首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The magnitude and frequency of regional extreme precipitation events may have variability under climate change. This study investigates the time–space variability and statistical probability characteristics of extreme precipitation under climate change in the Haihe River Basin. Hydrological alteration diagnosis methods are implemented to detect the occurrence time, style and degree of alteration such as trend and jump in the extreme precipitation series, and stationarity and serial independence are tested prior to frequency analysis. Then, the historical extreme precipitation frequency and spatio‐temporal variations analyses are conducted via generalized extreme value and generalized Pareto distributions. Furthermore, the occurrence frequency of extreme precipitation events in future is analysed on the basis of the Fourth Assessment Report of the Intergovermental Panel on Climate Change multi‐mode climate models under different greenhouse gases emission scenarios (SRES‐A2, A1B and B1). Results indicate that (1) in the past, alteration of extreme precipitation mainly occurred in the area north of 38°N. Decreasing trends of extreme precipitation are detected at most stations, whereas jump alteration is not obvious at most stations. (2) Spatial variation of estimated extreme precipitation under different return periods shows similarity. Bounded by the Taihang Mountain–Yan Mountain, extreme rainfall in the Haihe River Basin gradually reduces from the southeast to the northwest, which is consistent with the geographical features of the Haihe River Basin. (3) In the future, extreme precipitation with return period 5–20 years accounts for a significant portion of the total occurrence times. The frequency of extreme precipitation events has an increase trend under A1B and A2 scenarios. The total occurrence times of extreme precipitation under A1B senario are not more than that under B1 senario until the 2030s. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Changes in climate and urban growth are the most influential factors affecting hydrological characteristics in urban and extra‐urban contexts. The assessment of the impacts of these changes on the extreme rainfall–runoff events may have important implications on urban and extra‐urban management policies against severe events, such as floods, and on the design of hydraulic infrastructures. Understanding the effects of the interaction between climate change and urban growth on the generation of runoff extremes is the main aim of this paper. We carried out a synthetic experiment on a river catchment of 64 km2 to generate hourly runoff time series under different hypothetical scenarios. We imposed a growth of the percentage of urban coverage within the basin (from 1.5% to 25%), a rise in mean temperature of 2.6 °C, and an alternatively increase/decrease in mean annual precipitation of 25%; changes in mean annual precipitation were imposed following different schemes, either changing rainstorm frequency or rainstorm intensity. The modelling framework consists of a physically based distributed hydrological model, which simulates fast and slow mechanisms of runoff generation directly connected with the impervious areas, a land‐use change model, and a weather generator. The results indicate that the peaks over threshold and the hourly annual peaks, used as hydrological indicators, are very sensitive to the rainstorm intensity. Moreover, the effects of climate changes dominate on those of urban growth determining an exacerbation of the fast runoff component in extreme events and a reduction of the slow and deep runoff component, thus limiting changes in the overall runoff.  相似文献   

3.
Risk analysis of urban flood and drought can provide useful guidance for urban rainwater management. Based on an analysis of urban climate characteristics in 2,264 Chinese cities from 1958 to 2017, this study evaluated urban flood and drought risks. The results demonstrated that the annual average values of precipitation, aridity index, frequency and intensity of extreme precipitation and extreme drought events differed significantly in these cities. The values of the above six climatic indicators in the cities ranged from 9.29–2639.30 mm, 0.47–54.73, 1.08–8.79 time, 7.82–107.25 mm, 0.76–2.99 time, and 10.30–131.19 days, respectively. The geographical patterns of urban precipitation, aridity index, intensity and frequency of extreme precipitation and drought events in China fit well to the Hu‐Huanyong Line that was created in 1940s to identify the pattern of population distribution. Extreme precipitation in most cities has upward trends, except for those around the Hu‐Huanyong Line. The extreme drought events had upward trends in the cities east of the Hu‐Huanyong Line, but there were downward trends in the cities west of the line. The risk assessment indicated that 3.80% cities were facing serious flood and 6.01% cities were facing serious drought risks, which are located in the coast of southern China and northwestern China, respectively, and other 90.19% cities were facing different types of drought and flood risks in terms of their intensity and frequency.  相似文献   

4.
Irregular variations in the temperature of the subauroral lower thermosphere during the winter stratospheric warming, which began in the first decade of December 2001 and continued to the end of the observational season (February 19, 2002), have been analyzed. The temperature measurements were based on the thermal broadening of the 557.7 nm oxygen emission measured during moonless nights at Maimaga optical station in the vicinity of Yakutsk (?=63°N, λ=129.7° E) using the Fabry-Pérot spectrometer. Isolated fragments of the map of contour lines of the horizontal temperature field and the globally averaged height-time section of the temperature at the levels of the 1, 2, 5, 10, 30, 50, and 70 hPa isobaric surfaces, obtained by the NOAA Meteorological Satellite Systems, as well as the F 10.7 and Ap indices have been used to analyze the cause-effect relation between the variations in the temperature of the subauroral lower thermosphere and winter stratospheric warming events. It is shown that, when warming is detected at heights of the lower thermosphere, the temperature can become higher than its model values by up to 20 K, which indicates that the planetary waves can penetrate to heights of the lower thermosphere and then propagate downward. In this case the atmosphere cools at heights of the lower thermosphere and tends to heat up above 10 hPa and to cool below 30 and 50 hPa; i.e., we observe the well-known fact of vertical alternation of cold and warm atmospheric regions detected during winter stratospheric warming events.  相似文献   

5.
城镇化背景下极端降水事件频发,洪涝灾害问题日益突出,探讨城镇化对极端降水的影响已成为热点与难点问题.本文以长江下游太湖平原地区为例,基于区内40个雨量站长序列的逐日资料(1976-2015年),结合城镇化下土地利用/覆被和社会经济等数据,对比分析了不同城镇化阶段极端降水相关指标的时空变化规律,并定量评估不同城镇化水平对...  相似文献   

6.
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short‐duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub‐hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth‐Duration‐Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscaling Experiment for Europe area ensemble simulations at a ~12 km spatial resolution, for the current period and 2 future horizons under the Representative Concentration Pathways 8.5 scenario. Extreme events at the daily scale were first investigated by comparing the quantiles estimated from rain gauge observations and Regional Climate Model outputs. Second, we implemented a temporal downscaling approach to estimate rainfall for sub‐daily durations from the modelled daily precipitation, and, lastly, we analysed future projections at daily and sub‐daily scales. A frequency distribution was fitted to annual maxima time series for the sub‐daily durations to derive the DDF curves for 2 future time horizons and the 2 urban areas. The overall results showed a raising of the growth curves for the future horizons, indicating an increase in the intensity of extreme precipitation, especially for the shortest durations. The DDF curves highlight a general increase of extreme quantiles for the 2 urban areas, thus underlining the risk of failure of the existing urban drainage systems under more severe events.  相似文献   

7.
On the basis of different sets of aerial photos the dynamics of the reed bed areas of Lake Constance were investigated in relation to the dynamics of the water levels. The objectives of the study were to quantify the changes of reed areas due to different flood events in the last decades and their recovery in the time periods between these events. The results should given information of the relevance of water level variations on reed bed dynamics and the regeneration times of reed beds after extreme disturbance events.Following the extreme flood at Lake Constance in 1999 the reed belts of Lake Constance lost approximately 30 ha (24%) of the lakeside reed beds. The loss is comparable to the situation in the late 1960s, when approximately 40 ha died back due to the extreme flood in 1965 and the high spring water levels in the subsequent years. In the time period between the extreme floods of 1965 and 1999, the reed areas expanded to nearly 85% of the area before 1965. The expansion rates increased with increasing distance to the flood event of 1965. Especially in periods with series of years of low spring water level the expansion rates were high.The damage degrees of the reed areas in the years 2000 and 2002 showed a clear relation to the elevation (i.e. average water level) of the stands. The damage degree increased with decreasing elevation. Furthermore the regeneration process of severely damaged stands was related to the elevation level of the stands. Whereas stands at high elevation regenerate fast, those at low elevation died off completely in the years after the extreme flood. This supports the hypothesis that the water level flutuations play a major role in the reed dynamics of Lake Constance.As a consequence of the climate change an increase in the frequency of high spring water levels is expected. Thus, it seems unlikely that reed stands will ever expand again to the same area as before 1965.  相似文献   

8.
H. Moradkhani 《水文研究》2014,28(26):6292-6308
In this study the impact of climate change on runoff extremes is investigated over the Pacific Northwest (PNW). This paper aims to address the question of how the runoff extremes change in the future compared to the historical time period, investigate the different behaviors of the regional climate models (RCMs) regarding the runoff extremes and assess the seasonal variations of runoff extremes. Hydrologic modeling is performed by the variable infiltration capacity (VIC) model at a 1/8° resolution and the model is driven by climate scenarios provided by the North American Regional Climate Change Assessment Program (NARCCAP) including nine regional climate model (RCM) simulations. Analysis is performed for both the historical (1971–2000) and future (2041–2070) time periods. Downscaling of the climate variables including precipitation, maximum and minimum temperature and wind speed is done using the quantile‐mapping (QM) approach. A spatial hierarchical Bayesian model is then developed to analyse the annual maximum runoff in different seasons for both historical and future time periods. The estimated spatial changes in extreme runoffs over the future period vary depending on the RCM driving the hydrologic model. The hierarchical Bayesian model characterizes the spatial variations in the marginal distributions of the General Extreme Value (GEV) parameters and the corresponding 100‐year return level runoffs. Results show an increase in the 100‐year return level runoffs for most regions in particular over the high elevation areas during winter. The Canadian portions of the study region reflect higher increases during spring. However, reduction of extreme events in several regions is projected during summer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Uncertainty analysis in statistical modeling of extreme hydrological events   总被引:6,自引:4,他引:2  
With the increase of both magnitude and frequency of hydrological extreme events such as drought and flooding, the significance of adequately modeling hydrological extreme events is fully recognized. Estimation of extreme rainfall/flood for various return periods is of prime importance for hydrological design or risk assessment. However, due to knowledge and data limitation, uncertainty involved in extrapolating beyond available data is huge. In this paper, different sources of uncertainty in statistical modeling of extreme hydrological events are studied in a systematic way. This is done by focusing on several key uncertainty sources using three different case studies. The chosen case studies highlight a number of projects where there have been questions regarding the uncertainty in extreme rainfall/flood estimation. The results show that the uncertainty originated from the methodology is the largest and could be >40% for a return period of 200 years, while the uncertainty caused by ignoring the dependence among multiple hydrological variables seems the smallest. In the end, it is highly recommended that uncertainty in modeling extreme hydrological events be fully recognized and incorporated into a formal hydrological extreme analysis.  相似文献   

10.
This study examines the short-range forecast accuracy of the Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) as applied to the July 2006 episode of the Indian summer monsoon (ISM) and the model's sensitivity to the choice of different cumulus parameterization schemes (CPSs), namely Betts-Miller, Grell (GR) and Kain-Fritsch (KF). The results showed that MM5 day 1 (0–24 h prediction) and day 2 (24–48 h prediction) forecasts using all three CPSs overpredicted monsoon rainfall over the Indian landmass, with the larger overprediction seen in the day 2 forecasts. Among the CPSs, the rainfall distribution over the Indian landmass was better simulated in forecasts using the KF scheme. The KF scheme showed better skill in predicting the area of rainfall for most of the rainfall thresholds. The root mean square error (RMSE) in day 1 and day 2 rainfall forecasts using different CPSs showed that rainfall simulated using the KF scheme agreed better with the observed rainfall. As compared to other CPSs, simulation using the GR scheme showed larger RMSE in wind speed prediction at 850 and 200 hPa over the Indian landmass. MM5 24-h temperature forecasts at 850 hPa with all the CPSs showed a warm bias of the order of 1 K over the Indian landmass and the bias doubled in 48-h model forecasts. The mean error in temperature prediction at 850 hPa over the Indian region using the KF scheme was comparatively smaller for all the forecast intervals. The model with all the CPSs overpredicted humidity at 850 hPa. The improved prediction by MM5 with the KF scheme is well complemented by the smaller error shown by the KF scheme in vertical distribution of heat and mean moist static energy in the lower troposphere. In this study, the KF scheme which explicitly resolve the downdrafts in the cloud column tended to produce more realistic precipitation forecasts as compared to other schemes which did not explicitly incorporate downdraft effects. This is an important result especially given that the area covered by monsoon-precipitating systems is largely from stratiform-type clouds which are associated with strong downdrafts in the lower levels. This result is useful for improving the treatment of cumulus convection in numerical models over the ISM region.  相似文献   

11.
Equatorial Pacific sea surface temperature variations interact with processes of atmospheric circulation, creating conditions for the occurrence of El Niño–Southern Oscillation (ENSO). ENSO events represent the most important interannual phenomena affecting climate patterns worldwide and causing significant socio‐economic impacts. In the Brazilian territory, ENSO leads to an increase in drought episodes in the north‐eastern region and an increase in precipitation in the southern region, whereas the effects over the south‐east region are yet not well understood. The main goal of this study is to compare variations of isotopic composition in precipitation across the south‐east portion of the Brazilian territory during two very strong ENSO events: 1997–1998 (ENSO 1) and 2014–2016 (ENSO 2). Daily isotopic records, available from the Global Network of Isotopes in Precipitation database for ENSO 1, and samples collected during ENSO 2 were used to compare the influence of both events on the isotopic composition of precipitation. Seasonal variations indicated more depleted precipitation during the wet seasons (δ18O = ?5.4 ± 4.0‰) and enriched precipitation during the dry seasons (δ18O = ?2.8 ± 2.3‰). Observed rainfall variations were associated with atmospheric large‐scale processes and moisture transport from the Amazon region, whereas extreme values (enriched or depleted) appear to be associated with particular convective and stratiform precipitation events. Overall, more depleted isotopic composition of precipitation (δ18O = ?4.60‰) and higher d‐excess (up to +15‰) were observed during the dry season of ENSO 1 when compared with ENSO 2 dry season (δ18O‰ = ?2.80‰, d‐excess lower than +14‰). The latter is explained by greater atmospheric moisture content, particularly associated with recycling of transpiration fluxes from the Amazon region, during dry season of ENSO 1. No significant differences for δ18O and δ2H were observed during the wet season; however, d‐excess from ENSO 2 was greater than ENSO 1, due to the slightly greater atmospheric moisture content and very strong upward motion observed. Our findings highlight the opportunity that environmental isotopes offer towards understanding hydrometeorological processes, particularly, the evolution of extreme climatic events of global resonance such as ENSO.  相似文献   

12.
The major sudden stratospheric warming (SSW) events of 2003–04 and 2005–06 are considered to investigate changes in equatorial convection due to circulation changes associated with the SSW events. It is observed that the SSW events are accompanied by a considerable decrease in Outgoing Longwave Radiation (OLR), a proxy for tropical convection, over equatorial latitudes (15°N–15°S) in the Indonesian sector (90°E–150°E). However, unlike noted by earlier observations, the zonal mean OLR does not show any notable relationship with the SSW events. It can be explained from the latitude–longitude map of potential vorticity (PV) at 100 hPa, which shows a tongue of high PV emanating from high latitudes towards equator and converges in the longitude band of 90°E–150°E on the day of peak warming at 1 hPa in the case of 2003–04 and 10 hPa in the case of 2005–06. The latitude-height map of Eliassen–Palm (EP) vector and its divergence show convergence of EP flux in the upper troposphere at latitudes even lower than 20°N on these days. Further, vertical winds computed from the convergence of momentum flux are upward indicating convective activity at low-latitudes and downward at mid-latitudes.  相似文献   

13.
The potential impacts of climate change can alter the risk to critical infrastructure resulting from changes to the frequency and magnitude of extreme events. As well, the natural environment is affected by the hydrologic regime, and changes in high flows or low flows can have negative impacts on ecosystems. This article examines the detection of trends in extreme hydrological events, both high and low flow events, for streamflow gauging stations in Canada. The trend analysis involves the application of the Mann–Kendall non‐parametric test. A bootstrap resampling process has been used to determine the field significance of the trend results. A total of 68 gauging stations having a nominal record length of at least 50 years are analysed for two analysis periods of 50 and 40 years. The database of Canadian rivers investigated represents a diversity of hydrological conditions encompassing different extreme flow generating processes and reflects a national scale analysis of trends. The results reveal more trends than would be expected to occur by chance for most of the measures of extreme flow characteristics. Annual and spring maximum flows show decreasing trends in flow magnitude and decreasing trends in event timing (earlier events). Low flow magnitudes exhibit both decreasing and increasing trends. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Analyses of the spatio-temporal variability of precipitation extremes defined by eleven extreme precipitation indices in Shandong were conducted by utilizing the methods of linear regression, ensemble empirical mode decomposition (EEMD) and Mann–Kendall test. The results revealed that statistically significant decreasing trends existed for almost all extreme precipitation indices except for the consecutive dry days (CDD) and simple daily intensity index. A periodicity of 10–15 years for precipitation extremes is detected by EEMD analysis. Greatest 5-day total rainfall (RX5day), very wet days (R95p) and annual total wet-day precipitation (PRCPTOT) experienced decreasing trends in the region stretching from the southeast coast to the west, while the spatial distribution of the decreasing trends for other indices was more complicated. Moreover, the frequency of occurrence in precipitation extremes at Changdao station, surrounded by the sea in the northeast region, increased in contrast to surrounding stations. This may suggest a possible effect from the local marine environment on extreme precipitation. In addition, the stations with statistically significant positive trends for CDD were mainly located in mid-west Shandong and along the southeast coast, where the extreme precipitation and total rainfall were, on the contrary, characterized by decreasing trends. These results indicate that drought or severe drought events have become more frequent in those regions. Analysis of large-scale atmospheric circulation changes indicates that a strengthening anticyclonic circulation and increasing geopotential height as well as decreasing strength of monsoonal flow in recent decades may have contributed to the variations in extreme precipitation in Shandong.  相似文献   

15.
Extreme precipitation event is rare and mostly occurs on a relatively small local scale, which presents marked uncertainties when analyzing its characteristics. Using daily precipitation data covering 1959–2009 from 62 stations over the Pearl River Basin, the percentile method (PM) and the absolute critical value method (ACVM) are applied to define extreme precipitation thresholds (EPT), and their different impacts on the spatial–temporal distribution of extreme precipitation event were analyzed in this study. The findings of this study show: (1) Using the K-means clustering algorithm in terms of precipitation indices and the topography, longitude and latitude of each station, the whole basin is divided into eight precipitation zones. (2) The extreme indices, including extreme precipitation frequency, extreme precipitation proportion and proportion of extremely n-day precipitation, calculated by PM are markedly higher than those calculated by ACVM during five decades, which is particularly obvious in the low precipitation area such as the west-northern of the basin since more daily precipitation events are treated as extreme precipitation in this region if EPT is defined by PM. (3) The spatial distributions of extreme frequencies respectively calculated by these two methods are quite different across the basin. The spatial distribution of extreme frequencies calculated by ACVM shows a high-value center in the southeast coastal areas and a low-value center in the northwest mountain areas. However, the extreme frequencies calculated by PM distribute evenly over the basin, which is obviously inconsistent with the empirical results, an area with heavy precipitation usually has a high extreme precipitation frequency, and vice versa.  相似文献   

16.
Floods and debris flows in small Alpine torrent catchments (<10 km2) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus, climate change may influence the magnitude–frequency relationship of extreme events twofold: by a modification of the occurrence probabilities of critical hydrological system conditions and by a change of event precipitation characteristics. Three small Alpine catchments in different altitudes in Western Austria (Ruggbach, Brixenbach and Längentalbach catchment) were investigated by both field experiments and process‐based simulation. Rainfall–runoff model (HQsim) runs driven by localized climate scenarios (CNRM‐RM4.5/ARPEGE, MPI‐REMO/ECHAM5 and ICTP‐RegCM3/ECHAM5) were used in order to estimate future frequencies of stormflow triggering system state conditions. According to the differing altitudes of the study catchments, two effects of climate change on the hydrological systems can be observed. On one hand, the seasonal system state conditions of medium altitude catchments are most strongly affected by air temperature‐controlled processes such as the development of the winter snow cover as well as evapotranspiration. On the other hand, the unglaciated high‐altitude catchment is less sensitive to climate change‐induced shifts regarding days with critical antecedent soil moisture and desiccated litter layer due to its elevation‐related small proportion of sensitive areas. For the period 2071–2100, the number of days with critical antecedent soil moisture content will be significantly reduced to about 60% or even less in summer in all catchments. In contrast, the number of days with dried‐out litter layers causing hydrophobic effects will increase by up to 8%–11% of the days in the two lower altitude catchments. The intensity analyses of heavy precipitation events indicate a clear increase in rain intensities of up to 10%.  相似文献   

17.
厄尔尼诺持续时间与大气环流异常形势   总被引:3,自引:0,他引:3       下载免费PDF全文
针对不同持续时间的El Nio事件,进行了大尺度大气环流及其演变的合成分析研究.其结果清楚地表明,不同持续时间的El Nio事件的发生、发展和消亡过程,对流层低层风场和对流层高层速度势场的距平都有极为显著差异.分析得到了对El Nio事件的发生和消亡起着重要作用的大气环流异常形势.还发现对于持续时间较长的El Nio事件,东北太平洋上850hPa异常气旋性环流减弱和西北太平洋上异常反气旋性环流增强较慢,因此赤道太平洋异常西风维持的时间也较长,而与澳大利亚冬季风加强相关联的南半球西太平洋的速度势正距平的维持,对El Nio的持续也起一定作用;对应持续时间较短的El Nio事件,西太平洋上200hPa速度势正距平的迅速东移,对El Nio的迅速消亡起重要作用.  相似文献   

18.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式,对中国地区1978-2000年及IPCC A1B情景下2038-2070年气候分别进行了水平分辨率为50 km的模拟试验.文章首先检验了模式模拟的当代极端气候结果,在此基础上对6个极端温度指数和6个极端降水指数的未来变化进行了预估.检验结果表明:MM5V3模式对中国地区当代日最高、最低温度及强降水(大雨和暴雨)日数的空间分布和概率特征均具有一定的模拟能力,但模拟的日最高温度在大部分地区偏低,日最低温度在南方地区偏低、西北地区偏高.概率统计结果显示日最高温度向低值频段偏移,日最低温度在0℃的峰值附近明显偏高.模式对大雨和暴雨年平均日数的模拟在东部地区偏多,概率统计结果则为一致偏大.未来中国地区极端气候预估结果表明:极端高温、极端低温和相对高温在全国范围内都将升高,且线性趋势均为上升;霜日日数则为减少,并具有下降趋势;暖日日数和相对低温在青藏高原和新疆部分地区有所减少、其它地区均为增加,且线性趋势暖日日数为上升,相对低温不明显.极端降水指数的变化具有区域特征,其中单日最大降水、连续五日最大降水、最长无雨期、强降水日数、简单降水强度和极端降水总量均在江淮、华南及西南地区有所增多,而在东北及内蒙古地区有所减少,未来中国南方地区降水的极端化趋势将更加显著.极端降水指数的线性趋势除最长无雨期外其它均为上升.  相似文献   

19.
张冬峰  石英 《地球物理学报》2012,55(9):2854-2866
采用高水平分辨率区域气候模式进行区域未来气候变化预估,对理解全球增暖对区域气候的潜在影响和科学评估区域气候变化有很好的参考价值.这里对国家气候中心使用25 km高水平分辨率区域气候模式RegCM3单向嵌套全球模式MIROC3.2_hires在观测温室气体(1951—2000)和IPCC A1B温室气体排放情景下(2001—2100)进行的共计150年长时间模拟结果,进行华北地区未来气温、降水和极端气候事件变化的分析.模式检验结果表明:模式对当代(1981—2000)气温以及和气温有关的极端气候事件(霜冻日数、生长季长度)的空间分布和数值模拟较好;对降水及和降水有关的极端气候事件(强降水日期、降水强度、五日最大降水量)能够模拟出它们各自的主要空间分布特征,但在模拟数值上存在偏大、偏强的误差.和全球模式驱动场相比,区域模式模拟的气温、降水和极端气候事件有明显的改进.2010—2100年华北地区随时间区域平均气温升高幅度逐渐增大,随之霜冻日数逐渐减少,生长季长度逐渐增多;同时随温室效应的不断加剧,未来降水呈增加的趋势,强降水日期和五日最大降水量逐渐增多、降水强度逐渐增大.从空间分布看,21世纪末期(2081—2100)气温、降水以及有关的极端气候事件变化比21世纪中期(2041—2060)更加明显.  相似文献   

20.
Widespread major flood events in both the UK and Europe over the last decade have focussed attention on perceived increases in rainfall intensities. The changing magnitude of such events may have significant impacts upon many sectors, particularly those associated with flooding, water resources and the insurance industry. Here, two methods are used to assess the performance of the HadRM3H model in the simulation of UK extreme rainfall: regional frequency analysis and individual grid box analysis. Both methods use L-moments to derive extreme value distributions of rainfall for 1-, 2-, 5- and 10-day events for both observed data from 204 sites across the UK (1961–1990) and gridded 50 km by 50 km data from the control climate integration of HadRM3H. Despite differences in spatial resolution between the observed and modelled data, HadRM3H provides a good representation of extreme rainfall at return periods of up to 50 years in most parts of the UK. Although the east–west rainfall gradient tends to be exaggerated, leading to some overestimation of extremes in high elevation western areas and an underestimation in eastern ‘rain shadowed’ regions, this suggests that the regional climate model will also have skill in predicting how rainfall extremes might change under enhanced greenhouse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号