temperature, salinity) and biological (POM, Chlorophyll a and phaeopigments contents, phytoplankton biomass and composition) parameters were also analysed. Significantly different C and N isotopic signatures between surface water POM and microphytoplankton were recorded in all sites and seasons. Surface water POM presented systematically lower δ13C (∼4.2‰) and higher δ15N (∼2.8‰) values than those of microphytoplankton, due to a higher content of continental and detrital material. Seasonal variations were observed for all environmental and biological parameters, except salinity. Water temperature was lower in May than in November, the fluorescence maximum was located deeper and the Chlorophyll a content and the phytoplankton biomass were higher, along with low PON/Chl a ratio, corresponding to spring bloom conditions. At all sites and seasons, diatoms dominated the phytoplankton community in abundance, whereas dinoflagellate importance increased in autumn particularly in coastal sites. C and N isotopic signatures of phytoplankton did not vary with season. However, the δ15N of surface water POM was significantly higher in November than in May in all sites likely in relation to an increase in 15N/14N ratio of the Rhone River POM which influenced surface water in the Gulf of Lions. As it is important to determine true baseline values of primary producers for analysing marine food webs, this study demonstrated that C and N isotopic values of surface water POM cannot be used as phytoplankton proxy in coastal areas submitted to high river inputs.  相似文献   

17.
Globally, dissolved inorganic carbon (DIC) accounts for more than half the annual flux of carbon exported from terrestrial ecosystems via rivers. Here, we assess the relative influences of biogeochemical and hydrological processes on DIC fluxes exported from a tropical river catchment characterized by distinct land cover, climate and geology transition from the wet tropical mountains to the low‐lying savanna plains. Processes controlling changes in river DIC were investigated using dissolved organic carbon, particulate organic carbon and DIC concentrations and stable isotope ratios of DIC (δ13CDIC) at two time scales: seasonal and diel. The recently developed Isotopic Continuous Dissolved Inorganic Carbon Analyser was used to measure diel DIC concentration and δ13CDIC changes at a 15‐min temporal resolution. Results highlight the predominance of biologically mediated processes (photosynthesis and respiration) controlling diel changes in DIC. These resulted in DIC concentrations varying between 3.55 and 3.82 mg/l and δ13CDIC values ranging from ?19.7 ± 0.31‰ to ?17.1 ± 0.08‰. In contrast, at the seasonal scale, we observed wet season DIC variations predominantly from mixing processes and dry season DIC variations due to both mixing processes and biological processes. The observed wet season increases in DIC concentrations (by 6.81 mg/l) and δ13CDIC values of river water (by 5.4‰) largely result from proportional increases in subsurface inflows from the savanna plains (C4 vegetation) region relative to inflows from the rainforest (C3 vegetation) highlands. The high DIC river load during the wet season resulted in the transfer of 97% of the annual river carbon load. Therefore, in this gaining river, there are significant seasonal variations in both the hydrological and carbon cycles, and there is evidence of substantial coupling between the carbon cycles of the terrestrial and the fluvial environments. Recent identification of a substantial carbon sink in the savannas of northern Australia during wetter years in the recent past does not take into account the possibility of a substantial, rapid, lateral flux of carbon to rivers and back to the atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The Yellow River (YR) supplies a large amount of nutrients and fresh water to the northern Chinese marginal seas, and greatly influences the ecosystem and current patterns. The relocation of the YR outlet from the southern Yellow Sea (YS) to the Bohai Sea in 1855 was demonstrated using northern East China Sea (ECS) sediment characteristics. Both isotopic (δ13C, δ15N) signals and C/N ratios in the organic matter (OM) indicate that prior to 1750, the predominant source of OM to the sediments was terrestrial. The terrestrial influences continuously weakened until 1855, when the YR estuary moved; after 1855, the OM was characterized by oceanic sources. Major elements (Al, Ti, Fe, Mn) and trace elements (Ni, Cr, Cu, Pb) had a much closer association with Malan loess prior to 1855, as >90% of the YR sediment was loess-derived. These results reveal that the relocation of the YR induced significant changes in the current patterns of the northern China Seas in the last 250 years; however, more studies are needed to further examine these linkages.  相似文献   

19.
内陆水域二氧化碳(CO2)排放是全球碳平衡的重要组成部分,全球CO2排放通量估算通常有很大不确定性,一方面源于CO2排放数据观测的时空离散性,另一方面也是缺少水文情景与CO2排放通量关联性的研究.本文观测了2018年洪泽湖不同水文情景表层水体CO2排放通量特征,并探讨其影响因素.结果表明,洪泽湖CO2排放通量为丰水期((106.9±73.4) mmol/(m2·d))>枯水期((18.7±13.6) mmol/(m2·d))>平水期((5.2±15.5) mmol/(m2·d)),且碳通量由丰(310.2~32.0 mmol/(m2·d))、枯(50.8~2.2 mmol/(m2·d))、平(-17.3~39.8 mmol/(m2·d))3种水文情景的交替表现出湖泊碳源到弱碳汇的转变,空间上CO2排放通量总体呈现北部成子湖区低、南部过水湖区高的分布趋势.洪泽湖CO2排放对水文情景响应敏感,特别是上游淮河流域来水量的改变,是主导该湖CO2排放时空分异的重要因子.丰水期湖泊接纳了淮河更多有机和无机碳的输入,外源碳基质的降解和矿化显著促进了水体CO2的生产与排放,同时氮、磷等营养物质的大量输入,加剧了水体营养化程度,进一步提高CO2排放量,间接反映出人类活动对洪泽湖CO2变化的深刻影响.平、枯水期随着上游淮河来水量的减少,驱动水体CO2排放的因素逐渐由外源输入转变为水体有机质的呼吸降解.此外,上游河口区DOM中陆源类腐殖质的累积与矿化能够促进CO2的排放,而内源有机质组分似乎并没有直接参与CO2的排放过程.研究结果揭示了水文情景交替对湖库CO2排放的重要影响,同时有必要进行高频观测以进一步明晰湖泊的碳通量变化及其控制因素.  相似文献   

20.
We investigate sources of both dissolved and particulate organic carbon in the St Lawrence River from its source (the Great Lakes outlet) to its estuary, as well as in two of its tributaries. Special attention is given to seasonal interannual patterns by using data collected on a bi‐monthly basis from mid‐1998 to mid‐2003. δ13C measurements in dissolved inorganic carbon, dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as molar C : N in particulate organic matter (POM), are used to bring insight into the dynamic between aquatic versus terrigenous sources. In addition, 14C activities of DOC were measured at the outlet of the St Lawrence River to its estuary to assess a mean age of the DOC exported to the estuary. In the St Lawrence River itself, aquatically produced POC dominates terrestrially derived POC and is depleted in 13C by approximately 12‰ versus dissolved CO2. In the Ottawa River, the St Lawrence River's most important tributary, the present dataset did not allow for convincing deciphering of POC sources. In a small tributary of the St Lawrence River, aquatically produced POC dominates in summer and terrestrially derived POC dominates in winter. DOC seems to be dominated by terrestrially derived organic matter at all sampling sites, with some influence of DOC derived from aquatically produced POC in summer in the St Lawrence River at the outlet of the Great Lakes and in one of its small tributaries. The overall bulk DOC is relatively recent (14C generally exceeding 100% modern carbon) in the St Lawrence River at its outlet to the estuary, suggesting that it derives mainly from recent organic matter from topsoils in the watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号