首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Based on the drilling data of the Upper Ordovician Wufeng Shale and the Lower Silurian Longmaxi Shale in southern Sichuan Basin,the construction of matrix pores and the development condition of fractures in a marine organic-rich shale are quantitatively evaluated through the establishment of the reservoir petrophysical models and porosity mathematical models.Our studies show that there are four major characteristics of the Longmaxi Shale confirmed by the quantitative characterization:(1)the pore volume of per unit mass is the highest in organic matter,followed in clay minerals,finally in brittle minerals;(2)the porosity of the effective shale reservoir is moderate and equal to that of the Barnett Shale,and the main parts of the shale reservoir spaces are interlayer pores of clay minerals and organic pores;(3)the porosity of the organic-rich shale is closely related to TOC and brittle mineral/clay mineral ratio,and mainly increases with TOC and clay mineral content;(4)fractures are developed in this black shale,and are mainly micro ones and medium-large ones.In the Longmaxi Shale,the fracture density increases from top to bottom,reflecting the characteristics with high brittle mineral content,high Young’s modulus,low Poisson's ratio and high brittleness at its bottom.  相似文献   

2.
ZHOU Yong-sheng 《地震地质》2019,41(5):1266-1272
Paleo-seismic and fault activity are hard to distinguish in host rock areas compared with soft sedimentary segments of fault. However, fault frictional experiments could obtain the conditions of stable and unstable slide, as well as the microstructures of fault gouge, which offer some identification marks between stick-slip and creep of fault. We summarized geological and rock mechanical distinction evidence between stick-slip and creep in host rock segments of fault, and analyzed the physical mechanisms which controlled the behavior of stick-slip and creep. The chemical composition of fault gouge is most important to control stick-slip and creep. Gouge composed by weak minerals, such as clay mineral, has velocity weakening behavior, which causes stable slide of fault. Gouge with rock-forming minerals, such as calcite, quartz, feldspar, pyroxene, has stick-slip behavior under condition of focal depth. To the gouge with same chemical composition, the deformation mechanism controls the frictional slip. It is essential condition to stick slip for brittle fracture companied by dilatation, but creep is controlled by compaction and cataclasis as well as ductile shear with foliation and small fold. However, under fluid conditions, pressure solution which healed the fractures and caused strength recovery of fault, is the original reason of unstable slide, and also resulted in locking of fault with high pore pressure in core of fault zone. Contrast with that, rock-forming minerals altered to phyllosilicates in the gouges by fluid flow through degenerative reaction and hydrolysis reaction, which produced low friction fault and transformations to creep. The creep process progressively developed several wide shear zones including of R, Y, T, P shear plane that comprise gouge zones embedded into wide damage zones, which caused small earthquake distributed along wide fault zones with focal mechanism covered by normal fault, strike-slip fault and reverse fault. However, the stick-slip produced mirror-like slide surfaces with very narrow gouges along R shear plane and Y shear plane, which caused small earthquake distributed along narrow fault zones with single kind of focal mechanism.  相似文献   

3.
The premise of hydraulic fracturing is to have an accurate and detailed understanding of the rock mechanical properties and fracture propagation law of shale reservoirs. In this paper, a comprehensive evaluation of the mechanical properties of the shale oil reservoir in the south of Songliao Basin is carried out. Based on the experiments and the in-situ stress analysis, the fracture propagation law of three types of shale reservoirs is obtained, and the suggestions for fracturing are put forward. The results have shown that the fracture propagation of pure shale and low mature reservoir is easy to open along the bedding plane under compression loading, which is greatly influenced by the bedding. Sand-bearing shale is slightly better, the fractures of which are not easy to open along the bedding plane. The mechanical experimental results show that all the samples have the characteristics of low compressive strength, low Young''s modulus and strong anisotropy, indicating that the shale oil reservoir is certain plastic, which is related to its high clay mineral content and controlled by the bedding development. Compared with pure shale and low mature shale, the sand-bearing shale has less clay content and less developed bedding, which maybe the main reason for its slightly better brittleness. Overall, the expansion of hydraulic fracture is controlled by in-situ stress and bedding. Because of the development of bedding, it is easy to form horizontal fractures. Thus it is not suitable for horizontal well fracturing. Because of the high content of clay minerals, the applicability of conventional slick hydraulic fracturing fluid is poor. It is suggested to use vertical well or directional well to carry out volume fracturing. In this way, the effect of bedding can be effectively used to open and connect the bedding and form a larger fracture network.  相似文献   

4.
热水条件下黑云母断层泥的摩擦强度与稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
路珍  何昌荣 《地球物理学报》2014,57(4):1123-1132
黑云母是自然界常见的层状硅酸盐矿物,其摩擦系数不高且化学稳定性好,对其摩擦性质的关注可能会对弱断层的研究有所帮助.本次工作选取的实验温度条件对应于典型地壳强度模型中脆塑性转化带的范围,为300 ℃和400 ℃.有效正应力为200 MPa,孔隙水压包括10 MPa和30 MPa,在此条件下对黑云母模拟断层泥进行摩擦实验研究.实验得出黑云母的摩擦系数平均在0.36左右.速度依赖性随温度升高速度弱化的程度增强,表现为300 ℃为十分微弱的速度弱化,而在400 ℃出现了黏滑行为,代表了更强的速度弱化.显微结构中同时出现了脆性剪切变形和塑性扭折变形,但决定宏观力学性质的显然是脆性剪切变形.在黑云母存在的情况下,本研究的实验结果有助于理解大陆地壳脆塑性转化带中地震的可能性和弱断层深部的变形机制、宏观力学行为以及地震活动.  相似文献   

5.
In this paper, we report friction experiments performed on natural fault gouge samples embedded in granitic rock from drilled core by a project entitled "the Longmenshan Fault Shallow Drilling(LMFD)". Compared with other natural fault gouge, this yellow-greenish gouge(YGG)is dominantly chlorite-rich. The maximum content of chlorite reaches 47%in the YGG. To understand the frictional properties of the YGG sample, experiments were performed at constant confining pressure of 130MPa, with constant pore pressure of 50MPa and at different temperatures from 25℃ to 150℃. The experiments aim to address the frictional behavior of the YGG under shallow, upper crustal pressure, and temperature conditions. Compared with previous studies of natural gouge, our results show that the YGG is stronger and shows a steady state friction coefficient of 0.47~0.51. Comparison with previous studies of natural gouge with similar content of clay minerals indicates a sequence of strengths of different clay minerals:chlorite > illite > smectite. At temperatures up to 150℃ hence depths up to~8km in the Longmenshan region, the YGG shows stable velocity-strengthening behavior at shallow crustal conditions. Combined with the fact of strong direct velocity effect, i.e., (a-b)/a>0.5, faults cutting the present clastic lithology up to~8km depth in the Longmenshan fault zone(LFZ)are likely to offer stable sliding resistance, damping co-seismic rupture propagating from below at not-too-high slip rates. However, as the fault gouge generally has low permeability, co-seismic weakening through thermal pressurization may occur at high slip rates(>0.05m/s), leading to additional hazards.  相似文献   

6.
本文对龙门山断裂带金河磷矿浅钻岩芯中的三种断层泥开展了低速到高速摩擦滑动的实验研究,并对实验变形样品开展了BET比表面积研究.摩擦实验在干燥和孔隙水压条件下开展,速率范围涵盖20 μm·s-1~1.4 m·s-1.实验结果显示,三种断层泥在干燥条件下的摩擦性质差别不大,但在孔隙水压条件下,三者的中低速摩擦强度与层状硅酸盐矿物的种类而非总含量紧密相关,蒙脱石和伊利石相比绿泥石更能有效地弱化断层.三种断层泥在孔隙水压条件下存在中低速率域的速度强化,暗示着对断层的加速滑动存在一定的阻碍作用.孔隙水压下,黄绿色和灰绿色断层泥的初始动态弱化非常迅速并伴随断层泥层的瞬时扩容,凹凸体急剧加热导致的局部热压作用可能是造成这种力学行为的物理机制.在经历高速滑动之后,三种断层泥在干、湿条件下的BET比表面积都显著降低,暗示着可能发生了颗粒烧结.中低速域内,孔隙水的存在使得断层泥呈现分散式的剪切变形,BET比表面积的增加因此比干燥条件下更加明显.对表面能的估算表明,颗粒磨碎所消耗的能量至多不超过摩擦力做功的8%,暗示着断层作用中颗粒磨碎所占的能量比例较低.  相似文献   

7.
The shales of the Qiongzhusi Formation and Wufeng–Longmaxi Formations at Sichuan Basin and surrounding areas are presently the most important stratigraphic horizons for shale gas exploration and development in China. However, the regional characteristics of the seismic elastic properties need to be better determined. The ultrasonic velocities of shale samples were measured under dry conditions and the relations between elastic properties and petrology were systemically analyzed. The results suggest that 1) the effective porosity is positively correlated with clay content but negatively correlated with brittle minerals, 2) the dry shale matrix consists of clays, quartz, feldspars, and carbonates, and 3) organic matter and pyrite are in the pore spaces, weakly coupled with the shale matrix. Thus, by assuming that all connected pores are only present in the clay minerals and using the Gassmann substitution method to calculate the elastic effect of organic matter and pyrite in the pores, a relatively simple rock-physics model was constructed by combining the self-consistent approximation (SCA), the differential effective medium (DEM), and Gassmann’s equation. In addition, the effective pore aspect ratio was adopted from the sample averages or estimated from the carbonate content. The proposed model was used to predict the P-wave velocities and generally matched the ultrasonic measurements very well.  相似文献   

8.
The micromechanics of friction in a granular layer   总被引:1,自引:0,他引:1  
A grain bridge model is used to provide a physical interpretation of the rate- and state-dependent friction parameters for the simple shear of a granular layer. This model differs from the simpler asperity model in that it recognizes the difference between the fracture of a grain and the fracture of an adhesion between grains, and it explicitly accounts for dilation in the granular layer. The model provides an explanation for the observed differences in the friction of granular layers deformed between rough surfaces and those deformed between smooth surfaces and for the evolution of the friction parameters with displacement. The observed evolution from velocity strengthening to velocity weakening with displacement is interpreted as being due to the change in the micromechanics of strain accommodation from grain crushing to slip between adjacent grains; this change is associated with the observed evolution of a fractal grain structure.  相似文献   

9.
热处理对致密岩石物理性质的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
致密气藏低孔低渗和超低含水饱和度等特征使其潜在水相圈闭损害严重,致密天然气产出表现为多尺度特征.选取泥页岩、致密砂岩和致密碳酸盐岩岩心,开展了100~600℃高温处理对岩心渗透率、孔隙度、重量、长度、直径和声速的影响实验.实验结果表明,碳酸盐岩、致密砂岩和泥页岩的热开裂阈值分别在300~400℃、300~500℃和500~600℃;高温处理后,岩心重量和密度降低,体积增加,泥页岩岩心孔隙度和渗透率提高幅度最显著,600℃处理后声波时差比常温时岩心声波时差提高了1.3倍.热处理消除了水相圈闭和粘土矿物膨胀损害,提高岩石孔隙度和渗透率,恢复或改善致密储层多尺度传质,有利于致密天然气资源开发,但同时高温使岩石破裂,扩展天然裂缝或产生新裂缝,导致工作液漏失,因此,热致裂给勘探开发致密天然气提出了机遇与挑战.  相似文献   

10.
龙马溪组页岩是目前国内页岩气勘探的主要层位之一,其静态弹性性质是影响压裂效果的重要因素,而动态弹性性质则是页岩"甜点"地震预测的重要基础.但对龙马溪组页岩动、静态弹性特征相互关系及其影响因素缺少对比研究,致使运用动态弹性性质进行"甜点"预测时存在不确定性.在对龙马溪组页岩样品系统动、静态性质联合测量基础上,分析了页岩样品动、静态弹性性质的变化规律,并讨论了成岩作用与动、静态弹性性质变化规律的因果关系.研究结果表明,龙马溪组页岩上下两段成岩过程存在明显差异,致使上段页岩在结构上表现为以塑性黏土颗粒作为受力骨架,而下段页岩在结构上逐渐转变为脆性石英颗粒作为受力骨架.页岩岩石结构特征的变化控制了动、静态弹性特征的整体变化规律,表现为动、静态杨氏模量、峰值强度等随石英含量的增大表现出近似"V"型的变化形式,而与钙质含量变化呈现正相关关系,与黏土含量变化表现出负相关性.上段页岩宏观力学性质受微观石英+黏土颗粒集合体弹性性质控制,应力应变曲线表现出明显塑性段,动、静态杨氏模量比大于1.4,破裂易于发生在黏土与石英颗粒边界形成宏观单剪型破裂模式,样品脆性低,且脆性变化不受石英含量的影响.下段页岩宏观力学性质受微观石英颗粒集合体弹性性质控制,应力应变曲线表现为弹性变形,动、静态杨氏模量比小于1.4,破裂发生在石英颗粒内部形成宏观劈裂型破裂模式,样品脆性高,且脆性变化与石英含量呈明显正相关关系.研究结果可为龙马溪页气储层的测井解释和地震"甜点"预测提供依据.  相似文献   

11.
Sweet spots identification for unconventional shale reservoirs involves detection of organic-rich zones with abundant porosity. However, commonly used elastic attributes, such as P- and S-impedances, often show poor correlations with porosity and organic matter content separately and thus make the seismic characterization of sweet spots challenging. Based on an extensive analysis of worldwide laboratory database of core measurements, we find that P- and S-impedances exhibit much improved linear correlations with the sum of volume fraction of organic matter and porosity than the single parameter of organic matter volume fraction or porosity. Importantly, from the geological perspective, porosity in conjunction with organic matter content is also directly indicative of the total hydrocarbon content of shale resources plays. Consequently, we propose an effective reservoir parameter (ERP), the sum of volume fraction of organic matter and porosity, to bridge the gap between hydrocarbon accumulation and seismic measurements in organic shale reservoirs. ERP acts as the first-order factor in controlling the elastic properties as well as characterizing the hydrocarbon storage capacity of organic shale reservoirs. We also use rock physics modeling to demonstrate why there exists an improved linear correlation between elastic impedances and ERP. A case study in a shale gas reservoir illustrates that seismic-derived ERP can be effectively used to characterize the total gas content in place, which is also confirmed by the production well.  相似文献   

12.
In this paper we report results obtained from various friction experiments under direct and oblique shear loading conditions. We used four rock types of varying brittleness (quartzite, anhydrite, limestone, pyrophyllite) with different surface roughness. The observations concentrate on the time span several milliseconds before dynamic failure occurs. During this period a premonitory, unstable phase of slip (slip 2) occurs. This differs importantly from a premonitory, stable process (slip 1) with durations of hundreds of seconds. On smooth surfaces slip 2 is usually observed with ductile rocks and less reliably with brittle rocks. Slip 2 is mostly accompanied by acoustic emissions, which increase in rate of occurrence and in magnitude until the stick-slip event. Foreshocks are observed during approximately 50% of the slip 2 events on rough surfaces. Foreshocks far exceed the acoustic noise level, which is also prevalent before stick-slip events on rough surfaces. In the direct shear experiment, where two faults are being loaded simultaneously, in about 20% of the cases precursory slip 2 was observed on the opposite side on which the final stick-slip event occurred.  相似文献   

13.
Simulation of the frictional stick-slip instability   总被引:7,自引:0,他引:7  
  相似文献   

14.
Faults are intrinsically heterogeneous with common occurrences of jogs, edges and steps. We therefore explore experimentally and theoretically how fault edges may affect earthquake and slip dynamics. In the presented experiments and accompanying theoretical model, shear loads are applied to the edge of one of two flat blocks in frictional contact that form a fault analog. We show that slip occurs via a sequence of rapid rupture events that initiate from the loading edge and are arrested after propagating a finite distance. Each successive event extends the slip size, transfers the applied shear across the block, and causes progressively larger changes of the contact area along the contact surface. Resulting from this sequence of events, a hard asperity is dynamically formed near the loaded edge. The contact area beyond this asperity is largely reduced. These sequences of rapid events culminate in slow slip events that precede a major, unarrested slip event along the entire contact surface. We suggest that the 1998 M5.0 Sendai and 1995 off-Etorofu earthquake sequences may correspond to this scenario. Our work demonstrates, qualitatively, how the simplest deviation from uniform shear loading may significantly affect both earthquake nucleation processes and how fault complexity develops.  相似文献   

15.
We present a thermodynamically-based formulation for mechanical modeling of faulting processes in the seismogenic brittle crust using a continuum damage–breakage rheology. The model combines previous results of a continuum damage framework for brittle solids with continuum breakage mechanics for granular flow. The formulation accounts for the density of distributed cracking and other internal flaws in damaged rocks with a scalar damage parameter, and addresses the grain size distribution of a granular phase in a failure slip zone with a breakage parameter. The stress–strain relation and kinetics of the damage and breakage processes are governed by the total energy function of the system, which combines the energy of the damaged solid with the energy of the granular material. A dynamic brittle instability is associated with a critical level of damage in the solid, leading to loss of convexity of the solid energy function and transition to a granular phase associated with lower energy level. A non-local formulation provides an intrinsic length scale associated with the internal damage structure, which leads to a finite length scale for damage localization that eliminates the unrealistic singular localization of local models. Shear heating during deformation can lead to a secondary finite-width internal localization. The formulation provides a framework for studying multiple aspects of brittle deformation, including potential feedback between evolving elastic moduli and properties of the slip localization zone and subsequent rupture behavior. The model has a more general transition from slow deformation to dynamic rupture than that associated with frictional sliding on a single pre-existing failure zone, and gives time and length scales for the onset of the dynamic fracturing process. Several features including the existence of finite localization width and transition from slow to rapid dynamic slip are illustrated using numerical simulations. A configuration having an existing narrow slip zone with localized damage produces for appropriate loading conditions an overall cyclic stick–slip motion. The simulated frictional response includes transitions from friction coefficient of ~0.7 at low slip velocity to dynamic friction below 0.4 at slip rates above ~0.1 m/s, followed by rapidly increasing friction for slip rates above ~1 m/s, consistent with laboratory observations.  相似文献   

16.
We report an experimental and microstructural study of the frictional properties of simulated fault gouges prepared from natural limestone (96 % CaCO3) and pure calcite. Our experiments consisted of direct shear tests performed, under dry and wet conditions, at an effective normal stress of 50 MPa, at 18–150 °C and sliding velocities of 0.1–10 μm/s. Wet experiments used a pore water pressure of 10 MPa. Wet gouges typically showed a lower steady-state frictional strength (μ = 0.6) than dry gouges (μ = 0.7–0.8), particularly in the case of the pure calcite samples. All runs showed a transition from stable velocity strengthening to (potentially) unstable velocity weakening slip above 80–100 °C. All recovered samples showed patchy, mirror-like surfaces marking boundary shear planes. Optical study of sections cut normal to the shear plane and parallel to the shear direction showed both boundary and inclined shear bands, characterized by extreme grain comminution and a crystallographic preferred orientation. Cross-sections of boundary shears, cut normal to the shear direction using focused ion beam—SEM, from pure calcite gouges sheared at 18 and 150 °C, revealed dense arrays of rounded, ~0.3 μm-sized particles in the shear band core. Transmission electron microscopy showed that these particles consist of 5–20 nm sized calcite nanocrystals. All samples showed evidence for cataclasis and crystal plasticity. Comparing our results with previous models for gouge friction, we suggest that frictional behaviour was controlled by competition between crystal plastic and granular flow processes active in the shear bands, with water facilitating pressure solution, subcritical cracking and intergranular lubrication. Our data have important implications for the depth of the seismogenic zone in tectonically active limestone terrains. Contrary to recent claims, our data also demonstrate that nanocrystalline mirror-like slip surfaces in calcite(-rich) faults are not necessarily indicative of seismic slip rates.  相似文献   

17.
Finite Element Analysis of a Sandwich Friction Experiment Model of Rocks   总被引:1,自引:0,他引:1  
-- Sandwich friction experiments are one of the most widely used standard methods for measuring the frictional behavior between rocks. A finite element code for modeling the nonlinear friction contact between elastoplastic bodies has been developed and extended to analyze the sandwich friction experiment model with a rate- and state-dependent friction law. The influences of prescribed slip velocity and variation of movement direction and state on the friction coefficient, the relative slip velocity, the normal contact force, the frictional force, the critical frictional force and the transition of stick-slip state between the deformable rocks are thoroughly investigated, respectively. The calculated results demonstrate the usefulness of this code for simulating the friction behavior between rocks.  相似文献   

18.
19.
20.
水对断层摩擦滑动稳定性的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
黄建国  张流 《地震地质》2002,24(3):387-399
在不同含水条件下研究了光面、含脆性物质夹层和含延性物质夹层 3类断层的摩擦滑动行为 ,认为水对断层滑动稳定性和摩擦滑动的速度依赖性有重要影响。建立了含有岩性、围压 (深度 )和含水量 3因素的断层活动稳定性的模式 ,认为脆性断层更多地表现为速度弱化 ,少量水的存在易于出现黏滑 ,高孔隙压时会表现为稳滑 ;半脆性或半延性的断层在少量水或较低孔隙压的情况下会表现出速度弱化 ,也就可能出现黏滑 ,但孔隙压较高后 ,会表现出速度强化 ,滑动也就会是稳定的 ;延性断层多为速度强化 ,不出现黏滑。提出水的进入降低了系统的稳定性 ,水的存在增加了系统的稳定性。这是考虑水或一般流体对岩体或断层活动稳定性影响时需要考虑的两个方面  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号