首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
中旬-大具断裂南东段晚第四纪活动的地质地貌证据   总被引:1,自引:0,他引:1  
中甸-大具断裂南东段位于哈巴和玉龙雪山北麓,属于川西北次级块体西南边界,断裂总体走向310°~320°,是一条重要的边界断裂。了解该断裂的活动性质、活动时代和滑动速率等对分析川西北次级块体运动,研究该断裂与玉龙雪山东麓断裂的交切关系等问题具有重要意义。文中基于1︰5万活动断层地质填图,对断裂沿线地层地貌、陡坎地貌、地表破裂、典型断层剖面以及河流阶地等进行了详细的研究。研究表明:1)中甸-大具断裂南东段按几何结构、断错地貌表现、断裂活动性可分为马家村—大具次级段和大具—大东次级段。2)通过野外地质调查发现,马家村—大具次级段断错了全新世冲洪积扇,形成了地表破裂,为全新世活动段;而大具—大东次级段虽然也断错了晚更新—全新世地层,但其断错规模及滑动速率均较小,由此认为其全新世以来活动较弱。3)通过分析断裂沿线断层陡坎、水平位错及地表破裂等地质地貌问题,认为马家村—大具次级段的活动性质为右旋走滑兼正断,其晚更新世以来的垂直滑动速率为0. 4~0. 8mm/a,水平滑动速率为1. 5~2. 4mm/a;大具—大东次级段以右旋走滑为主、正断为辅,其晚更新世晚期以来的垂直滑动速率为0. 1mm/a。4)在大具盆地内发现的NW向地表破裂带的形成时代很年轻,不排除是1966年中甸6. 4级地震或1996年丽江7. 0级地震造成的地表破裂。  相似文献   

2.
狮子沟断裂位于柴达木盆地西南缘英雄岭背斜南翼。对狮子沟断裂晚第四纪构造变形进行分析,有助于理解该区长期的构造演化和地震地质灾害的评价。通过对该断裂带构造地貌调查、断层剖面和探槽研究,得到以下认识:狮子沟断裂是一条向SW方向逆冲的全新世活动断裂,断裂的逆冲活动一部分沿着山前分支断层,该分支错断了全新世早中期的冲洪相地层,晚更新世中期以来的最小垂直活动速率为0.12~0.15 mm/a;另一部分沿着盆地内隐伏分支断层活动,形成次级褶皱隆起,最近主要的一期构造活动发生在(97.93±7.98)~(59.43±3.42)ka间。这些晚第四纪构造变形单元分布在基岩山前以南约750 m的范围内,因此,在该区进行地震地质灾害评价时应考虑此类构造变形。  相似文献   

3.
山东半岛东北部新发现近EW向活断层   总被引:4,自引:0,他引:4       下载免费PDF全文
山东半岛东北部地区晚第四纪的构造活动以整体性抬升为主,内部的断裂活动相对较弱,晚更新世以来的断裂活动仅分布在局部地区,新发现的东殿后断裂是其中的1条。断裂总体走向近EW,全长约20km,地貌上表现为由3条河流上游组成的谷地。断裂错断的最新地层的热释光年龄为84~75kaBP,上覆坡积角砾层的热释光年龄为64kaBP,断裂发育的松软断层泥的热释光年龄为82kaBP。断裂的剖面特征和断盖地层的年龄表明,东殿后断裂的最新活动时代是晚更新世早中期,垂直活动速率不<016mm/a,晚更新世晚期以来停止活动;断裂的最大潜在地震为6级  相似文献   

4.
登登山-池家刺窝断裂位于阿尔金断裂东端宽滩山隆起的NE侧,总体走向NW,地貌上表现为醒目的断层陡坎;登登山段长约19km,池家刺窝段长约6.5km。通过卫星影像解译、探槽开挖、断错地貌测量及年龄样品测试等工作,研究了2条断裂的新活动特征。宽滩山NE麓普遍发育3级地貌面,即山前基岩侵蚀台面和冲沟I、Ⅱ级阶地。登登山断裂断错除I级阶地以外的其他地貌面,陡坎高度普遍在1.5m左右,最大高度2.6m。探槽揭露登登山断裂晚更新世以来有3次古地震事件,3次事件的总断距约2.7m,一次事件的垂直断距为0.5~1.2m,事件Ⅰ大约发生于距今5ka;事件Ⅱ大致发生于距今2×10~4a,事件Ⅲ大致发生于距今3.5×10~4a,重复间隔约1.5×10~4a,晚更新世以来的垂直滑动速率约为0.04mm/a。池家刺窝断裂断错了所有3级地貌面,陡坎最大高度为4m,一般在2m左右。探槽揭露池家刺窝断裂晚更新世以来也有3次古地震事件,3次事件的总断距约3.25m,1次事件的垂直位错为0.75~1.5m,晚更新世以来断裂垂直滑动速率为0.06mm/a。池家刺窝断裂古地震事件年代限定较差,但最新1次事件晚于登登山断裂,根据登登山断裂古地震事件的研究结果,推测池家刺窝断裂古地震重复间隔接近于登登山断裂的1.5×10~4a左右。池家刺窝断裂的最新活动时代晚于登登山断裂,1次事件的垂直位错及晚更新世以来的垂直滑动速率都比登登山断裂略大,2条断裂之间还有长约5km的不连续段,被第四纪冲洪积砂砾石层覆盖,地形平坦,断裂地貌特征不发育,这些都表明登登山断裂和池家刺窝断裂具有明显的分段活动特征。阿尔金断裂以北的登登山和池家刺窝断裂规模都不大,垂直滑动速率仅为0.04~0.06mm/a,远小于祁连山断裂及酒西盆地内NW向断裂的垂直滑动速率,反映出构造变形主要限制在高原内部及河西走廊地区,登登山和池家刺窝断裂以低滑动速率、古地震复发间隔很长(10~4a)的缓慢构造变形为特征。  相似文献   

5.
青藏高原中部温泉盆地西缘的晚新生代正断层作用   总被引:10,自引:1,他引:9       下载免费PDF全文
在青藏高原中部的温泉盆地西侧发育了1条倾向东的强烈活动的近SN正断层——温泉盆地西缘断裂。它是在印度板块与欧亚板块强烈碰撞的背景下,青藏高原中北部地区自晚新生代以来发生近EW向伸展变形的产物。晚新生代以来,该断裂上的最大垂直错动量不会<21km,错动中生代褶皱地层所暗示的最大垂直位移量为(60±22)km。第四纪期间,该断裂发生了多期活动,形成了山前的多套断层三角面和多级断层陡坎地貌。根据断裂垂直错动晚第四纪期间不同时代的地层和地貌体所形成的断层崖高度估算,其晚第四纪以来的最大活动速率不超过12mm/a,平均活动速率为045mm/a。初步的探槽分析表明,晚更新世末期以来沿该断裂至少发生了3次震级不同的古地震事件。综合该断裂的全新世活动特点推断,它是在未来具有较大可能发生6~7级地震的一条重要控震断裂  相似文献   

6.
深井盆地南缘断裂特征与活动性研究   总被引:1,自引:0,他引:1  
深井盆地是山西断陷盆地带北段内部一个规模很小的次级盆地,为中更新世以来发育的三角型山间小型盆地。盆地附近断裂发育,构造复杂,深井盆地南缘断裂为主控边界断裂,控制着盆地的发展演化。本文通过对地形地貌、断裂剖面、地层测年及地震活动等方面的分析和研究,获得了断裂活动时代和活动速率等参数,综合阐述了断裂的空间展布及活动特征。研究表明:深井盆地南缘断裂晚第四纪期间仍在活动,最新活动时代为晚更新世晚期;断裂具有分段性,西段长约6km,多处可见断裂错断晚更新世地层剖面,属正断倾滑性质;东段表现为盆地与黄土斜坡直接接触,由西向东断裂地貌表现逐渐减弱,未见明显的断裂剖面,止于NW向构造,附近发生的4次4 3/4级地震与该段断裂关系密切。  相似文献   

7.
龙陵-瑞丽断裂(南支)北段晚第四纪活动性特征   总被引:5,自引:0,他引:5       下载免费PDF全文
遥感影像解译和野外地质地貌调查表明,龙陵-瑞丽断裂(南支)北段是以左旋走滑为主兼张性正断的区域性活动断裂。根据一些断错地貌点的大比例尺填图、实地测量及其年代学分析,确定了该断裂为全新世活动断裂,断裂晚更新世以来的平均水平滑动速率为2.2mm/a,平均垂直滑动速率为0.6mm/a;全新世以来的平均水平滑动速率为1.8~3.0mm/a,平均垂直滑动速率为0.5mm/a。断裂晚更新世以来的滑动速率在不同的时间尺度上变化不大,反映了该断裂晚更新世以来的活动强度比较平稳  相似文献   

8.
在1:5万活断层地质地貌填图的基础上,对韩城断裂的构造地貌特征及晚第四纪活动性进行了详细研究。依据断裂的构造地貌、活动性及几何展布特征等将断裂自北向南分为3段:西硙口至盘河段、盘河至行家堡段和行家堡至义井段。断裂的活动性自NE向SW是逐渐变弱的。西硙口至盘河段为典型的盆山地貌,全新世活动,全新世中期以来的垂直滑动速率估算0.8mm/a;盘河至行家堡段,断裂沿黄土台地前缘展布,晚更新世晚期活动,晚更新世晚期以来的垂直滑动速率约为0.49mm/a;行家堡至义井段,断裂伸入渭河盆地北部黄土塬中,晚更新世早期黄土中发育裂隙及砂土液化现象。  相似文献   

9.
阿尔金活动断裂带东段的滑动速率由西向东逐渐减小,而肃北是阿尔金断裂东段滑动速率的"突变点"之一。在肃北以东分布多条分支断裂,野马河北侧断裂便是其中的一条。野马河北侧断裂长约30km,总体走向NEE,该断裂沿野马河盆地北侧山前洪积扇延伸,沿断裂具有大量的左旋走滑和逆冲等地貌现象,多处冲沟出露有断层剖面。野外调查结果表明该断裂是一条左旋走滑兼逆冲断裂,错断了晚更新世时期形成的洪积扇或冲沟阶地。通过实测得到地貌面左旋、垂直错动数据,并采集样品测试相关地貌面的年龄,估算该断裂晚更新世以来的平均水平滑动速率为(1.27±0.18)mm/a,平均逆冲速率为(0.4±0.07)mm/a,该断裂分解了阿尔金断裂东段的部分运动量  相似文献   

10.
临潼-长安断裂带晚第四纪以来的活动性   总被引:1,自引:0,他引:1  
对临潼-长安断裂带进行了详细的野外调查,以期掌握其最新活动年代和第四纪以来的活动特征。该断裂总体走向NE,以张性垂直运动为主,断面明显错断了黄土中的第1层古土壤S1,说明其晚更新世以来仍在活动,并且北段和中段的活动性比南段强,但是错距大多<2m,滑动速率较小,考虑到临潼-长安断裂带由多条次级断层组成,其整体活动性应该比我们计算得到的局部断层滑动速率大得多。断层错距自上而下成递增趋势,并且根据不同地层年代计算出的滑动速率基本一致,因此该断裂带自中更新世晚期以来极可能以垂向蠕滑活动为主  相似文献   

11.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

12.
Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.  相似文献   

13.
滇西北通甸-巍山断裂中段的晚第四纪滑动速率   总被引:2,自引:0,他引:2       下载免费PDF全文
通甸-巍山断裂属于红河断裂带的分支断裂,目前对该断裂中段的晚第四纪活动特征研究较少。野外地质地貌调查和年代学研究结果表明,通甸-巍山断裂中段是以右旋走滑运动为主,兼有张性正断的全新世活动断裂,其最新活动时代距今约2.2ka。晚更新世中晚期以来断裂中段平均水平滑动速率为1.25mm/a,全新世晚期以来垂直运动趋于增强。该研究不仅为该断裂的地震危险性评价工作提供了基础资料,而且有助于理解川滇菱形块体西南边界构造变形的空间分配特点  相似文献   

14.
北西走向的桥头集-东关断裂与郯庐断裂带南段相交切,横跨合肥盆地及其东缘的隆起区,在合肥盆地内呈隐伏状态。本研究跨桥头集-东关断裂合肥盆地段布设3条浅层地震勘探测线,揭示断裂浅部构造特征。解译出的FP1、FP2和FP3断层性质相同,倾向一致,上断点深度相近,反映出桥头集-东关断裂合肥盆地段是一条走向NW、倾向SW、具有逆断分量的断裂。3条浅层地震反射剖面中第四系的底界面反射波组TQ呈连续近水平展布,表明桥头集-东关断裂两侧的第四系厚度无明显变化。在浅震剖面解译的基础上,布设了1条跨断层钻孔联合剖面,剖面揭露出的第四系没有被错动。结合本区第四系地层发育情况及钻孔地层年龄分析,认为桥头集-东关断裂中更新世以来不活动。根据本文探测结果,尚不能排除桥头集-东关断裂早更新世有一定的弱活动。  相似文献   

15.
通过卫星影像解译、野外实地调查和地质填图,获得滇西南地区澜沧断裂的基本特征和活动性参数,澜沧断裂属于龙陵—澜沧新生地震断裂带的东南段,北起耿马县联合村,向南东经澜沧县哈卜吗、战马坡、大塘子至澜沧县城东南,总体走向NNW,长度约85km。该断裂为一条全新世活动的右旋走滑断裂,兼具倾滑分量,沿断裂形成了丰富的断错地貌现象,主要表现为断层陡崖、冲沟右旋、断层陡坎、断层沟槽、断层垭口和断陷凹坑等。通过详细的野外考察,选择典型断错地貌进行差分GPS测量,结合所获相应地貌面的年代数据,得到该断裂全新世以来平均右旋走滑速率为(4.2±2.3)mm/a,其结果与现今GPS观测所得速率相当,反映了该断裂长期以来滑动速率的稳定性。同时根据岩体的最大位错量4.6~4.8km,估算断裂开始右旋走滑的时代为距今约1.1 Ma,即早更新世晚期。  相似文献   

16.
详细研究了离石北部一带阶地的地层地貌特征,并尝试对吕梁山山体的隆升进行分析探讨。结果表明,晚更新世以来该区有过三次间歇性隆升,并且三级阶地形成以来即晚更新世早期山体隆升相对快速强烈,二级阶地形成以来即晚更新世晚期至全新世时期山体隆升处于相对缓慢的过程。  相似文献   

17.
The Shanxi Graben System is one of the intracontinental graben systems developed around the Ordos Block in North China since the Cenozoic, and it provides a unique natural laboratory for studying the long-term tectonic history of active intracontinental normal faults in an extensional environment. Comparing with the dense strong earthquakes in its central part, no strong earthquakes with magnitudes over 7 have been recorded historically in the Jin-Ji-Meng Basin-and-Range Province of the northern Shanxi Graben System. However, this area is located at the conjunction area of several active-tectonic blocks(e.g. the Ordos, Yan Shan and North China Plain blocks), thus it has the tectonic conditions for strong earthquakes. Studying the active tectonics in the northern Shanxi Graben System will thus be of great significance to the seismic hazard assessment. Based on high-resolution remote sensing image interpretations and field investigations, combined with the UAV photogrammetry and OSL dating, we studied the late Quaternary activity and slip rate of the relatively poorly-researched Yanggao-Tianzhen Fault(YTF)in the Jin-Ji-Meng Basin-and-Range Province and got the followings: 1)The YTF extends for more than 75km from Dashagou, Fengzhen, Inner Mongolia in the west to Yiqingpo, Tianzhen, Shanxi Province in the east. In most cases, the YTF lies in the contact zone between the bedrock mountain and the sediments in the basin, but the fault grows into the basin where the fault geometry is irregular. At the vicinity of the Erdun Village, Shijiudun Village, and Yulinkou Village, the faults are not only distributed at the basin-mountain boundary, we have also found evidence of late Quaternary fault activity in the alluvial fans that is far away from the basin-mountain boundary. The overall strike of the fault is N78°E, but the strike gradually changes from ENE to NE, then to NWW from the west to the east, with dips ranging from 30° to 80°. 2)Based on field surveys of tectonic landforms and analysis of fault kinematics in outcrops, we have found that the sense of motion of the YTF changes along its strikes: the NEE and NE-striking segments are mainly normal dip-slip faults, while the left-laterally displaced gullies on the NWW segment and the occurrence characteristics of striations in the fault outcrop indicate that the NWW-striking segment is normal fault with minor sinistral strike-slip component. The sense of motion of the YTF determined by geologic and geomorphic evidences is consistent with the relationship between the regional NNW-SSE extension regime and the fault geometry. 3)By measuring and dating the displaced geologic markers and geomorphic surfaces, such as terraces and alluvial fans at three sites along the western segment of the YTF, we estimated that the fault slip rates are 0.12~0.20mm/a over the late Pleistocene. In order to compare the slip rate determined by geological method with extension rate constrained by geodetic measurement, the vertical slip rates were converted into horizontal slip rate using the dip angles of the fault planes measured in the field. At Zhuanlou Village, the T2 terrace was vertically displaced for(2.5±0.4)m, the abandonment age of the T2 was constrained to be(12.5±1.6)ka, so we determined a vertical slip rate of(0.2±0.04)mm/a using the deformed T2 terrace and its OSL age. For a 50°dipping fault, it corresponds to extension rate of(0.17±0.03)mm/a. At Pingshan Village, the vertical displacement of the late Pleistocene alluvial fan is measured to be(5.38±0.83)m, the abandonment age of the alluvial fan is(29.7±2.5)ka, thus we estimated the vertical slip rate of the YTF to(0.18±0.02)mm/a. For a 65° dipping fault, it corresponds to an extension rate of(0.09±0.01)mm/a. Ultimately, the corresponding extensional rates were determined to be between 0.09mm/a and 0.17mm/a. Geological and geodetic researches have shown that the northern Shanxi Graben System are extending in NNW-SSE direction with slip rates of 1~2mm/a. Our data suggests that the YTF accounts for about 10% of the crustal extension rate in the northern Shanxi Graben System.  相似文献   

18.
The Dengdengshan and Chijiaciwo faults situate in the northeast flank of Kuantanshan uplift at the eastern terminal of Altyn Tagh fault zone, striking northwest as a whole and extending 19 kilometers and 6.5 kilometers for the Dengdengshan and Chijiaciwo Fault, respectively. Based on satellite image interpretation, trenching, faulted geomorphology surveying and samples dating etc., we researched the new active characteristics of the faults. Three-levels of geomorphic surfaces, i.e. the erosion rock platform, terrace I and terrace Ⅱ, could be found in the northeast side of Kuantanshan Mountain. The Dengdengshan Fault dislocated all geomorphic surfaces except terrace I, and the general height of scarp is about 1.5 meters, with the maximum reaching 2.6 meters. Three paleoseismic events are determined since late Pleistocene through trenching, and the total displacement of three events is about 2.7 meters, the average vertical dislocation of each event changed from 0.5 to 1.2 meters. By collecting age samples and dating, the event Ⅰ occurred about 5ka BP, event Ⅱ occurred about 20ka BP, and event Ⅲ occurred about 35ka BP. The recurrence interval is about 15ka BP; and the vertical slip rate since the late Pleistocene is about 0.04mm/a. The Chijiaciwo Fault, however, dislocated all three geomorphic surfaces, and the general scarp height is about 2.0 meters with the maximum up to 4.0 meters. Three paleoseismic events are determined since late Pleistocene through trenching, and the total displacement of three events is about 3.25 meters, the average vertical dislocation of each event changed from 0.75 to 1.5 meters, and the vertical slip rate since the late Pleistocene is about 0.06mm/a. Although the age constraint of paleoearthquakes on Chijiaciwo Fault is not as good as that of Dengdengshan Fault, the latest event on Chijiaciwo Fault is later than Dengdengshan Fault's. Furthermore, we infer that the recurrence interval of Chijiaciwo Fault is 15ka BP, which is close to that of Dengdengshan Fault. The latest event on Chijiaciwo Fault is later than the Dengdengshan Fault's, and the vertical displacement and the slip rate of a single event in late Quaternary are both larger than that of Dengdengshan Fault. Additionally, a 5-kilometer-long discontinuity segment exists between these two faults and is covered by Quaternary alluvial sand gravel. All these indicate that the activity of the Chijiaciwo Fault and Dengdengshan Fault has obvious segmentation feature. The size of Chijiaciwo Fault and Dengdengshan Fault are small, and the vertical slip rate of 0.04~0.06mm/a is far smaller than that of Qilianshan Fault and the NW-striking faults in Jiuxi Basin. All these indeicate that the tectonic deformation of this region is mainly concentrated on Hexi Corrider and the interior of Tibet Plateau, while the activties of Chijiaciwo and Dengdengshan faults are characterized by slow slip rate, long recurrence interval(more than 10ka)and slow tectonic deformation.  相似文献   

19.
The relationship between the latest activity of active fault and seismic events is of the utmost importance. The Tan-lu fault zone in eastern China is a major fault zone, of which the active characteristics of the segments in Jiangsu, Shandong and Anhui has been the focus of research. This study takes the Dahongshan segment of the Tanlu Fault in Sihong County as the main research area. We carried out a detailed geological survey and excavated two trenches across the steep slope on the southwest side of the Dahongshan. Each trench shows fault clearly. Combining the comparative analysis of previous work, we identified and cataloged the late Quaternary deformation events and prehistoric earthquake relics, and analyzed the activity stages and behavior of this segment. Fault gonge observed in the trench profiles shows that multiple earthquake events occurred in the fault. The faulting dislocated the Neogene sandstone, black gravel layer and gray clay layer. Brown clay layer is not broken. According to the relations of dislocated stratums, corresponding 14C and OSL samples were collected and dated. The result indicates that the Dahongshan segment of the Tanlu Fault has experienced strong earthquakes since the late Quaternary. Thrust fault, normal fault and strike-slip fault are found in the trenches. The microscopic analysis of slices from fault shows that there are many stick-creep events taking place in the area during the late Quaternary. Comprehensive analysis shows that there have been many paleoearthquakes in this region since the late Quaternary, the recent active time is the late Pleistocene, and the most recent earthquake event occurred in(12~2.5ka BP). The neotectonic activity is relatively weak in the Anhui segment(south of the Huaihe River)of Tanlu fault zone. There are difficulties in the study of late Quaternary activity. For example, uneven distribution of the Quaternary, complex geological structure, larger man-made transformation of surface and so on. The progressive research may be able to promote the study on the activity of the Anhui segment of Tanlu fault zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号