首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
Continental flood basalts consist of vast quantities of lava, sills and giant dyke swarms that are associated with continental break-up. The commonly radiating geometry of dyke swarms in these provinces is generally interpreted as the result of the stress regime that affected the lithosphere during the initial stage of continental break-up or as the result of plume impact. On the other hand, structures in the basement may also control dyke orientations, though such control has not previously been documented. In order to test the role of pre-dyke structures, we investigated four major putative Karoo-aged dyke swarms that taken together represent a giant radiating dyke swarm (the so-called “triple-junction”) ascribed to the Jurassic Karoo continental flood basalt (> 3 × 106 km2; southern Africa). One of the best tests to discriminate between neoformed and inherited dyke orientation is to detect Precambrian dykes in the Jurassic swarms. Accordingly, we efficiently distinguished between Jurassic and Precambrian dykes using abbreviated low resolution, 40Ar/39Ar incremental heating schedules.Save-Limpopo dyke swarm samples (n = 19) yield either apparent Proterozoic (728–1683 Ma) or Mesozoic (131–179 Ma) integrated ages; the Olifants River swarm (n = 20) includes only Proterozoic (851–1731 Ma) and Archaean (2470–2872 Ma) dykes. The single age obtained on one N–S striking dyke (1464 Ma) suggests that the Lebombo dyke swarm includes Proterozoic dykes in the basement as well. These dates demonstrate the existence of pre-Karoo dykes in these swarms as previously hypothesized without supporting age data. In addition, aeromagnetic and air-photo interpretations indicate that: (1) dyke emplacement was largely controlled by major discontinuities such as the Zimbabwe and Kaapvaal craton boundaries, the orientation of the Limpopo mobile belt, and other pre-dyke structures including shear zones and (2) considering its polygenetic, pre-Mesozoic origin, the Olif ants River dyke swarm cannot be considered part of the Karoo magmatic event.This study, along with previous results obtained on the Okavango dyke swarm, shows that the apparent “triple junction” formed by radiating dyke swarms is not a Jurassic structure; rather, it reflects weakened lithospheric pathways that have controlled dyke orientations over hundreds of millions of years. One consequence is that the “triple-junction” geometry can no longer be unambiguously used as a mantle plume marker as previously proposed, although it does not preclude the possible existence of a mantle plume. More generally, we suggest that most Phanerozoic dyke swarms (including triple junctions) related to continental flood basalts were probably controlled in part by pre-existing lithospheric discontinuities.  相似文献   

2.
岩墙磁组构能反映岩浆的侵位方式.中国东部嵊泗岛广泛发育了晚白垩世辉绿岩岩墙群.我们对其中8条不同走向岩墙进行了采样,沿岩墙两边部及横跨岩墙剖面获得共273个独立定向岩芯样品.岩石磁学分析表明辉绿岩的主要携磁矿物为多畴贫钛磁铁矿,可能含少量磁赤铁矿.各条岩墙的磁组构均具有低的各向异性度Pj<1.2,且主轴的空间方位各不相...  相似文献   

3.
Flood basalts, such as the Deccan Traps of India, represent huge, typically fissure-fed volcanic provinces. We discuss the structural attributes and emplacement mechanics of a large, linear, tholeiitic dyke swarm exposed in the Nandurbar–Dhule area of the Deccan province. The swarm contains 210 dykes of dolerite and basalt >1 km in length, exposed over an area of 14,500 km2. The dykes intrude an exclusively basaltic lava pile, largely composed of highly weathered and zeolitized compound pahoehoe flows. The dykes range in length from <1 km to 79 km, and in thickness from 3 to 62 m. Almost all dykes are vertical, with the others nearly so. They show a strong preferred orientation, with a mean strike of N88°. Because they are not emplaced along faults or fractures, they indicate the regional minimum horizontal compressive stress (σ 3) to have been aligned ~N–S during swarm emplacement. The dykes have a negative power law length distribution but an irregular thickness distribution; the latter is uncommon among the other dyke swarms described worldwide. Dyke length is not correlated with dyke width. Using the aspect ratios (length/thickness) of several dykes, we calculate magmatic overpressures required for dyke emplacement, and depths to source magma chambers that are consistent with results of previous petrological and gravity modelling. The anomalously high source depths calculated for a few dykes may be an artifact of underestimated aspect ratios due to incomplete along-strike exposure. However, thermal erosion is a mechanism that can also explain this. Whereas several of the Nandurbar–Dhule dykes may be vertically injected dykes from shallow magma chambers, others, particularly the long ones, must have been formed by lateral injection from such chambers. The larger dykes could well have fed substantial (≥1,000 km3) and quickly emplaced (a few years) flood basalt lava flows. This work highlights some interesting and significant similarities, and contrasts, between the Nandurbar–Dhule dyke swarm and regional tholeiitic dyke swarms in Iceland, Sudan, and elsewhere. Editorial responsibility: J. White  相似文献   

4.
Emplacement and arrest of sheets and dykes in central volcanoes   总被引:1,自引:0,他引:1  
Sheet intrusions are of two main types: local inclined (cone) sheets and regional dykes. In Iceland, the inclined sheets form dense swarms of (mostly) basaltic, 0.5–1 m thick sheets, dipping either at 20–50° or at 75–90° towards the central volcano to which they belong. The regional dykes are (mostly) basaltic, 4–6 m thick, subvertical, subparallel and form swarms, less dense than those of the sheets but tens of kilometres long, in the parts of the volcanic systems that are outside the central volcanoes. In both types of swarms, the intrusion intensity decreases with altitude in the lava pile. Theoretical models generally indicate very high crack-tip stresses for propagating dykes and sheets. Nevertheless, most of these intrusions become arrested at various crustal depths and never reach the surface to supply magma to volcanic eruptions. Two principal mechanisms are proposed to explain arrest of dykes and sheets. One is the generation of stress barriers, that is, layers with local stresses unfavourable for the intrusion propagation. The other is mechanical anisotropy whereby sheet intrusions become arrested at discontinuities. Stress barriers may develop in several ways. First, analytical solutions for a homogeneous and isotropic crust show that the intensity of the tensile stress associated with a pressured magma chamber falls off rapidly with distance from the chamber. Thus, while dyke and sheet injection in the vicinity of a chamber may be favoured, dyke and sheet arrest is encouraged in layers (stress barriers) at a certain distance from the chamber. Second, boundary-element models for magma chambers in a mechanically layered crust indicate abrupt changes in tensile stresses between layers of contrasting Young’s moduli (stiffnesses). Thus, where soft pyroclastic layers alternate with stiff lava flows, as in many volcanoes, sheet and dyke arrest is encouraged. Abrupt changes in stiffness between layers are commonly associated with weak and partly open contacts and other discontinuities. It follows that stress barriers and discontinuities commonly operate together as mechanisms of dyke and sheet arrest in central volcanoes.  相似文献   

5.
The coastal dyke swarm and associated flexure, plutonic intrusions and volcanics are the products of a short episode of rifting between normal and thinned continental crust during initial opening of the Atlantic Ocean between Greenland and the Rockall Plateau 56–52 m.y. ago. They constitute a continental rift zone which provides deeply eroded onshore examples of phenomena which probably lie buried beneath the sea along major rifted continental margins.The dyke swarm occurs in a series of zones arranged en echelon, similar to dyke and fissure swarms in Iceland. Most dykes were intruded vertically before flexuring rather than as a fan during flexuring as postulated by Wager and Deer [1]. Layered gabbro plutons and basic cone sheets were emplaced during early stages of flexuring. Magma was tapped westwards along the upper limb of the developing flexure to form the Skaergaard and Kap Edvard Holm intrusions, but intrusions such as Imilik and Kap Gustav Holm in the steep limb show more complex histories of synplutonic tilting, slumping and deformation. Most flexuring occurred after consolidation of the gabbros and was followed by the intrusion of linear and radial swarms of intermediate dykes and ring dykes associated with the emplacement of syenite and granite plutons by cauldron subsidence.  相似文献   

6.
The Mesoproterozoic mafic dyke swarms are extensively distributed in the central North China Craton(NCC) including North Shanxi, Wutai and Lüliang areas, which are not deformed and metamorphic but high magnetic, so the dyke swarms become the mark to compare the high metamorphic rock areas in magnetism. Based on the analysis of paleomagnetism of mafic dyke swarms in North Shanxi, Wutai and Lüliang areas, NCC inclined southward about 18ü so that North Shanxi lifted up and rotated 10ü left to Wutai area. The dyke swarms in Lüliang developed later than in North Shanxi and Wutai area. The NNW-trending and WNW-trending dyke swarms developed in Lüliang while the North China Plate moved northward consistently so that the paleomagnetism of dyke swarms in Lüliang is greatly different from North Shanxi and Wutai area.  相似文献   

7.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

8.
Principal component analysis (PCA) was applied to hydrochemical and isotopic data of 34 groundwater samples. This allowed the reduction of 20 variables to four significant PCs that explain 81.9% of the total variance; F1 (47.1%) explains the groundwater mineralization, whereas F2 (17%) shows isotopic enrichment and nitrate pollution. Based on an iso-factor scores map of F1, three water zones were delineated: Zone A (F1 < ?1), with fresh groundwater from the unconfined aquifer; Zone B (1 > F1 > ?1), with moderate mineralization from the confined–unconfined aquifer boundary; and Zone C (F1 > 1), with the most mineralized hot water from the confined aquifer. The iso-factor scores map of F2 delineates positive values representing samples from the unconfined aquifer, with freshwater and nitrate contamination associated with stable isotope enrichment, whereas negative values represent samples from the confined aquifer. The results clearly demonstrate the usefulness of PCA in groundwater hydrochemistry investigations.  相似文献   

9.
Since the 1990s a large number of sinkholes have appeared in the Dead Sea (DS) coastal area. Sinkhole development was triggered by the lowering of the DS level. In the literature the relationship between the sinkholes and the DS level is explained by intrusion of relatively fresh water into the aquifer thereby dramatically accelerating the salt dissolution with creation of subsurface caverns, which in turn cause sinkholes. The main goal of our project was detection and localization of relatively fresh groundwater. During our study we used the transient electromagnetic method (TEM) to measure the electrical resistivity of the subsurface. As a test site we selected Nahal Hever South which is typical for the DS coast. Our results show that resistivity of the shallow subsurface reflects its vertical and lateral structure, e.g., its main hydrogeological elements explain the inter-relations between geology, hydrogeology, and sinkholes. The TEM method has allowed detailed differentiation of layers (clay, salt, etc.) in the subsurface based on their bulk resistivity. The 10 m-thick salt layer composed of idiomorphic crystals of halite deposited during the earlier Holocene period was extrapolated from borehole HS-2 through the study area. It was found that in Nahal Hever the typical value of the bulk resistivity of clay saturated with the DS brine varies between 0.2 and 0.3 Ωm, whereas saturated gravel and sandy sediments are characterized by resistivity between 0.4 and 0.6 Ωm. The high water salinity of the aquifer (enveloping the salt layer) expressed in terms of resistivity is also an important characterization of the sinkhole development mechanism. The electrical resistivity of the aquifer in the vicinity of the salt unit and its western border did not exceed 1 Ωm (in most cases aquifer resistivity was 0.2-0.6 Ωm) proving that, in accordance with existing criteria, the pores of the alluvial sediments are filled with highly mineralized DS brine. However, we suggest that the criterion of the aquifer resistivity responsible for the salt dissolution should be decreased from 1 Ωm to 0.6 Ωm corresponding to the chloride concentration of approximately 100 g/l (the chloride saturation condition reaches 224 g/l in the northern DS basin and 280 g/l in the southern one).Based on TEM results we can reliably conclude that in 2005, when most of sinkholes had appeared at the surface, salt was located within a very low resistivity environment inside sediments saturated with DS brine. Intrusion of relatively fresh groundwater into the aquifer through the 600 × 600 m2area affected by sinkholes has not been observed.  相似文献   

10.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

11.
The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1–1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the volcanic front except in the northern segment where subduction of the Barracuda Rise perturbs the stress field. There is also evidence of specific temporal changes in the stress field that are probably due to large scale plate kinematics.  相似文献   

12.
Abstract

A sand dune area, ~50 km2 in size, the only source of freshwater in the coastal zone of Prakasham district, Andhra Pradesh, India, is bounded by marine sediments in the northwest, and the Bay of Bengal in the southeast. Measurements of groundwater level, hydrochemistry and stable isotopes for three years facilitated the identification of the aquifer response to drought and intense cyclonic storms. There was no major change in hydrochemistry and isotope values between drought and highly saturated conditions, except in a few wells in the northwest. During drought, the groundwater remained fresh, although the levels dipped to 2–5 m b.m.s.l., signifying no saline water ingression (no measurable bromide). Based on the field observations, resistivity soundings, electrical conductivity and groundwater level change due to pumping, the existence of impermeable boundaries in the northwest and southeast are hypothesized. Thus, the existing hydrogeological settings appear to be inhibiting the movement of the freshwater–saline water interface into the freshwater zone.
Editor D. Koutsoyiannis  相似文献   

13.
An extensive rhyolitic dyke swarm has intruded subaqueous pyroclastic deposits, iron-formations, hyaloclastite breccias and lava flows of the 2730 Ma Hunter Mine Group (HMG) in the south-central part of the Archean Abitibi belt, Quebec. The dyke swarm has a minimum width of 500 m and can be traced perpendicular to the section for 2.4 km. Based on crosscutting relationships, chilled margins, quartz content and colour, five distinct dyke generations have been established. Each dyke generation has several magmatic pulses as indicated by parallel rows of columnar joints. Absence of brecciation between parallel rows suggests extremely brief intervals between magma pulses. The central parts of most dykes display inverted V-shaped patterns of columnar-joint convergence, inferred to indicate differential cooling during the late stages of dyke propagation. The dykes commonly display delicate spherulites suggesting rapid cooling, solidification temperatures between 400 and 600°C and penecontemporaneous devitrification. Quartz-feldspar aggregates in the groundmass have locally developed microgranophyric textures. Large spherulites near the chilled margins probably formed at temperatures below 400°C. Percolation of abundant water throughout the dyke complex is suggested by ubiquitous prominent chilled dyke margins. Development of a chilled margin 500 m along one dyke suggests that water percolated at least 500 m below the water/rock interface. Because the dykes intruded subaqueous pyroclastic deposits of similar composition, dyke emplacement below the sea floor is inferred. Interstratification of pillowed flows and brecciated pillowed flows containing rhyolite fragments at the top of the 4–5-km-thick sequence indicates that the central felsic complex probably never emerged during its evolutionary history, supporting the contention that the felsic dyke complex was emplaced beneath the Archean sea floor.  相似文献   

14.
Knowledge of aquifer parameters is essential for management of groundwater resources. Conventionally, these parameters are estimated through pumping tests carried out on water wells. This paper presents a study that was conducted in three villages (Tumba, Kabazi, and Ndaiga) of Nakasongola District, central Uganda to investigate the hydrogeological characteristics of the basement aquifers. Our objective was to correlate surface resistivity data with aquifer properties in order to reveal the groundwater potential in the district. Existing electrical resistivity and borehole data from 20 villages in Nakasongola District were used to correlate the aquifer apparent resistivity (ρ e) with its hydraulic conductivity (K e), and aquifer transverse resistance (TR) with its transmissivity (T e). K e was found to be related to ρ e by; $ {\text{Log }}(K_{\text{e}} ) = - 0.002\rho_{\text{e}} + 2.692 $ . Similarly, TR was found to be related to T by; $ {\text{TR}} = - 0.07T_{\text{e}} + 2260 $ . Using these expressions, aquifer parameters (T c and K c) were extrapolated from measurements obtained from surface resistivity surveys. Our results show very low resistivities for the presumed water-bearing aquifer zones, possibly because of deteriorating quality of the groundwater and their packing and grain size. Drilling at the preferred VES spots was conducted before the pumping tests to reveal the aquifer characteristics. Aquifer parameters (T o and K o) as obtained from pumping tests gave values (29,424.7 m2/day, 374.3 m/day), (9,801.1 m2/day, 437.0 m/day), (31,852.4 m2/day, 392.9 m/day). The estimated aquifer parameter (T c and K c) when extrapolated from surface geoelectrical data gave (7,142.9 m2/day, 381.9 m/day), (28,200.0 m2/day, 463.4 m/day), (19,428.6 m2/day, 459.2 m/day) for Tumba, Kabazi, and Ndaiga villages, respectively. Interestingly, the similarity between the K c and K o pairs was not significantly different. We observed no significant relationships between the T c and T o pairs. The root mean square errors were estimated to be 18,159 m2/day and 41.4 m/day.  相似文献   

15.
The Kerguelen Archipelago is part of an oceanic plateau with a complex history. Little work has been done on the tectonics of the onshore areas, even though the extensive outcrop renders the islands especially good for structural work. We present the results of three field campaigns and remote sensing analysis carried out in the main Kerguelen Island, around Val Travers valley and Mt Ross volcano (Central Plateau) and in the Rallier du Baty peninsula (SW part of the archipelago). We have mapped faults, fracture sets, and the location and geometry of intrusive bodies. We found that the plateau basalt lavas that make up most of the area are densely fractured, crossed by many veins, dykes and some small faults. This work provides a general framework for the structure of Kerguelen Archipelago that is dominated by 110°-striking faults and veins, dyke swarms and an alignment of recent central volcanoes, which have formed in N-S to NNW-SSE directed extensional stress field. The other structures are fractures, veins and dykes which strike 130–150°, 000° and 030–050°. They are likely related to transform faults of the Indian oceanic crust and to faults of the north Kerguelen Plateau (offshore basement of the archipelago). These buried structures were likely re-activated by a low magnitude stress field.  相似文献   

16.
Many theoretical models predict that arrested dykes may generate major grabens at rift-zone surfaces. Arrested dyke tips in eroded rift zones, however, are normally not associated with major grabens or normal faults that could be generated by dyke-induced stresses ahead of the tips, and normal faults and grabens tend to be less common in those parts of eroded rift zones where dykes are comparatively abundant. Similarly, there are feeder dykes, as well as dykes arrested a few metres below the surface, that do not generate faults or grabens at the surface. Here I propose that this discrepancy between theoretical models and field observations may be explained by the mechanical layering of the crust. Numerical models presented here show that abrupt changes in Young's moduli, layers with high dyke-normal compressive stresses (stress barriers), and weak, horizontal contacts have large effects on the dyke-induced stress fields. For the models considered, the surface tensile stresses induced by arrested dykes are normally too small to lead to significant fault or graben formation at the rift-zone surface. The only significant dyke-induced surface tensile stresses (2 MPa) in these models are for a dyke tip arrested at 1 km depth below the surface of a rift zone with a weak contact at 400 m depth and subject to extension. That tensile stress, however, peaks above the ends of the weak horizontal contact, which, in the model considered, occur at distances of 4 km to either side of the dyke, and shows no simple relation to the depth to the dyke tip. Thus, for a layered crust with weak contacts, straightforward inversion of surface geodetic data to infer dyke geometries may result in unreliable results.Editorial responsibility: A. Woods  相似文献   

17.
The seismotectonic characteristics of 1983–1984, 1993 and 2005 swarms in Andaman Sea are analysed. These swarms are characterised by their typical pulsating nature, oval shaped geometry and higher b values. The migration path of the swarms from north to south along the Andaman Spreading Ridge is documented. While the first two swarms are located along existing mapped rift segments, the 2005 swarm appears to have generated a new rift basin along 8°N. The analysis and supporting evidences suggest that these swarms were generated by intruding magmatic dyke along the weak zones in the crust, followed by rifting, spreading and collapse of rift walls. CMT solutions for 2005 swarm activity indicate that intrusion of magmatic dyke in the crustal weak zone is documented by earthquakes showing strike slip solution. Subsequent events with normal fault mechanism corroborate the rift formation, collapse and its spreading.  相似文献   

18.
ABSTRACT

Integrated two-dimensional electrical resistivity imaging (ERI) and hydrochemical surveys were used to investigate the groundwater alluvial aquifer in Kuala Langat, Malaysia. The study in the Langat basin considered the thickness of the aquifer, the depth of the bedrock, the regions influenced by seawater intrusion, and the monitoring of water levels. The resistivity imaging results show that the upper layer consists of clay, while the second layer is an aquifer whose thickness varies mostly in the range of 10–30 m, and in some cases extends to 40 m. The bedrock depth varies from 30 to 65 m. The chemical analyses were carried out on groundwater samples from nine boreholes collected between 2008 and 2012. The analyses indicate that the total dissolved solids (TDS) exceed 1000 mg L-1 near the coastal area and are often less than 500 mg L-1 further inland. The ERI and hydrochemical analyses reveal that groundwater in the study area, especially towards the coast, is a mixture of brackish and fresh waters.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

19.
Eruptions from the top of a dyke containing two layers of magma can selectively withdraw the upper layer, leaving the dense lower layer undisturbed. Alternatively, if the upper layer is thinner than some critical depth, d, then both layers will be tapped simultaneously. Laboratory experiments yield an equation giving the draw-up depth, d, as a function of dyke geometry, eruption rate, and magma properties. This equation is valid for low to moderate Reynolds numbers and applies to dykes which are much longer than the draw-up depth. Short dykes will yield larger draw-up depths than are predicted by the equation. A large draw-up depth is favoured when the eruption rate, upper layer magma viscosity, or dyke length/breadth ratio is large or the density difference is small. Calculations show that rhyolite-capped dykes can contain several hundred metres thickness of rhyolite when a lower layer is first tapped. Draw-up depths in a dyke are as much as an order of magnitude greater than those for an identical eruption from a large cylindrical chamber tapped by a central vent. Nonetheless, for low effusion rate eruptions from small dykes, as at Inyo Domes, California, relatively small draw-up heights are calculated (e.g. 70 m). This is compatible with the small amounts of mixed magmas found at the transition between the two rhyolite magmas erupted there [11].  相似文献   

20.
A combination of geophysical methods including continuous electrical resistivity and high-resolution Chirp sub-bottom profiling were utilized to characterize geologic controls on pore fluid salinity in the nearshore of Long Bay, SC. Resistivity values ranged from less than 1 Ω m to greater than 40 Ω m throughout the bay. Areas of elevated electrical resistivity suggest the influence of relatively fresher water on pore water composition. Geophysical evidence alone does not eliminate all ambiguity associated with lithological and porosity variations that may also contribute to electrical structure of shallow marine sediments. The anomalous field is of sufficient magnitude that lithological variation alone does not control the spatial distribution of elevated electrical resistivity zones. Geographical distribution of electrical anomalies and structures interpreted from nearby sub-bottom profiles indicates abrupt changes in shallow geologic units control preferential pathways for discharge of fresh water into the marine environment. Shore parallel resistivity profiles show dramatic decreases in magnitude with increasing distance from shore, suggesting a significant portion of the terrestrially driven fresh SGD in Long Bay is occurring via the surficial aquifer within a few hundred meters of shore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号