首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A comparison between half‐hourly and daily measured and computed evapotranspiration (ET) using three models of different complexity, namely, the Priestley–Taylor (P‐T), the reference Penman–Monteith (P‐M) and the Common Land Model (CLM), was conducted using three AmeriFlux sites under different land cover and climate conditions (i.e. arid grassland, temperate forest and subhumid cropland). Using the reference P‐M model with a semiempirical soil moisture function to adjust for water‐limiting conditions yielded ET estimates in reasonable agreement with the observations [root mean square error (RMSE) of 64–87 W m?2 for half‐hourly and RMSE of 0.5–1.9 mm day?1 for daily] and similar to the complex Common Land Model (RMSE of 60–94 W m?2 for half‐hourly and RMSE of 0.4–2.1 mm day?1 for daily) at the grassland and cropland sites. However, the semiempirical soil moisture function was not applicable particularly for the P‐T model at the forest site, suggesting that adjustments to key model variables may be required when applied to diverse land covers. On the other hand, under certain land cover/environmental conditions, the use of microwave‐derived soil moisture information was found to be a reliable metric of regional moisture conditions to adjust simple ET models for water‐limited cases. Further studies are needed to evaluate the utility of the simplified methods for different landscapes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In North American Land Data Assimilation System Phase 2 (NLDAS‐2) Noah simulation, the NLDAS team introduced an intermediate ‘fix’ to constrain the surface exchange coefficient when the atmospheric boundary layer is stable. In the current NLDAS‐2 Noah version, this fix is used for all stable cases including snow‐free grid cells. In this study, we simply apply this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously, excluding the snow‐free grid cells as we recognize that the fix in NLDAS‐2 is too strong. We conduct a 31‐year (1979–2009) NLDAS‐2 Noah interim (Noah‐I) run and use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results, including comparisons with the original NLDAS‐2 Noah run. The results show that Noah‐I has the same performance as NLDAS‐2 Noah for snow water equivalent; however, Noah‐I significantly improved the simulation of other hydrometeorological products as noted earlier when compared with NLDAS‐2 Noah and the observations. This simple modification is being included in the next Noah version used in NLDAS. The hydrometeorological products from the improved NLDAS‐2 Noah‐I are being staged on the National Centers for Environmental Prediction public server. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
The Noah model is a land surface model of the National Centers for Environmental Prediction. It has been widely used in regional coupled weather and climate models (i.e. Weather Research and Forecasting Model, Eta Mesoscale Model) and global coupled weather and climate models (i.e. National Centers for Environmental Prediction Global Forecast System, Climate Forecast System). Therefore, its continued improvement and development are keys to enhancing our weather and climate forecast ability and water and energy flux simulation accuracy. North American Land Data Assimilation System phase 1 (NLDAS‐1) experiments indicated that the Noah model exhibited substantial bias in latent heat flux, total runoff and land skin temperature during the warm season, and such bias can significantly affect coupled weather and climate models. This paper presents a study to improve the Noah model by adding model parameterization processes such as including seasonal factor on leaf area index and root distribution and selecting optimal model parameters. We compared simulated latent heat flux, mean annual runoff and land skin temperature from the Noah control and test versions with measured latent heat flux, land surface skin temperature, mean annual runoff and satellite‐retrieved land surface skin temperature. The results show that the test version significantly reduces biases in latent heat, total runoff and land skin temperature simulation. The test version has been used for the NLDAS phase 2 (NLDAS‐2) to produce 30‐year water flux, energy flux and state variable products to support the US drought monitor of National Integrated Drought Information System. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Ballona Creek watershed in Los Angeles, California provides a unique combination of heterogeneous urban land cover, a semi-arid environment, and a large outdoor water-use flux that presents a challenge for physically-based models. We ran simulations using the Noah Land Surface Model and Parflow-Community Land Model and compared to observations of evapotranspiration (ET), runoff, and land surface temperature (LST) for the entire 11-year study period. Both models were systematically adjusted to test the impact of land cover and urban irrigation on simulation results. Monthly total runoff and ET results are greatly improved when compared to an in-situ stream gauge and meteorological tower data: from 0.64 to 0.81 for the Nash–Sutcliffe efficiency (NSE) for runoff and from a negative NSE to 0.82 for ET. The inclusion of urban irrigation in semi-arid urban environments is found to be vital, but not sufficient, for the accurate simulation of variables in the studied models.  相似文献   

6.
ABSTRACT

Evapotranspiration (ET) is an important ecohydrological process especially in arid and semi-arid regions. In this study, a new radiation module based on MODIS data has been coupled with the Surface Energy Balance Algorithms for Land (SEBAL) to better estimate ET. The accuracies of the coupled model for estimating available energy and sensible heat (H) were improved significantly compared with the outputs from the original SEBAL which was based on empirical equations. The coupled SEBAL modelled instantaneous λET agreed much better with observations in the arid land of Central Asia than the original SEBAL, with a bias of ?2.86 W m-2, root mean square error (RMSE) of 9.75 W m-2, and normalized RMSE (NRMSE) of 0.13. The accuracy was blurred when scaling ET to a daily or monthly scale, mainly due to the uncertainties associated with temporal upscaling methods that were applied. Sensitivity analysis, which was conducted using numerical variance-based techniques, indicated that the estimated ET is sensitive to the available energy, suggesting the importance of obtaining accurate estimates of net radiation when applying the coupled SEBAL to estimate ET. This study provides a simple and reliable way to utilize MODIS products and contains sensitivity analysis for helping to correctly interpret the outputs, which are both important for large-scale ET estimation.  相似文献   

7.
Land surface spatial heterogeneity plays a significant role in the water, energy, and carbon cycles over a range of temporal and spatial scales. Until now, the representation of this spatial heterogeneity in land surface models has been limited to over simplistic schemes because of computation and environmental data limitations. This study introduces HydroBlocks – a novel land surface model that represents field‐scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs). HydroBlocks is a coupling between the Noah‐MP land surface model and the Dynamic TOPMODEL hydrologic model. The HRUs are defined by clustering proxies of the drivers of spatial heterogeneity using high‐resolution land data. The clustering mechanism allows for each HRU's results to be mapped out in space, facilitating field‐scale application and validation. The Little Washita watershed in the USA is used to assess HydroBlocks' performance and added benefit from traditional land surface models. A comparison between the semi‐distributed and fully distributed versions of the model suggests that using 1000 HRUs is sufficient to accurately approximate the fully distributed solution. A preliminary evaluation of model performance using available in situ soil moisture observations suggests that HydroBlocks is generally able to reproduce the observed spatial and temporal dynamics of soil moisture. Model performance deficiencies can be primarily attributed to parameter uncertainty. HydroBlocks' ability to explicitly resolve field‐scale spatial heterogeneity while only requiring an increase in computation of one to two orders of magnitude when compared with existing land surface models is encouraging – ensemble field‐scale land surface modelling over continental extents is now possible. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Estimation of evapotranspiration (ET) is of great significance in modeling the water and energy interactions between land and atmosphere. Negative correlation of surface temperature (Ts) versus vegetation index (VI) from remote sensing data provides diagnosis on the spatial pattern of surface soil moisture and ET. This study further examined the applicability of Ts–VI triangle method with a newly developed edges determination technique in estimating regional evaporative fraction (EF) and ET at MODIS pixel scale through comparison with large aperture scintillometer (LAS) and high‐level eddy covariance measurements collected at Changwu agro‐ecological experiment station from late June to late October, 2009. An algorithm with merely land and atmosphere products from MODIS onboard Terra satellite was used to estimate the surface net radiation (Rn) and soil heat flux. In most cases, the estimated instantaneous Rn was in good agreement with surface measurement with slight overestimation by 12 W/m2. Validation results from LAS measurement showed that the root mean square error is 0.097 for instantaneous EF, 48 W/m2 for instantaneous sensible heat flux, and 30 W/m2 for daily latent heat flux. This paper successfully presents a miniature of the overall capability of Ts–VI triangle in estimating regional EF and ET from limited number of data. For a thorough interpretation, further comprehensive investigation needs to be done with more integration of remote sensing data and in‐situ surface measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Land surface evapotranspiration (ET) plays an important role in energy and water balances. ET can significantly affect the runoff yield of a basin and the available water resources in mountainous areas. The existing models to estimate ET are typically applicable to plains, and excessive data are required to calculate the surface fluxes accurately. This study established a simple and practical model capable of depicting the surface fluxes, while using relatively less parameters. Considering the complex terrain, solar radiation was corrected by importing a series of topographic factors. The water deficit index, a measure of land surface wetness, was calculated by applying the fc (vegetation fractional cover)‐Trad (land surface temperature) framework in the two‐source trapezoid model for evapotranspiration model to mountainous areas after corrections of temperature based on altitude variations. The model was successfully applied to the Kaidu River Basin, a basin with few gauges located in the east Tien Shan Mountains of China. Based on the time scale extensions, ET was analyzed at different time scales from 2000 to 2013. The results demonstrated that the corrected solar radiation and water deficit index were reasonably distributed in space and that this model is applicable to ungauged catchments, such as the Kaidu River Basin.  相似文献   

10.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
To improve simulations of regional‐scale snow processes and related cold‐season hydroclimate, the Community Land Model version 3 (CLM3), developed by the National Center for Atmospheric Research (NCAR), was coupled with the Pennsylvania State University/NCAR fifth‐generation Mesoscale Model (MM5). CLM3 physically describes the mass and heat transfer within the snowpack using five snow layers that include liquid water and solid ice. The coupled MM5–CLM3 model performance was evaluated for the snowmelt season in the Columbia River Basin in the Pacific Northwestern United States using gridded temperature and precipitation observations, along with station observations. The results from MM5–CLM3 show a significant improvement in the SWE simulation, which has been underestimated in the original version of MM5 coupled with the Noah land‐surface model. One important cause for the underestimated SWE in Noah is its unrealistic land‐surface structure configuration where vegetation, snow and the topsoil layer are blended when snow is present. This study demonstrates the importance of the sheltering effects of the forest canopy on snow surface energy budgets, which is included in CLM3. Such effects are further seen in the simulations of surface air temperature and precipitation in regional weather and climate models such as MM5. In addition, the snow‐season surface albedo overestimated by MM5–Noah is now more accurately predicted by MM5–CLM3 using a more realistic albedo algorithm that intensifies the solar radiation absorption on the land surface, reducing the strong near‐surface cold bias in MM5–Noah. The cold bias is further alleviated due to a slower snowmelt rate in MM5–CLM3 during the early snowmelt stage, which is closer to observations than the comparable components of MM5–Noah. In addition, the over‐predicted precipitation in the Pacific Northwest as shown in MM5–Noah is significantly decreased in MM5–CLM3 due to the lower evaporation resulting from the longer snow duration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Soil moisture is widely recognized as a fundamental variable governing the mass and energy fluxes between the land surface and the atmosphere. In this study, the soil moisture modelling at sub‐daily timescale is addressed by using an accurate representation of the infiltration component. For that, the semi‐analytical infiltration model proposed by Corradini et al. (1997) has been incorporated into a soil water balance model to simulate the evolution in time of surface and profile soil moisture. The performances of this new soil moisture model [soil water balance module‐semi‐analytical (SWBM‐SA)] are compared with those of a precedent version [SWBM‐Green–Ampt (GA)] where the GA approach was employed. Their capability to reproduce in situ soil moisture observations at three sites in Italy, Spain and France is analysed. Hourly observations of quality‐checked rainfall, temperature and soil moisture data for a 2‐year period are used for testing the modelling approaches. Specifically, different configurations for the calibration and validation of the models are adopted by varying a single parameter, that is, the saturated hydraulic conductivity. Results indicate that both SWBMs are able to reproduce satisfactorily the hourly soil moisture temporal pattern for the three sites with root mean square errors lower than 0.024 m3/m3 both in the calibration and validation periods. For all sites, the SWBM‐SA model outperforms the SWBM‐GA with an average reduction of the root mean square error of ~20%. Specifically, the higher improvement is observed for the French site for which in situ observations are measured at 30 cm depth, and this is attributed to the capability of the SA infiltration model to simulate the time evolution of the whole soil moisture profile. The reasonable models performance coupled with the need to calibrate only a single parameter makes them useful tools for soil moisture simulation in different regions worldwide, also in scarcely gauged areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Land surface albedo plays an important role in the radiation budget and global climate models. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) provide 16‐day albedo product with 500‐m resolution every 8 days (MCD43A3). Some in‐situ albedo measurements were used as the true surface albedo values to validate the MCD43A3 product. As the 16‐day MODIS albedo retrievals do not include snow observations when there is ephemeral snow on the ground surface in a 16‐day period, comparisons between MCD43A3 and 16 day averages of field data do not agree well. Another reason is that the MODIS cannot detect the snow when the area is covered by clouds. The Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) data are not affected by weather conditions and are a good supplement for optical remote sensing in cloudy weather. When the surface is covered by ephemeral snow, the AMSR‐E data can be used as the additional information to retrieve the snow albedo. In this study, we developed an improved method by using the MODIS products and the AMSR‐E snow water equivalent (SWE) product to improve the MCD43A3 short‐time snow‐covered albedo estimation. The MODIS daily snow products MOD10A1 and MYD10A1 both provide snow and cloud information from observations. In our study region, we updated the MODIS daily snow product by combining MOD10A1 and MYD10A1. Then, the product was combined with the AMSR‐E SWE product to generate new daily snow‐cover and SWE products at a spatial resolution of 500 m. New SWE datasets were integrated into the Noah Land Surface Model snow model to calculate the albedo above a snow surface, and these values were then utilized to improve the MODIS 16‐day albedo product. After comparison of the results with in‐situ albedo measurements, we found that the new corrected 16‐day albedo can show the albedo changes during the short snowfall season. For example, from January 25 to March 14, 2007 at the BJ site, the albedo retrieved from snow‐free observations does not indicate the albedo changes affected by snow; the improved albedo conforms well to the in‐situ measurements. The correlation coefficient of the original MODIS albedo and the in‐situ albedo is 0.42 during the ephemeral snow season, but the correlation coefficient of the improved MODIS albedo and the in‐situ albedo is 0.64. It is concluded that the new method is capable of capturing the snow information from AMSR‐E SWE to improve the short‐time snow‐covered albedo estimation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This study reports results from an analysis of the relationship between atmospheric forcing and model‐simulated water and energy fluxes for the North American Land Data Assimilation System Project Phase 2 (NLDAS‐2). The relationships between mean monthly precipitation and total runoff are stronger in the Sacramento (SAC) and variable infiltration capacity (VIC) models, which grew out of the hydrological community, than in the Noah and Mosaic models, which grew out of the soil‐vegetation‐atmosphere transfer (SVAT) community. The reverse is true for the relationship between mean monthly precipitation and evapotranspiration. In addition, surface energy fluxes in VIC are less sensitive to model forcing (except for air temperature) than those in the Noah and Mosaic model. Notwithstanding these general conclusions, the relationships between forcings and model‐simulated water and energy fluxes for all models vary for different seasons, variables, and regions. These findings will ultimately inspire a combination of SVAT‐type model energy components with hydrological model water components to develop a SVAT‐hydrology model to improve both evapotranspiration and total runoff simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The exchanges of water, energy and carbon between the land surface and the atmosphere are tightly coupled, so that errors in simulating evapotranspiration lead to errors in simulating both the water and carbon balances. Areas with seasonally frozen soils present a particular challenge due to the snowmelt-dominated hydrology and the impact of soil freezing on the soil hydraulic properties and plant root water uptake. Land surface schemes that have been applied in high latitudes often have reported problems with simulating the snowpack and runoff. Models applied at the Boreal Ecosystem Research and Monitoring Sites in central Saskatchewan have consistently over-predicted evapotranspiration as compared with flux tower estimates. We assessed the performance of two Canadian land surface schemes (CLASS and CLASS-CTEM) for simulating point-scale evapotranspiration at an instrumented jack pine sandy upland site in the southern edge of the boreal forest in Saskatchewan, Canada. Consistent with past reported results, these models over-predicted evapotranspiration, as compared with flux tower observations, but only in the spring period. Looking systematically at soil properties and vegetation characteristics, we found that the dominant control on evapotranspiration within these models was the canopy conductance. However, the problem of excessive spring ET could not be solved satisfactorily by changing the soil or vegetation parameters. The model overestimation of spring ET coincided with the overestimation of spring soil liquid water content. Improved algorithms for the infiltration of snowmelt into frozen soils and plant-water uptake during the snowmelt and soil thaw periods may be key to addressing the biases in spring ET.  相似文献   

16.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   

17.
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi‐year water budget (2004–2010) and quantified environmental controls on an evapotranspiration (ET) in a 70‐year‐old mixed‐oak woodland forest in northwest Ohio, USA. ET was measured using the eddy‐covariance technique along with precipitation (P), soil volumetric water content (VWC), and shallow groundwater table fluctuation. Three biophysical models were constructed and validated to calculate potential ET (PET) for developing predictive monthly ET models. We found that the annual variability in ET was relatively stable and ranged from 578 mm in 2009 to 670 mm in 2010. In contrast, ET/P was more variable and ranged from 0.60 in 2006 to 0.96 in 2010. Mean annual ET/PET_FAO was 0.64, whereas the mean annual PET_FAO/P was 1.15. Annual ET/PET_FAO was relatively stable and ranged from 0.60 in 2005 to 0.72 in 2004. Soil water storage and shallow groundwater recharge during the non‐growing season were essential in supplying ET during the growing season when ET exceeded P. Spring leaf area index (LAI), summer photosynthetically active radiation, and autumn and winter air temperatures (Ta) were the most significant controls of monthly ET. Moreover, LAI regulated ET during the whole growing season and higher temperatures increased ET even during dry periods. Our empirical modelling showed that the interaction of LAI and PET explained >90% of the variability in measured ET. Altogether, we found that increases in Ta and shifts in P distribution are likely to impact forest hydrology by altering shallow groundwater fluctuations, soil water storage, and ET and, consequently, alter the ecosystem functions of temperate forests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
High-quality soil moisture (SM) datasets are in great demand for climate, hydrology, and other fields, but detailed evaluation of SM products from various sources is scarce. Thus, using 670 SM stations worldwide, we evaluated and compared SM products from microwave remote sensing [Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) (C- and X-bands) and European Space Agency's Climate Change Initiative (ESA CCI)], land surface model [Global Land Data Assimilation System (GLDAS)], and reanalysis data [ECMWF Re-Analysis-Interim (ERA-Interim) and National Centers for Environmental Prediction (NCEP)] under different time scales and various climates and land covers. We find that: (a) ESA CCI and GLDAS have the closest values to the in situ SM on the annual scale, whereas others overestimate the SM; ERA-Interim (averaged R = 0.58) and ESA CCI (averaged R = 0.54) correlate best with the in situ data, while GLDAS performs worst. (b) Overall, the deviations of each product vary in seasons. ESA CCI and ERA-Interim products are closer to the in situ SM at seasonal scales, and AMSR-E and NCEP perform worst in December–February and June–August, respectively. (c) Except for NCEP and ERA-Interim, others can well reflect the intermonthly variation of the in situ SM. (d) Under various climates and land covers, AMSR-E products are less effective in cold climates, whereas GLDAS and NCEP products perform poorly in arid or temperate and dry climates. Moreover, the Bias and R of each SM product differ obviously under different forest types, especially the AMSR-E products. In summary, SM from ESA CCI is the best, followed by ERA-Interim product, and precipitation is an important auxiliary data for selecting high-quality SM stations and improving the accuracy of SM from GLDAS. These results can provide a reference for improving the accuracy of the above SM products.  相似文献   

19.
Comparisons between snow water equivalent (SWE) and river discharge estimates are important in evaluating the SWE fields and to our understanding of linkages in the freshwater cycle. In this study, we compared SWE drawn from land surface models and remote sensing observations with measured river discharge (Q) across 179 Arctic river basins. Over the period 1988‐2000, basin‐averaged SWE prior to snowmelt explains a relatively small (yet statistically significant) fraction of interannual variability in spring (April–June) Q, as assessed using the coefficient of determination (R2). Averaged across all basins, mean R2s vary from 0·20 to 0·28, with the best agreement noted for SWE drawn from a simulation with the Pan‐Arctic Water Balance Model (PWBM) forced with data from the European Centre for Medium‐Range Weather‐Forecasts (ECMWF) Re‐analysis (ERA‐40). Variability and magnitude in SWE derived from Special Sensor Microwave Imager (SSM/I) data are considerably lower than the variability and magnitude in SWE drawn from the land surface models, and generally poor agreement is noted between SSM/I SWE and spring Q. We find that the SWE versus Q comparisons are no better when alternate temporal integrations–using an estimate of the timing in basin thaw–are used to define pre‐melt SWE and spring Q. Thus, a majority of the variability in spring discharge must arise from factors other than basin snowpack water storage. This study demonstrates how SWE estimated from remote sensing observations, or general circulation models (GCMs), can be evaluated effectively using monthly discharge data or SWE from a hydrological model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline‐altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline conditions (1990–1995) and altered land use conditions (1996–2001, 2002–2007, and 2008–2013). Land use maps for 1994, 2000, 2006, and 2013 were acquired from satellite images. A Soil Water Assessment Tool model was calibrated for the baseline period and applied to the altered periods with and without land use change. Incorporating land use change resulted in a Nash–Sutcliffe efficiency of 0.7 compared to 0.6 when land use change is ignored. In addition, the model performance for simulations without land use change gradually decreased with time. Land use change appeared to be the important driver for changes in the water balance. The main land use changes during 1994–2013 are a decrease in forest area from 48.7% to 16.9%, an increase in agriculture area from 39.2% to 45.4%, and an increase in settlement area from 9.8% to 34.3%. For the catchment, this resulted in an increase of the runoff coefficient from 35.7% to 44.6% and a decrease in the ratio of evapotranspiration to rainfall from 60% to 54.8%. More pronounced changes can be observed for the ratio of surface runoff to stream flow (increase from 26.6% to 37.5%) and the ratio of base flow to stream flow (decrease from 40% to 31.1%), whereas changes in the ratio of lateral flow to stream flow were minor (decrease from 33.4% to 31.4%). At sub‐catchment level, the effect of land use changes on the water balance varied in different sub‐catchments depending on the scale of changes in forest and settlement area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号