首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
韩召华 《地震工程学报》2020,42(2):552-557,578
利用GIS技术对地震危险等级进行评定时,由于其地形控制点选取合理性较差,导致其所采集遥感图像清晰度较低,地震等级评定不够精准。针对此问题提出一种新的地震灾情遥感信息危险等级在线应急评定方法。利用图像几何校正法,对遥感图像进行分幅裁剪,基于裁剪结果选取地面控制点,提取有价值遥感数据信息,建立遥感解译评估指标。将推导出的综合震灾指数引入到指标中,将各个评价单元的信息进行等级排序和划分,完成地震灾情遥感信息危险等级在线应急评定。仿真实验中,对所提方法和GIS地震危险等级评定方法进行有效性对比测试。实验结果表明,地震灾情遥感信息危险等级在线应急评定方法提升了灾情地形控制点选取的合理性,使获取的遥感图像更清晰,灾情等级评定结果更精准。  相似文献   

2.
There is a certain degree of ambiguity associated with remote sensing as a means of performing earth observations.Using interval-valued data to describe clustering prototype features may be more suitable for handling the fuzzy nature of remote sensing data,which is caused by the uncertainty and heterogeneity in the surface spectral reflectance of ground objects.After constructing a multi-spectral interval-valued model of source data and defining a distance measure to achieve the maximum dissimilarity between intervals,an interval-valued fuzzy c-means(FCM)clustering algorithm that considers both the functional characteristics of fuzzy clustering algorithms and the interregional features of ground object spectral reflectance was applied in this study.Such a process can significantly improve the clustering effect;specifically,the process can reduce the synonym spectrum phenomenon and the misclassification caused by the overlap of spectral features between classes of clustering results.Clustering analysis experiments aimed at land cover classification using remote sensing imagery from the SPOT-5 satellite sensor for the Pearl River Delta region,China,and the TM sensor for Yushu,Qinghai,China,were conducted,as well as experiments involving the conventional FCM algorithm,the results of which were used for comparative analysis.Next,a supervised classification method was used to validate the clustering results.The final results indicate that the proposed interval-valued FCM clustering is more effective than the conventional FCM clustering method for land cover classification using multi-spectral remote sensing imagery.  相似文献   

3.
Estimation of spatially averaged denudation rates from cosmogenic nuclide concentrations in sediments depends on the surface production rates, the scaling methods of cosmic ray intensities, and the correction algorithms for skyline, snow and vegetation shielding used to calculate terrestrial cosmogenic nuclide production. While the calculation of surface nuclide production and application of latitude, altitude and palaeointensity scaling algorithms are subjects of active research, the importance of additional correction for shielding by topographic obstructions, snow and vegetation is the subject of ongoing debate. The derivation of an additional correction factor for skyline shielding for large areas is still problematic. One important issue that has yet to be addressed is the effect of the accuracy and resolution of terrain representation by a digital elevation model (DEM) on topographic shielding correction factors. Topographic metrics scale with the resolution of the elevation data, and terrain smoothing has a potentially large effect on the correction of terrestrial cosmogenic nuclide production rates for skyline shielding. For rough, high‐relief landscapes, the effect of terrain smoothing can easily exceed analytical errors, and should be taken into account. Here we demonstrate the effect of terrain smoothing on topographic shielding correction factors for various topographic settings, and introduce an empirical model for the estimation of topographic shielding factors based on landscape metrics. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

4.
In order to understand the processes of land surface-atmosphere interaction over desertification area, it is indispensable to utilize of satellite remote sensing. Two scenes of Landsat TM were used to produce a set of maps of surface reflectance, MSAVI, vegetation coverage, surface temperature, net radiation, soil heat flux, sensible heat flux and latent heat flux. Statistical analysis based on these maps revealed some quantitative significant land surface characteristics. Future developments of the method are also discussed.  相似文献   

5.
In order to understand the processes of land surface-atmosphere interaction over de-sertification area, it is indispensable to utilize of satellite remote sensing. Two scenes of LandsatTM were used to produce a set of maps of surface reflectance, MSAVI, vegetation coverage, sur-face temperature, net radiation, soil heat flux, sensible heat flux and latent heat flux. Statisticalanalysis based on these maps revealed some quantitative significant land surface characteristics.Future developments of the method are also discussed.  相似文献   

6.
MODIS影像的大气校正及在太湖蓝藻监测中的应用   总被引:7,自引:0,他引:7  
MODIS 数据有免费、波段丰富、时间分辨率高等优点,是进行太湖蓝藻监测的重要数据源,由于MODIS传感器接收的是地物反射太阳辐射的信号,太阳辐射与地球大气的相互作用会引起传感器接收到的信号失真,为了提高利用MODIS数据监测太湖蓝藻的精度,必须对其进行大气校正.本文介绍了FIAASH大气校正模型的基本原理,并对2007年4月25日MODIS数据的前七个波段进行试验,对比分析了影像大气校正前后的NDVI值以检测大气校正的效果;分析表明,大气校正前后NDVI的变化趋势基本上相同,但大气校正后的NDVI动态范围更大,校正后NDVI的平均值和标准差增大,大气校正在一定程度上有效地降低了大气对遥感影像的影响,达到了增强信息的目的;最后,利用大气校正获取的地表真实反射率数据的第二波段与第一波段的比值,运用阈值法提取蓝藻信息,经试验当阈值为1.9时提取出来的蓝藻分布图基本上与实际相符.利用MODIS影像可以快速、及时地监测蓝藻爆发的位置及爆发程度.  相似文献   

7.
The ongoing intra-continental collision between the Indian and Eurasian plates along the Himalayas has resulted in many damaging earthquakes with severe damages to man-made structures and natural landscapes due to ground shaking and ground failure, which in turn depends on geomorphological, geological and geophysical variables. Seismic susceptibility models are developed for Gangtok City by combining all the three variables using both knowledge-driven and data-driven methods on facet and grid cell terrain units. Finally, the results are critically evaluated by validation with the earthquake intensity data recorded during earthquake events. First-stage modelling attempt using different knowledge-driven methods on different terrain units shows bi-modal data distribution with low predictability due to extremely rugged topography with wide altitudinal variations within short distances. Second-stage modelling of separated population by using the same methodologies increases model predictability in which one model method describes the higher topographic levels better and the other model method is found to be better for lower topographic levels. Seismic susceptibility of the area is best described by composite models, combining different best methods of fine classification for lower and higher topographic levels having the same mapping/terrain units. Comparison of the composite models shows that the terrain unit does not play a significant role but the type of models selected determines the best possible seismic susceptibility map of the area.  相似文献   

8.
After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.  相似文献   

9.
10.
When electric soundings are made over an irregular terrain, topographic effects can influence the values of apparent resistivity and lead to erroneous 1D interpretation. A 3D finite-element method has been applied to study the topographical effect of a slope on Schlumberger soundings parallel to the strike. When the resistivity survey is performed at the top of the slope, the apparent resistivity values can be two times higher than in the flat-earth case, depending on the angle (α) and height (H) of the slope, and on the distance (X) between the sounding and the slope top. The results are presented as nondimensional curves which can be used for evaluating topographic anomalies for any value of the parameters α, H and X. It is numerically shown that the topographic effects can be removed from measurements on horizontally layered structures with an irregular earth surface. Real measurements were performed in different geological conditions over an irregular terrain. The correction method based on the nondimensional curves has been applied to the data and has enabled the determination of the correct layered ground configuration using 1D interpretation.  相似文献   

11.
Water fluxes in highly impounded regions are heavily dependent on reservoir properties. However, for large and remote areas, this information is often unavailable. In this study, the geometry and volume of small surface reservoirs in the semi-arid region of Brazil were estimated using terrain and shape attributes extracted by remote sensing. Regression models and data classification were used to predict the volumes, at different water stages, of 312 reservoirs for which topographic information is available. The power function used to describe the reservoir shapes tends to overestimate the volumes; therefore, a modified shape equation was proposed. Among the methods tested, four were recommended based on performance and simplicity, for which the mean absolute percentage errors varied from 24 to 39%, in contrast to the 94% error achieved with the traditional method. Despite the challenge of precisely deriving the flooded areas of reservoirs, water management in highly reservoir-dense environments should benefit from volume prediction based on remote sensing.  相似文献   

12.
Topographic irregularities cause some distortions of magnetotelluric (MT) fields. In the vicinity of a topographic feature, the TM-mode distortion increases with the height and inclination of the slope. It is well-known that TM-mode ( E ) topographic effects are much greater than TE-mode ( E ı) distortions.   We have made a study of MT anomalies in TM-mode due to two-dimensional topography. In order to reduce these effects, the distortion tensor stripping technique was used. After corrections, the resulting data can be interpreted as if they were obtained over a flat surface and depend only on the subsurface structure. However, this technique sometimes causes some geometrical distortions of the real subsurface structure.   One of our aims is to overcome this failure. We have modified the correction coefficients by considering the actual one-dimensional geology. Model studies showed that our approach is especially useful in removing the terrain effects on complex 2D subsurface structures.   The other purpose of this study is to emphasize the importance of a proper terrain correction for data from sites having mountainous topography over complex geology, e.g. strike-slip faults, suture zones and rift valleys. Some examples of MT data sets collected from the North Anatolian Fault Zone and from the thrust regions of the Western Taurides will be presented.  相似文献   

13.
Water vapor plays a crucial role in atmospheric processes that act over a wide range of temporal and spatial scales, from global climate to micrometeorology. The determination of water vapor distribution in the atmosphere and its changing pattern is very important. Although atmospheric scientists have developed a variety of means to measure precipitable water vapor(PWV) using remote sensing data that have been widely used, there are some limitations in using one kind satellite measurements for PWV retrieval over land. In this paper, a new algorithm is proposed for retrieving PWV over land by combining different kinds of remote sensing data and it would work well under the cloud weather conditions. The PWV retrieval algorithm based on near infrared data is more suitable to clear sky conditions with high precision. The 23.5 GHz microwave remote sensing data is sensitive to water vapor and powerful in cloud-covered areas because of its longer wavelengths that permit viewing into and through the atmosphere. Therefore, the PWV retrieval results from near infrared data and the indices combined by microwave bands remote sensing data which are sensitive to water vapor will be regressed to generate the equation for PWV retrieval under cloud covered areas. The algorithm developed in this paper has the potential to detect PWV under all weather conditions and makes an excellent complement to PWV retrieved by near infrared data. Different types of surface exert different depolarization effects on surface emissions, which would increase the complexity of the algorithm. In this paper, MODIS surface classification data was used to consider this influence. Compared with the GPS results, the root mean square error of our algorithm is 8 mm for cloud covered area. Regional consistency was found between the results from MODIS and our algorithm. Our algorithm can yield reasonable results on the surfaces covered by cloud where MODIS cannot be used to retrieve PWV.  相似文献   

14.
For airborne gravity gradiometry in rugged terrain, helicopters offer a significant advantage over fixed-wing aircraft: their ability to maintain much lower ground clearances. Crucially, this provides both better signal-to-noise and better spatial resolution than is possible with a fixed-wing survey in the same terrain. Comparing surveys over gentle terrain at Margaret Lake, Canada, and over rugged terrain at Mount Aso, Japan, demonstrates that there is some loss of spatial resolution in the more rugged terrain. The slightly higher altitudes forced by rugged terrain make the requirements for terrain correction easier than for gentle terrain. Transforming the curvature gradients measured by the Falcon gravity gradiometer into gravity and the complete set of tensor components is done by a Fourier method over gentle terrain and an equivalent source method for rugged terrain. The Fourier method is perfectly stable and uses iterative padding to improve the accuracy of the longer wavelengths. The equivalent source method relies on a smooth model inversion, and the source distribution must be designed to suit the survey design.  相似文献   

15.
Different from visible signals, thermal infrared radiances depend on both temperature and emissivity. It is a key problem for us to separate temperature and emissivity in thermal infrared remote sensing re- search. Another difficulty encountered in the retrieval of surface temperature is the correction of downwelling sky irradiance, because it is closely related to surface emissivity. When emissivity is un- known, the downwelling sky irradiance is difficult to be removed. In this paper, we introduce a correc- tion term of downwelling sky irradiance developed by Li and Becker into Wien’s approximation, to de- rive an improved ALPHA difference spectrum which is independent of temperature, and furthermore develop a correction term to remove the error of Wien’s approximation. Under the support of the above work, attractive features of Alpha derived emissivity method and ASTER TES algorithm are combined together to acquire a new Improved TES algorithm based on Corrected ALPHA Difference Spectrum (ICADS TES). Because a multi-band inversion technique is applied, and the operations of band ratios and differences are included in the algorithm, it can partly remove the influence of atmosphere and noises. Numerical simulation experiments show that for various combinations of atmosphere, land covers and surface temperatures, the algorithm is applicable and stable. Its accuracy for temperature is 0―1.5 K, and that for emissivity is 0―0.015. Compared with current TES algorithms, our method has clear physical meaning, is easy to be implemented, and is applicable for a wide temperature range and surface types. The results are not influenced by the directional characteristic of emissivity. Because ICADS TES does not need the support of a priori information of surface types, it is also not influenced by the accuracy of classification and the problem of mixture pixels. Compared with our former TES algorithm based on corrected Alpha difference spectra (CADS TES), the new algorithm takes the effect of downwelling atmospheric radiation into account. When the quantity of atmosphere radiation can be estimated precisely, the performance of ICADS TES is much better.  相似文献   

16.
Various methods for computing the terrain correction in a high‐precision gravity survey are currently available. The present paper suggests a new method that uses linear analytical terrain approximations. In this method, digital terrain models for the near‐station topographic masses are obtained by vectorizing scan images of large‐scaled topographic maps, and the terrain correction computation is carried out using a Fourier series approximation of discrete height values. Distant topography data are represented with the help of digital GTOPO30 and Shuttle Radar Topography Mission cartographic information. We formulate linear analytical approximations of terrain corrections for the whole region using harmonic functions as the basis of our computational algorithm. Stochastic modelling allows effective assessment of the accuracy of terrain correction computation. The Perm Krai case study has shown that our method makes full use of all the terrain data available from topographic maps and digital terrain models and delivers a digital terrain correction computed to a priori precision. Our computer methodology can be successfully applied for the terrain correction computation in different survey areas.  相似文献   

17.
The anisotropy of the land surface can be best described by the bidirectional reflectance distribution function (BRDF). As the field of multiangular remote sensing advances, it is increasingly probable that BRDF models can be inverted to estimate the important biological or climatological parameters of the earth surface such as leaf area index and albedo. The state-of-the-art of BRDF is the use of the linear kernel-driven models, mathematically described as the linear combination of the isotropic kernel, vo...  相似文献   

18.
The eastern Himalaya syntaxis is located at the southeastern end of the Qinghai-Tibet Plateau and is the area where the Eurasian plate collides and converges with the Indian plate. The Namjabawa is the highest peak in the eastern section of the Himalayas, and the Yarlung Zangbo River gorge is around the Namjabawa Peak. The NE-striking Aniqiao Fault with right-lateral strike-slip is the eastern boundary fault of the Namjabawa syntaxis. Motuo Fault is in the east of and parallel to the Aniqiao Fault, distributing along the valley of the Yarlung Zangbo River. The section of Yarlung Zangbo River valley at the eastern side of the Namjabawa area is located in the southern foothills of the Himalayas and belongs to the subtropical humid climate zone with dense tropical rainforest vegetation. Dense vegetation, large terrain elevation difference, strong endogenetic and exogenic forces, and abundant valley deposition bring enormous difficulty to the research on active faults in this area. Since 1990s, surface morphology can be quantitatively expressed by digital elevation models as the rapid development of remote sensing technology. Geomorphic types and their characteristics can be quantified by geomorphological parameters which are extracted from DEM data, describing geomorphologic evolution and tectonic activity. But to date, researches based on quantitative geomorphic parameters are mainly focus on the differential uplift of regional blocks. In the study and mapping of active faults, surface traces of active faults are acquired by visual interpretation of remote sensing images. It has not been reported to identify the location of active faults via the change of quantitative geomorphic parameters. The distribution map of topographic elevation variation coefficient is suitable to reflect the regional erosion cutting and topographic relief, and the places with higher topographic elevation variation coefficient are more strongly eroded. In this paper, we attempt to identify the active faults and explore their distribution in the Yarlung Zangbo Gorge in the east of the Namjabawa Peak based on the application of two quantitative geomorphic parameters, namely, the topographic slope and the elevation variation coefficient. Using the DEM data of 30m resolution, two quantitative geomorphic parameters of topographic slope and elevation variation coefficient in Namjabawa and its surrounding areas were obtained on the ArcGIS software platform. On the topographic slope distribution map, the slope of the eastern and western banks of the Yarlung Zangbo River near Motuo is steep with a slope angle of more than 30°. Under the background of steep terrain, there are gentle slope belts of 5°~25° distributing intermittently and NE-striking. On the distribution map of topographic elevation variation coefficient, the elevation variation coefficient of the Yarlung Zangbo River near Motuo is greater than 0.9. On the background of the high topographic fluctuation area, it develops gently topographic undulating belts with elevation variation coefficient of 0.2~0.9. The belts are intermittently distributed and northeastern trending. Through the field geological and geomorphological investigation and trench excavation, it is found that the abnormal strips of the above-mentioned geomorphological parameters are the locations where the active faults pass. The above results show that the quantitative analysis of the topographic slope and the coefficient of variation of elevation can help us find active faults in areas with large terrain slope, serious vegetation coverage and high denudation intensity.  相似文献   

19.
湖冰光谱特征是湖冰遥感反演的物理基础,是研究湖冰光学特性和空间分布的理论依据。本文以查干湖为例,使用ASD Field Spec 4便携式地物光谱仪采集冰封期不同类型湖冰、积雪和水体光谱,利用Savitzky-Golay滤波法和包络线去除法分析白冰、灰冰、黑冰、雪冰、积雪和水体的反射光谱特征,探索气泡对湖冰反射光谱特征的影响。积雪和雪冰、白冰和灰冰、黑冰和水体的反射特征随着波长的变化特征基本一致,冰的反射率介于积雪和水体之间,其中白冰的反射率高于灰冰和黑冰,在包络线去除结果中,黑冰和水体在440 nm吸收谷处的吸收面积为5.184和10.878、吸收深度为0.052和0.106,雪、雪冰、白冰、灰冰在800和1030 nm吸收谷处的吸收面积和吸收深度的变化表现为雪<雪冰<灰冰<白冰。气泡是影响湖冰光谱特征的重要因素,气泡使白冰反射率减小和黑冰反射率增大,并且气泡使得白冰在800/1030nm和黑冰在440 nm处的吸收面积和吸收深度减小,其中气泡大小和疏密程度的不同会导致湖冰反射率的影响程度存在差异。同时,本文选取时间同步的Landsat 8 OLI遥感影像,在完成辐...  相似文献   

20.
Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. In this study, a high resolution (30 m) global land cover dataset (GlobeLand30) produced by Chinese scientists was, for the first time, used in the Beijing Climate Center Climate System Model (BCC_CSM) to assess the influences of land cover dataset on land surface and climate simulations. A two-step strategy was designed to use the GlobeLand30 data in the model. First, the GlobeLand30 data were merged with other satellite remote sensing and climate datasets to regenerate plant functional type (PFT) data fitted for the BCC_CSM. Second, the up-scaling based on an area-weighted approach was used to aggregate the fine-resolution GlobeLand30 land cover type and area percentage with the coarser model grid resolutions globally. The GlobeLand30-based and the BCC_CSM-based land cover data had generally consistent spatial distribution features, but there were some differences between them. The simulation results of the different land cover type dataset change experiments showed that effects of the new PFT data were larger than those of the new glaciers and water bodies (lakes and wetlands). The maximum value was attained when dataset of all land cover types were changed. The positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative bias in the Amazon, as well as the negative bias of air temperature in part of the southern hemisphere, were reduced when the GlobeLand30-based data were used in the BCC_CSM atmosphere model. The results suggest that the GlobeLand30 data are suitable for use in the BCC_CSM component models and can improve the performance of the land and atmosphere simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号