首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sanweishan fault is located in the northern margin of the Tibetan plateau. It is a branch of the Altyn Tagh fault zone which extends to the northwest. A detailed study on Late Quaternary activity characteristics of the Sanwei Shan Fault can help understanding the strain distribution of the Altyn Tagh fault zone and regional seismic activity and northward growth of the Tibetan plateau. Previous research on this fault is insufficient and its activity is a controversial issue. Based on satellite images interpretation, field investigations and geological mapping, this study attempts to characterize this feature, especially its activity during Late Quaternary. Trench excavation and sample dating permit to address this issue, including determination of paleoseismic events along this fault. The results show that the Sanweishan fault is a large-scale active structure. It starts from the Shuangta reservoir in the east, extending southward by Shigongkouzi, Lucaogou, and Shugouzi, terminates south of Xishuigou, with a length of 175km. The fault trends in NEE, dipping SE at angles 50°~70°. It is characterized by left-lateral strike-slip with a component of thrust and local normal faulting. According to the geometry, the fault can be divided into three segments, i.e. Shuangta-Shigongkouzi, Shigongkouzi-Shugouzi and Shugouzi-Xishuigou from east to west, looking like a left-or right-step pattern. Plenty of offset fault landforms appear along the Sanweishan Fault, including ridges, left-lateral strike-slip gullies, fault scarps, and fault grooves. The trench study at the middle and eastern segments of the fault shows its activity during Late Pleistocene, evidenced by displaced strata of this epoch. Identification marks of the paleoearthquakes and sample dating reveal one paleoearthquake that occurred at(40.3±5.2)~(42.1±3.9) ka.  相似文献   

2.
青藏高原北部大型走滑断裂带近地表地质变形带特征分析   总被引:19,自引:9,他引:19  
阿尔金断裂带、东昆仑断裂带和海原断裂带是青藏高原北部的大型左旋走滑断裂带,具有相对高的地质和GPS滑动速率,地表破裂型地震频发。在阿尔金断裂带阿克塞老城西和半果巴、东昆仑断裂带西大滩和玛沁、海原断裂带松山等地点的探槽地质剖面揭露了这些走滑断裂带累积地质变形带的基本特征。阿尔金断裂带半果巴探槽和阿克塞老城西探槽、东昆仑断裂带西大滩探槽和玛沁探槽揭露出的地质变形带宽度约12m左右;海原断裂带松山拉分盆地边界单条走滑断层地质变形带宽度不足10m,考虑到地震期间拉分盆地可能会出现较严重的变形,则拉分盆地本身也应作为强变形带处理。由此可见,经历过多个地震地表破裂循环的东昆仑断裂带、海原断裂带和阿尔金断裂带其地质变形带的宽度是有限的,具有变形局部化特征。单条走滑断层的地质变形带宽度一般为10余米,比较保守地估计应<30m,走滑断层斜列阶区的地质变形带宽度取决于阶区本身的宽度  相似文献   

3.
新疆于田M<‘s>7.3地震发生在西昆仑块体与昆仑-柴达木-祁连块体之间的阿尔金断裂西南端NE向张剪切段邻近区域,也是阿尔金断裂、康西瓦断裂和昆仑断裂带西端玛尔盖茶卡断裂等交会部位,对理解青藏高原的变形及其动力学演化过程具有十分重要的作用.高分辨率卫星影像解译和野外考察表明,于田地震在阿什库勒火山群南部玉龙喀什河源头近...  相似文献   

4.
Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement. In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault. We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment. We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures. Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013). When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.  相似文献   

5.
The Ebomiao Fault is a newly discovered active fault near the block boundary between the Tibetan plateau and the Alashan Block. This fault locates in the southern margin of the Beishan Mountain, which is generally considered to be a tectonically inactive zone, and active fault and earthquake are never expected to emerge, so the discovery of this active fault challenges the traditional thoughts. As a result, studying the new activity of this fault would shed new light on the neotectonic evolution of the Beishan Mountain and tectonic interaction effects between the Tibetan plateau and the Alashan Block. Based on some mature and traditional research methods of active tectonics such as satellite image interpretation, trenches excavation, differential GPS measurement, Unmanned Aircraft Vehicle Photogrammetry(UAVP), and Optical Stimulated Luminescence(OSL)dating, we quantitatively study the new activity features of the Ebomiao Fault.
Through this study, we complete the fault geometry of the Ebomiao Fault and extend the fault eastward by 25km on the basis of the 20km-fault trace identified previously, the total length of the fault is extened to 45km, which is capable of generating magnitude 7 earthquake calculated from the empirical relationships between earthquake magnitude and fault length. The Ebomiao Fault is manifested as several segments of linear scarps on the land surface, the scarps are characterized by poor continuity because of seasonal flood erosion. Linear scarps are either north- or south-facing scarps that emerge intermittently. Fourteen differential GPS profiles show that the height of the north-facing scarps ranges from (0.22±0.02)m to (1.32±0.1)m, and seven differential GPS profiles show the height of south-facing scarps ranging from (0.33±0.1)m to (0.64±0.1)m. To clarify the causes of the linear scarps with opposite-facing directions, we dug seven trenches across these scarps, the trench profiles show that the south-dipping reverse faults dominate the north-facing scarps, the dipping angles range from 23° to 86°. However, the south-facing scarps are controlled by south-dipping normal faults with dipping angles spanning from 60° to 81°.
The Ebomiao Fault is dominated by left-lateral strike-slip activity, with a small amount of vertical-slip component. From the submeter-resolution digital elevation models(DEM)constructed by UAVP, the measured left-lateral displacement of 19 gullies in the western segment of the Ebomiao Fault are(3.8±0.5)~(105±25)m, while the height of the north-facing scarps on this segment are(0.22±0.02)~(1.32±0.10)m(L3-L7), the left-lateral displacement is much larger than the scarp height. In this segment, there are three gullies preserving typical left-lateral offsets, one gully among them preserves two levels of alluvial terraces, the terrace riser between the upper terrace and the lower terrace is clear and shows horizontal offset. Based on high-resolution DEM interpretation and displacement restoration by LaDiCaoz software, the left-lateral displacement of the terrace riser is measured to be(16.7±0.5)m. The formation time of the terrace riser is approximated by the OSL age of the upper terrace, which is (11.2±1.5)ka BP at (0.68±0.03)m beneath the surface, and(11.4±0.6)ka at (0.89±0.03)m beneath the surface, the OSL age (11.2±1.5)ka BP at (0.68±0.03)m beneath the surface is more close to the formation time of the upper terrace because of a nearer distance to sediment contact between alluvial fan and eolian sand silt. Taking the (16.7±0.5)m left-lateral displacement of the terrace riser and the upper terrace age (11.2±1.5)ka, we calculate a left-lateral strike-slip rate of(1.52±0.25)mm/a for the Ebomiao Fault. The main source for the slip rate error is that the terrace risers on both walls of the fault are not definitely corresponded. The north wall of the fault is covered by eolian sand, we can only presume the location of terrace riser by geomorphic analysis. In addition, the samples used to calculate slip rate before were collected from the aeolian sand deposits on the north side of the fault, they are not sediments of the fan terraces, so they could not accurately define the formation age of the upper terrace. This study dates the upper terrace directly on the south wall of the fault.
Since the late Cenozoic, the new activity of the Ebomiao Fault may have responded to the shear component of the relative movement between the Tibetan plateau and the Alashan Block under the macroscopic geological background of the northeastern-expanding of the Tibetan plateau. The north-facing fault scarps are dominated by south-dipping low-angle reverse faults, the emergence of this kind of faults(faults overthrusting from the Jinta Basin to the Beishan Mountain)suggests the far-field effect of block convergence between Tibetan plateau and Alashan Block, which results in the relative compression and crustal shortening. As for whether the Ebomiao Fault and Qilianshan thrust system are connected in the deep, more work is needed.  相似文献   

6.
2014年2月12日在新疆于田发生7.3级地震,震中位于阿尔金断裂西段,这是继2008年3月21日于田7.3级地震后在塔里木盆地南侧发生的第2次7级地震。这次于田7.3级地震的余震主体沿NE向分布,余震区的西南段呈近SN向分布;绝大部分余震与前震在余震区西南密集分布,强余震(全部的5级以上地震和81%的4级地震)绝大多数都分布在这个区域,第1天的余震主要在这个区域呈近SN向分布,余震由西向东扩展。在这次于田地震的近SN方向上曾在1982、2011以及2012年先后发生过几次6级左右的地震,而这次地震填补了其中的空段。文中从区域构造环境、地震震源机制解和余震分布特征等方面,分析这次地震的发震过程,认为地震发生在硝尔库勒盆地南缘的分支断裂,受阿尔金断裂带构造应力影响,硝尔库勒盆地受到局部近EW向的拉张作用力,首先沿近SN向破裂,这个构造部位的解锁,促进阿尔金断裂左旋错动,产生NE向破裂,应力向东传递;文中还对有历史记录以来,阿尔金断裂上7级地震的发震构造及其对阿尔金断裂带的影响进行了讨论。  相似文献   

7.
The northern margin of the Qinghai-Tibet Plateau is currently the leading edge of uplift and expansion of the plateau. Over the years, a lot of research has been carried out on the deformation and evolution of the northeastern margin of the Qinghai-Tibet Plateau, and many ideas have been put forward, but there are also many disputes. The Altyn Tagh Fault constitutes the northern boundary of the Qinghai-Tibet Plateau, and there are two active faults on the north side of the Altyn Tagh Fault, named Sanweishan Fault with NEE strike and Nanjieshan Fault with EW strike. Especially, studies on the geometric and kinematic parameters of Sanweishan Fault since the Late Quaternary, which is nearly parallel with the Altyn Tagn Fault, are of great significance for understanding the deformation transfer and distribution in the northwestward extension of the Qinghai-Tibet Plateau. Therefore, interpretation of the fault landforms and statistical analysis of the horizontal displacement on the Sanweishan Fault and its newly discovered western extension are carried out in this paper. We believe that the Sanweishan Fault is an important branch of the eastern section of the Altyn Tagh fault zone. It is located at the front edge of the northwestern Qinghai-Tibet Plateau and is a left-lateral strike-slip and thrust active fault. Based on the interpretation of satellite imagery and microgeomorphology field investigation of Sanweishan main fault and its western segments, it's been found that the Sanweishan main fault constitutes the contact boundary between the Sanweishan Mountain and the alluvial fans. In the bedrock interior and on the north side of the Mogao Grottoes, there are also some branch faults distributed nearly parallel to the main fault. The main fault is about 150km long, striking 65°, mainly dipping SE with dip angles from 50° to 70°. The main fault can be divided into three segments in the spatial geometric distribution:the western segment(Xizhuigou-Dongshuigou, I), which is about 35km long, the middle segment(Dongshuigou-Shigongkouzi, Ⅱ), about 65km long, and the east segment(Shigongkouzi-Shuangta, Ⅲ), about 50km long. The above three segments are arranged in the left or right stepovers. In the west of Mingshashan, it's been found that the fault scarps are distributed near Danghe Reservoir and Yangguan Town in the west of Minshashan Mountain, and we thought those scarps are the westward extension of the main Sanweishan Fault. Along the main fault and its western extension, the different levels of water system(including gullies and rills)and ridges have been offset synchronously, forming a series of fault micro-geomorphology. The scale of the offset water system is proportional to the horizontal displacement. The frequency statistical analysis of the horizontal displacement shows that the displacement has obvious grouping characteristics, which are divided into 6 groups, and the corresponding peaks are 3.4m, 6.7m, 11.4m, 15m, 22m and 26m, respectively. Among them, 3.4m represents the coseismic displacement of the latest ancient earthquake event, and the larger displacement peak represents the accumulation of coseismic displacements of multi-paleoearthquake events. This kind of displacement characterized by approximately equal interval increase indicates that the Sanweishan Fault has experienced multiple characteristic earthquakes since the Late Quaternary and has the possibility of occurrence of earthquakes greater than magnitude 7. The distribution of displacement and structural transformation of the end of the fault indicate that Sanweishan Fault is an "Altyn Tagh Fault"in its infancy. The activities of Sanweishan Fault and its accompanying mountain uplift are the result of the transpression of the northern margin of the Qinghai-Tibet Plateau, representing one of the growth patterns of the northern margin of the plateau.  相似文献   

8.
2014年于田7.3级地震的发震构造及动力学背景的初步分析   总被引:3,自引:0,他引:3  
2004年2月12日新疆维吾尔自治区于田县发生了Ms7.3级地震,其发震断裂为阿尔金断裂带西南段的贡嘎错断裂带.由于地处高山无人区,存在区域历史地震漏记,但1970年以来5级以上地震活动是完整的,近20年来强震活动增强.综合分析认为,2008年于田Ms7.3地震可能加速了本次地震的发生.根据经验统计关系估计,2014年于田地震的同震地表破裂为30-40km,最大水平位错量为1.0-1.5m,地震的复发周期为300-400年.通过阿尔金断裂上前人资料和区域构造的综合分析,认为2014年于田地震是在青藏高原向北东运动背景下左旋走滑的阿尔金断裂向南西端扩展的结果.  相似文献   

9.
阳关断裂位于青藏高原北部阿尔金断裂系向北扩展的前缘位置,对其几何学和运动学的深入研究,有助于理解青藏高原向大陆内部扩展的机制。文章通过卫星影像解译、探槽开挖、差分GPS及无人机测量等对阳关断裂开展了详细研究。结果显示:阳关断裂东段发育多条正反向断层陡坎,断层陡坎高度在0.4~8 m之间,平均约2.2 m,探槽揭示断裂倾角约60°,形成高角度逆断层,局部发育正断层;西段断裂向北西前缘扩展,形成一组弧形分布的断层陡坎,陡坎高度多在0.9~2.4 m,平均约1.9 m。同时自南向北,逆冲断层陡坎形态由多级陡坎转为单一陡坎。对探槽剖面分析,显示断裂断错晚更新世冲洪积砾石层,发育的断层倾角较缓,以低角度逆冲为主要特征,约26°,有的甚至沿地层向前推覆。结合前人的研究成果,阳关断裂可能为本区阿尔金向北扩展的北边界,与三危山断裂共同协调吸收了阿尔金断裂东段的部分应变量。  相似文献   

10.
The Gobi Altai region of southwestern Mongolia is a natural laboratory for studying processes of active, transpressional, intracontinental mountain building at different stages of development. The region is structurally dominated by several major E—W left-lateral strike-slip fault systems. The North Gobi Altai fault system is a seismically active, right-stepping, left-lateral, strike-slip fault system that can be traced along the surface for over 350 km. The eastern two-thirds of the fault system ruptured during a major earthquake (M = 8.3) in 1957, whereas degraded fault scarps cutting alluvial deposits along the western third of the system indicate that this segment did not rupture during the 1957 event but has been active during the Quaternary. The highest mountains in the Gobi Altai are restraining bend uplifts along the length of the fault system. Detailed transects across two of the restraining bends indicate that they have asymmetric flower structure cross-sectional geometries, with thrust faults rooting into oblique-slip and strike-slip master faults. Continued NE-directed convergence across the fault system, coupled with left-lateral strike-slip displacements, will lead to growth and coalescence of the restraining bends into a continuous sublinear range, possibly obscuring the original strike-slip fault system; this may be a common mountain building process.

The largely unknown Gobi-Tien Shan fault system is a major left-lateral strike-slip fault system (1200 km + long) that links the southern ranges of the Gobi Altai with the Barkol Tagh and Bogda Shan of the easternmost Tien Shan in China. Active scarps cutting alluvial deposits are visible on satellite imagery along much of its central section, indicating Quaternary activity. The total displacement is unknown, but small parallel splays have apparent offsets of 20 + km, suggesting that the main fault zone has experienced significantly more displacement. Field investigations conducted at two locations in southwestern Mongolia indicate that late Cenozoic transpressional uplift is still active along the fault system. The spatial relationship between topography and active faults in the Barkol Tagh and Bogda Shan strongly suggests that these ranges are large, coalescing, restraining bends that have accommodated the fault's left-lateral motion by thrusting, oblique-slip displacement and uplift. Thus, from a Mongolian perspective, the easternmost Tien Shan formed where it is because it lies at the western termination zone of the Gobi-Tien Shan fault system. The Gobi-Tien Shan fault system is one of the longest fault systems in central Asia and, together with the North Gobi Altai and other, smaller, subparallel fault systems, is accommodating the eastward translation of south Mongolia relative to the Hangay Dome and Siberia. These displacements are interpreted to be due to eastward viscous flow of uppermost mantle material in the topographically low, E–W trending corridor between the northern edge of the Tibetan Plateau and the Hangay Dome, presumably in response to the Indo-Eurasian collision 2500 km to the south.  相似文献   


11.
王纪强  王冬雷  鹿子林  张建民 《地震》2020,40(4):115-128
利用地质地貌调查、 探槽、 工程探测以及年代测试等方法, 对双山—李家庄断裂的地表破裂形态、 最新活动性以及古地震事件展开研究。 结果表明: ① 双山—李家庄断裂的最新活动时代为晚更新世, 在 (17.0±0.85) ka~(21.4±1.7) ka B.P.之间, 总体以左旋走滑正断为主, 局部逆断。 依据第四纪活动特征和破裂形式, 从南往北可分为两段, 即南段(双山—大马山)和北段(大马山—五里)。 其中南段又可分为3个小段: 双山—丹河水库小段表现为左阶斜列状展布的两条断层, 以左行走滑兼正断活动为主; 丹河水库—营子小段表现为两条相交的断裂, 东支在剖面上则表现为正断活动, 第四纪以来不活动; 西支在剖面上以逆冲破裂为主, 最新活动时代为晚更新世; 营子—大马山小段隐伏于第四系之下, 具有正断走滑破裂特征。 北段总体表现为多条近平行的断裂构造系, 破裂形式以逆断为主。 ② 双山—李家庄断裂晚第四纪以来可能发生过两次古地震事件, 分别发生在(17.0±0.85) ka~(21.4±1.7) ka B.P.和(77.0±3.8) ka~(84.0±4.2) ka B.P.。 ③ 1829年青州、 临朐61/4级地震的发生与上五井断裂和双山—李家庄断裂构成的“X”型共轭构造密切相关, 双山—李家庄断裂很可能就是这次地震的发震构造。 鲁西断块内发育的多条与双山—李家庄断裂相似的NW向晚更新世活动断裂, 均具有发生6级左右地震的构造条件, 因此, 今后应加强这些断裂的活动断层探测和地震监测研究, 为地震防御工作提供可靠依据。  相似文献   

12.
通过分析高精度数字化SPOT卫星影像 ,结合野外考察和年代学测试 ,对阿尔金南缘走滑断裂带的 3个典型走滑断层断错地貌点进行了研究。在安南坝沟 ,阿尔金南缘走滑断裂带一主要分支自 (9.36± 0 .73)kaBP以来的左旋滑动速率为 (7.5± 1.7)mm/a ;在七个泉子阿尔金南缘走滑断裂带有 4条分支 ,其中 1条规模较小的断层分支自 (13 86± 1 0 7)kaBP以来的左旋滑动速率为 (2 .3±0 5 )mm/a ,由此推断七个泉子附近断裂带全新世以来的滑动速率为 (6 .9± 1.5 )~ (9.2± 2 .0 )mm/a ;约马克其断裂带自 (4 .73± 0 .38)kaBP以来的左旋滑动速率为 (10 .6± 3.0 )mm/a。综合以上各点结果 ,阿尔金南缘走滑断裂带中段 88°30′E与 93°0 5′E之间全新世以来的水平滑动速率为 7~ 11mm/a ,与最新的GPS观测结果非常接近  相似文献   

13.
西秦岭临潭-宕昌断裂第四纪最新活动特征   总被引:2,自引:0,他引:2  
临潭-宕昌断裂是西秦岭造山带内一条重要的分支断裂,其最新活动特征是分析西秦岭构造变形的重要依据。临潭-宕昌断裂的新构造活动强烈,中强地震频繁,但目前对于断裂的新活动特征研究程度较低,未见有其全新世活动地质地貌证据的报道。文中基于遥感解译、宏观地貌分析研究断裂的长期活动表现和分段性;同时通过地质地貌考察、无人机摄影测量、差分GPS和放射性碳测年等方法定量研究断裂的新活动特征;最后基于研究结果探讨了断裂及附近区域的地震危险性和区域构造变形。结果表明:根据断层迹线收敛程度和宏观地貌差异,可将临潭-宕昌断裂分为西、中、东3段;断裂的运动性质以左旋走滑为主,兼具逆冲分量,左旋走滑使洮河及其支流、冲沟和山脊等发生同步左旋拐弯,最大左旋位移可达3km,逆冲分量使新近纪盆地边缘和内部形成300~500m的垂向位移;断裂的最新活动时代为全新世,限定了1次2 090~7 745a BP(置信度为2σ)的全新世古地震事件;全新世早期以来,临潭-宕昌断裂东段主干断裂的左旋走滑速率为0.86~1.65mm/a,垂直滑动速率为0.05~0.10mm/a。临潭-宕昌断裂分配了约2mm/a的左旋走滑分量,是东昆仑-西秦岭阶区变形分配的关键断裂之一。  相似文献   

14.
We present new seismic refraction/wide-angle-reflection data across the Altyn Tagh Range and its adjacent basins. We find that the crustal velocity structure, and by inference, the composition of the crust changes abruptly beneath the Cherchen fault, i.e., ∼100 km north of the northern margin of the Tibetan plateau. North of the Cherchen fault, beneath the Tarim basin, a platform-type crust is evident. In contrast, south the Cherchen fault the crust is characterized by a missing high-velocity lower-crustal layer. Our seismic model indicates that the high topography (∼3 km) of the Altyn Tagh Range is supported by a wedge-shaped region with a seismic velocity of 7.6–7.8 km/s that we interpret as a zone of crust–mantle mix. We infer that the Altyn Tagh Range formed by crustal-scale strike-slip motion along the North Altyn Tagh fault and northeast–southwest contraction over the range. The contraction is accommodated by (1) crustal thickening via upper-crustal thrusting and lower-crustal flow (i.e., creep), and (2) slip-parallel (SW-directed) underthrusting of only the lower crust and mantle of the eastern Tarim basin beneath the Altyn Tagh Range.  相似文献   

15.
The sinistral strike-slip characteristic of the Altyn Tagh Fault gradually disappears near the Jiuxi Basin at the west end of Hexi Corridor, and the Kuantanshan Fault and the northern marginal fault of Heishan on its east are thrust structures. There are two faults distributed in the north of Kuantanshan, namely, the Taerwan-Chijiaciwo Fault and the Ganxiashan Fault, both are featured with obvious activity. Predecessors thought that the Taerwan-Chijiaciwo Fault is a thrust fault with low movement rate, but there is few detailed study on its horizontal motion. Is there horizontal strike-slip movement in the northern marginal fault of Kuantanshan? This issue has an important significance to further explore the structural transformation mode between the Altyn Tagh strike-slip faults and the northern thrust faults in the north margin of Qilianshan. Using high resolution remote sensing images and field work, such as combining with UAV SfM photogrammetry, the paper studies the strike-slip characteristics of the Taerwan-Chijiaciwo Fault and Ganxiashan Fault on the northern margin of Kuantanshan, and get two preliminary understandings:(1) The northern marginal fault of Kuantanshan is an active right-lateral strike-slip fault with thrust component, the horizontal to vertical dislocation ratio is about 3-4 times. Based on the statistics of dislocation amount of the gullies and terraces along the north marginal Kuantanshan fault, it is preliminarily estimated that the late Pleistocene right-lateral strike-slip rate is about 0.2-0.25 mm/a and the Holocene right-lateral strike-slip rate is about 0.5-1.5 mm/a. (2) The main driving force to the tectonics at the western end of Hexi Corridor, where the northern marginal fault of Kuantanshan locates, comes from the northward extrusion of the Qilian Mountains, which results in the right-lateral strike-slip of the northern marginal fault of Kuananshan and the thrust movement of several faults inside the Jiuxi Basin. The effect of the Altyn Tagh Fault on other tectonic structures is not obvious in this region.  相似文献   

16.
断裂晚第四纪滑动速率及现今GPS观测揭示了青藏高原向北扩展与高原边缘隆升的运动特征.主要断裂晚第四纪滑动速率及跨断裂GPS应变速率的结果表明,青藏高原北部边缘的断裂以低滑动速率(<10 mm/a)为主,特别是两条边界断裂:阿尔金断裂和海原—祁连山断裂.两条主要边界断裂上的滑动速率分布显示了断裂间滑动速率转换及调整特征.阿尔金断裂自95°E以西的8~12 mm/a稳定滑动速率,向东逐渐降低到最东端的约1~2 mm/a,而海原断裂自哈拉湖一带开始发育后滑动速率为1~2 mm/a,到祁连一带(101°E以东)增大到相对稳定的4~5 mm/a,直到过海原后转向六盘山一带,滑动速率降低到1~3 mm/a,甚至更低.滑动速率的变化及分布特征显示,阿尔金断裂滑动主要是通过祁连山内部隆起及两侧新生代盆地变形引起的缩短来吸收的,海原—祁连山断裂的低滑动速率及沿断裂运动学特征表明断裂尾端的陇西盆地变形及六盘山的隆起是断裂左旋走滑速率的主要吸收方式.这一变形特征表明,青藏高原北部边缘的变形模式是一种分布式的连续变形,变形发生自高原内部,边界断裂的走滑被高原内部变形所吸收.  相似文献   

17.
A series of NWW striking faults are obliquely intersected by the NEE striking Altyn Tagh fault zone in the western Qilian Mountains. These faults were mostly active in late Quaternary and play an important role in accommodating regional lateral extrusion by both reverse and sinistral slip. Detailed studies on late Quaternary activity, tectonic transformation, paleoseismology, and strain partitioning not only significantly affect our recognition on seismogenic mechanism and zones of potential large earthquakes, but also provide useful information for exploring tectonic deformation mechanism in the northern Tibetan plateau. The Danghenanshan Fault, Yemahe-Daxueshan fault, and Altyn Tagh Fault form a triplet junction point at southwest of Subei county. The Yemahe-Daxueshan fault is one important branch fault in the western Qilian Mountains that accommodated eastward decreasing slip of the Altyn Tagh Fault, which was active in late Holocene, with a length up to 170km. Based on geometry and late Quaternary activity, the Yemahe-Daxueshan fault was subdivided into 3 segments, i.e. the Subei fault, Yemahe fault and Daxueshan Fault. The Yemahe Fault has the most prominent appearance among them, and is dominated by left-lateral slip with a little normal component. The heights of fresh scarps on this fault are only several tens of centimeters. We dug 2 trenches at the Zhazhihu site, and cleaned and reinterpreted one trench of previous studies. Then we interpreted trench profiles and paleoseismic events, and collected 14C and Optical Stimulated Luminescence samples to constrain event ages. Finally, we determined 3 events on the Yemahe fault with ages(6 830±30) a BP-(6 280±40) a BP, (5 220±30) a BP, (2 010±30) a BP, respectively. The elapsed time of most recent earthquake is(2 010±30) years before present, which is very close to the recurrence interval, so the possibility of major earthquakes on the Yemahe fault is relatively large.  相似文献   

18.
Did the Altyn Tagh fault extend beyond the Tibetan Plateau?   总被引:2,自引:0,他引:2  
The pre-Miocene northeastern termination of Altyn Tagh fault is a critical outstanding problem for understanding the mechanics of Cenozoic deformation resultant from the Indo-Asian collision and mechanisms of Tibetan Plateau formation. Structures beyond the widely accepted NE end of the Altyn Tagh fault, near the town of Yumen, are needed in order to accommodate strike-slip deformation related to plate-like lateral extrusion tectonics, but structures with the necessary slip magnitudes and histories have not been identified. We report on a series of newly recognized and documented E to ENE-striking faults within the Alxa block, NE of the Tibetan Plateau, that are visible on remotely sensed images and confirmed by field studies. These structures are demonstrably left-lateral faults based on offset geology and kinematic indicators such as striae and s-c fabrics in fault gouge. The faults have post-Cretaceous offsets of at least tens to possibly > 150 km, but limited post-Miocene displacement, constrained by offset sedimentary basins. These characteristics suggest that strike-slip faults of the Alxa region have a similar structural history as the central-eastern Altyn Tagh fault and can provide a mechanism for accommodating Oligocene-Early Miocene extrusion along the Altyn Tagh fault.  相似文献   

19.
20.
Bayan Hara Block is one of the most representative active blocks resulting from the lateral extrusion of Tibet Plateau since the Cenozoic. Its southern and northern boundary faults are characterized by typical strike-slip shear deformation. Its eastern boundary is blocked by the Yangze block and its horizontal movement is transformed into the vertical movement of the Longmen Shan tectonic belt, leading to the uplift of the Longmen Shan Mountains and forming a grand geomorphic barrier on the eastern margin of the Tibet Plateau. A series of large earthquakes occurred along the boundary faults of the Bayan Hara Block in the past twenty years, which have attracted attention of many scholars. At present, the related studies of active tectonics on Bayan Hara Block are mainly concentrated on the boundary faults, such as Yushu-Ganzi-Xianshuihe Fault, East Kunlun Fault and Longmen Shan Fault. However, there are also some large faults inside the block, which not only have late Quaternary activity, but also have tectonic conditions to produce strong earthquake. These faults divide the Bayan Hara Block into some secondary blocks, and may play important roles in the kinematics and dynamics mechanism of the Bayan Hara Block, or even the eastern margin of the Tibet Plateau. The Dari Fault is one of the left-lateral strike-slip faults in the Bayan Hara Block. The Dari Fault starts at the eastern pass of the Kunlun Mountains, extends eastward through the south of Yalazela, Yeniugou and Keshoutan, the fault strike turns to NNE direction at Angcanggou, then turns to NE direction again at Moba town, Qinghai Province, and the fault ends near Nanmuda town, Sichuan Province, with a total length of more than 500km. The fault has been considered to be a late Quaternary active fault and the 1947 M73/4 Dari earthquake was produced by its middle segment. But studies on the late Quaternary activity of the Dari Fault are still weak. The previous research mainly focused on the investigation of the surface rupture and damages of the 1947 M73/4 Dari earthquake. However, there were different opinions about the scale of the M73/4 earthquake surface rupture zone. Dai Hua-guang(1983)thought that the surface rupture of the earthquake was about 150km long, but Qinghai Earthquake Agency(1984)believed that the length of surface rupture zone was only 58km. Based on interpretation of high-resolution images and field investigations, in this paper, we studied the late Quaternary activity of the Dari Fault and the surface rupture zone of the 1947 Dari earthquake. Late Quaternary activity in the central segment of the Dari Fault is particularly significant. A series of linear tectonic landforms, such as fault trough valley, fault scarps, fault springs and gully offsets, etc. are developed along the Dari Fault. And the surface rupture zone of the 1947 Dari earthquake is still relatively well preserved. We conducted a follow-up field investigation for the surface rupture zone of the 1947 Dari earthquake and found that the surface rupture related to the Dari earthquake starts at Longgen village in Moba town, and ends near the northwest of the Yilonggounao in Jianshe town, with a length of about 70km. The surface rupture is primarily characterized by scarps, compressional ridges, pull-apart basins, landslides, cleavage, and the coseismic offset is about 2~4m determined by a series of offset gullies. The surface rupture zone extends to the northwest of Yilonggounao and becomes ambiguous. It is mainly characterized by a series of linear fault springs along the surface rupture zone. Therefore, we suggest that the surface rupture zone of the 1947 Dari earthquake ends at the northwest of Yilonggounao. In summary, the central segment of the Dari Fault can be characterized by strong late Quaternary activity, and the surface rupture zone of the 1947 Dari earthquake is about 70km long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号