首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
粤东沿岸上升流对2006年夏季台风响应   总被引:2,自引:0,他引:2  
通过在粤东沿岸进行的大面走航CTD观测,特别是座底式的海床基测流资料,比较详细的探讨了台风过境对粤东沿岸上升流系统的影响.研究结果表明:南海夏季风驱动的东北向地转流在汕头附近存在显著的近海底向岸分量,与上层的离岸埃克曼平流共同构成了粤东近岸的典型上升流系统.进一步的分析表明粤东沿岸上升流系统对台风强度及其入侵路径比较敏感.当台风入侵路径位于上升流系统以北时(如0604号台风碧利斯和0605号台风凯米),在台风过境初期,局地西南风的异常增大使得向岸流显著增强,即上升流增强;在台风过境期及后期,无论是由于局地风场过强导致的海洋受迫响应(0604号台风碧利斯),还是中度台风诱发的惯性振荡(0605号台风凯米),都不利于维持一个稳定的、持续的上升流系统.当台风从上升流系统以南入侵时(如0606号台风派比安),有利于上升流产生的西南风被东北风取代,风驱向岸的埃克曼平流效应以及质量守恒使得海洋中、下层为离岸流,上层为向岸流,粤东沿岸传统的上升流结构遭到彻底颠覆;当台风过境后,典型的上升流结构会在1~2d内回复.  相似文献   

2.
长江口外及浙江沿岸夏季上升流的潮生机制   总被引:10,自引:0,他引:10  
基于普林斯顿海洋模式(POM)建立了MASNUM (Laboratory of MArine Science and NUmerical Modeling)海浪-潮流-环流耦合模式, 对长江口外及浙江沿岸海域夏季的上升流现象进行了数值模拟, 并从潮运动的角度分析了其动力机制, 对该海域潮致上升流的形成机理给出了一种新的解释. 研究表明, 该海域上升流的潮生机制同时体现在正压和斜压2个方面: 单纯的正压潮余流能够通过底层辐合和沿地形坡度爬升两种过程产生上升流; 在斜压海洋环境下, 强烈的潮混合作用在近岸陆坡区形成显著的锋面, 锋面两侧存在明显的密度差异, 该密度差异造成的水平压力梯度诱生出沿锋面的次级环流, 其上升流分支出现在锋区附近. 数值试验表明, 潮运动是该海域上升流的一个极为重要的诱发因子, 甚至占主导地位. 研究还发现, 与单纯模拟M2分潮相比, 对MS2, S2, K1及O1 4个主要分潮耦合计算有助于改善正压潮致上升流的模拟结果.  相似文献   

3.
全球地幔垂直流动速度研究   总被引:5,自引:0,他引:5       下载免费PDF全文
用高分辨率地震体波速度成像以及相关的地球物理资料,计算地幔垂直流动形式及流动速度,得到全球地幔流垂直运动模式.从全球尺度来看,地幔流基本可划分为以下几个区域:欧亚大陆—澳大利亚、北美洲—南美洲为两个大规模下降流区域,西印度洋—非洲及大西洋、中南太平洋及东太平洋为两个大规模地幔上升流区域.地幔上升流起源于核幔边界,主要表现在地幔中部和上地幔下部.地幔垂直流动速度约每年1~4cm.地幔流动对地表板块运动、海洋中脊和中隆、俯冲带和碰撞带的分布起着控制作用.地幔上升流与地表现代热点有密切关系.从东亚尺度看,地幔流大体分为三个区域:东亚边缘裂谷系和西太平洋边缘海为上升流、西伯利亚地幔深度表现为物质下降流、青藏高原—缅甸—印度尼西亚特提斯俯冲带地幔下降流,这三个区域地幔流动与地表的西太平洋构造域、亚洲构造域和特提斯构造域相吻合.勾勒出南海地区构造特征:从上到下的大体结构是上部呈“工"字型、中间为圆柱型、底部呈盾形的地幔上升流.  相似文献   

4.
冯立成  巢纪平 《中国科学D辑》2007,37(10):1417-1424
采用一个f-平面准地转但未作线性化假定的惯性模型, 考虑了西侧固壁附近摩擦层的作用, 在热量守恒条件下, 研究了理想化的长方体海盆区域内的扰动温度、边界急流及上升(下沉)流. 设研究区域上表面有净的热量输入, 相应的西侧边界有等量的热量耗散, 其余边界与外界无热量交换, 从而整个海域海水热量守恒. 结果表明, 在西侧边界扰动温度密集出现温度锋; 扰动压力及流场存在上下层翻转现象, 下层西侧为向北的沿岸急流, 扰动压力极大值中心位于西部, 上层东侧为向南的急流, 扰动压力极大值中心位于东部. 西侧较窄的范围内出现较强的垂向流, 中部区域也有较大的垂向运动. 文中还研究了不同形式的上表面热力强迫的影响, 结果表明对于不同形式的上边界热力强迫, 均可在海盆西侧出现扰动温度密集, 边界急流, 亦有上下层流场的翻转现象, 但垂向流的分布则有很大不同.  相似文献   

5.
南海北部陆架陆坡流系研究进展   总被引:1,自引:0,他引:1  
受季节性反转的季风强迫、海峡水交换、地形等影响,南海北部陆架陆坡流系呈现复杂多变的形式.南海北部陆坡流、南海暖流、沿岸流及其与之相关的上升流(夏季)和下降流(冬季)系统等构成了南海北部典型的流系.本文回顾了自20世纪90年代以来南海北部陆架陆坡流系的研究进展,总结了黑潮入侵南海、季风、地形、冲淡水浮力热力效应等因素在南海北部陆架陆坡流系中的作用.指出南海北部内区海盆与陆架陆坡流的动力联系、南海暖流是否稳定存在、冬季下降流时空特征及其物质能量输运等方面还需要进一步加强研究.  相似文献   

6.
将时空守恒元/解元(CE/SE)方法推广到二维孔隙介质多相流问题的数值计算中,采用人工压缩法耦合速度和压力,同时结合杂交粒子水平集方法捕捉物质界面.提出一套完整的二维欧拉型孔隙介质非稳态多相不可压缩黏性流动计算方案.通过对溃坝和液滴在重力作用下的运动和变形问题的数值模拟,验证了方法的精度和有效性.在此基础上,提出了一个新的孔隙介质两相流物理模型——双层流体顶盖驱动方腔流.  相似文献   

7.
探测一号卫星在近地磁尾观测到的尾向流统计特性   总被引:3,自引:0,他引:3       下载免费PDF全文
在磁静和亚暴期间,TC 1卫星在近地磁尾,包括晨昏两侧和夜侧的尾瓣、等离子体片边界层和等离子体片区域都观测到大量来自电离层的尾向流事件.尾向流在赤道面附近最强,在夜侧较晨昏两侧强;尾向流有从晨昏两侧向夜侧运动的趋势;尾向流随距地球距离增加而逐渐增强.与来自中磁尾的地向流相比,近地磁尾近赤道区域来自电离层的尾向流具有低温高密特性.2004年7月1日至2004年10月31日期间TC 1卫星在近地磁尾(7RE~13RE之间,RE为地球半径)观测到持续时间超过3 min的尾向流共516起.对这516起尾向流的统计研究结果显示:(1)尾向流在从等离子体片边界层向等离子体片的运动过程中流速会逐渐减弱、密度逐渐增高,温度有逐渐下降的趋势;(2)对尾向流平行温度和垂直温度的分析显示不同等离子体区域的尾向流都有较明显的各向异性;(3)在从等离子体片边界层向等离子体片的运动过程中,尾向流逐渐趋向各向同性.  相似文献   

8.
大尺度海洋环流是海洋能量再分配的基本物理过程之一,研究西太平洋海洋环流在全球气候变暖背景下的多年代变化趋势对理解和预测未来西太平洋气候变化具有重要意义.本文利用最新发布的世界大洋数据集(WOA18)的年代平均水文观测时间序列,计算了1955~2017年间热带西太平洋北赤道流、北赤道逆流、棉兰老流、源地黑潮和新几内亚沿岸潜流的地转流,估算了各支海流的流量及其多年代变化趋势,分离并讨论了温度变化和盐度变化在海流变化中的贡献.结果发现,北赤道流、棉兰老流和新几内亚沿岸潜流在过去60多年中均表现出显著的长期增强趋势,主要是温度变化贡献的,动力高度的变化趋势模态与各西边界流的变化趋势吻合.分析发现,各支海流同纬度西太平洋海域的区域平均纬向风应力可比较准确地刻画各海流流量的年代际变化特征和多年代增强趋势,表明信风强迫在热带西太平洋海洋环流的年代际变化趋势中具有重要作用.本文还讨论了热带西太平洋历史水文观测数据和流量趋势估计中存在的不确定性.由于WOA18数据集比较完整地涵盖了历史上在热带西太平洋获取的水文环境采样数据,因此本文为估计西太平洋大尺度海洋环流的多年代变化趋势提供了重要观测证据.  相似文献   

9.
我国主要地形上空理想定常流的流域分界分析   总被引:9,自引:1,他引:9       下载免费PDF全文
本文根据旋转层结流体过山的基本理论,从总体上对影响我国天气、气候形成和发展的主要地形进行了动力学分析,定性地给出了中纬度典型的东西、南北向气流过我国主要地形的整体特征:以绕流还是爬流为主以及地形流动的准地转动力学性质.结果表明我国地形大致可以分成三类:第一类是以爬流为主,满足准地转平衡动力学;第二类是以爬流为主,不满足准地转平衡动力学;第三类以绕流为主,不满足准地转动力学平衡.具体地形流动的整体特征取决于地形特征尺度、过山气流方向、地形高度以及地形的几何形状等.数值模拟的验证结果表明定性分析是可信的.  相似文献   

10.
层结海洋中小振幅内行进波的演变和破碎   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高精度的拟谱方法,数值模拟了层结海洋中小振幅内行进波的演变和破碎过程.在演变过程中,导致内波破碎的PSI不稳定机制在共振相互作用中逐渐占据主导地位,能量从初级波向低频、高波数运动缓慢传递并形成一次级波包,随即破碎发生.破碎后产生的层化湍流引起的强烈混合以及湍流间歇性可从总能量和涡度峰度随时间的变化趋势看出.我们分析了层化湍流的一些统计特性,包括动能和有效位能沿垂向波数ky的功率谱.结果表明,动能和有效位能谱都存在一个谱段满足k-3y律,且分别可表示为01N4k-3y和02N4k-3y(N为Brunt Visl频率),通常称其为浮力子区.另外,我们分析了Cox数(湍流扩散系数与分子扩散系数之比),在层化湍流维持在一定强度时,计算结果和由海洋内区观测(远离内波强生成源和复杂地形)所推测的结论较为吻合.  相似文献   

11.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

12.
A three-dimensional model based on the Princeton Ocean Model (POM) has been implemented to study the circulation of the west coast of India. The model uses a curvilinear orthogonal horizontal grid with higher resolution near the coast (3–9 km) and a terrain following sigma coordinate in the vertical. The model is able to simulate Lakshadweep High and Lakshadweep Low (LL) during the winter and summer monsoons, respectively. During winter, the downwelling processes noticed along the coast help in the formation of temperature inversions. The inversions can be seen even up to the depths of ~50 m, which agrees with the available ARGO data in the region. Model simulations show that coastal upwelling off Kerala is at its peak in July. The intensity of upwelling reduces along the coast towards north. During the existence of LL, there is a cyclonic eddy in the sub-surface waters over the South-Eastern Arabian Sea, with vertical extent up to the depths of 100–150 m and it is strengthened due to the presence of northward counter current in the shelf region. The southerly coastal jet formed along the southern coast as a result of upwelling is noticed a westward shift along with LL. The location of the eddy off Kerala is tilted towards the open ocean with depth and our experiments suggest that this flow can be understood as a first baroclinic mode.  相似文献   

13.
Through a set of observations including satellite, cruise and mooring data during May-July 1997 the transition between the downwelling and upwelling regimes off Galicia has been characterized. The poleward flow, typical of downwelling, was associated with a series of mesoscale eddies and interacted with coastal freshwater inputs. The poleward flow along the continental slope was separated into an offshore branch and a nearshore branch by a well-defined equatorward flow and both associated with a prominent salinity maximum. With the onset of upwelling-favorable winds, equatorward flow was established over the entire shelf. At the same time, a buoyant, warm surface layer spread out over the shelf from the Rías as water previously forced in by southerly winds was flushed out by the upwelling winds. The completed transition to summertime coastal upwelling took place after the cruise but was evident in satellite images. A conceptual model is used to demonstrate that the coastal orientation with respect to the upwelling winds enhances offshore flow outside the Rías and displaces the poleward flow offshore after several days of upwelling.  相似文献   

14.
The extensive shallow tropical seas off northern Australia, encompassing the Arafura and Timor Seas, have been identified as one of the most pristine marine environments on the planet. However, the remoteness and the absence of major industrial development that has contributed to this status have the additional consequence that relatively little is known about these systems. This study is the first to model oceanographic conditions across the tidally dominated Arafura and Timor Seas, and their seasonal variability. The results are based on a high-resolution (0.05°) ocean circulation model forced by realistic winds, waves and tides. The main focus of the study is on physical processes that influence the distributions of sediments and primary productivity across the system. Regions of high bottom stress and tidal mixing have been identified, including a large offshore area around Van Diemen Rise (Timor Sea). Lagrangian particle tracks have revealed a seasonal overturning cell that stretches across the Gulf of Carpentaria (Arafura Sea) with upwelling and downwelling on either side of the Gulf. The presence of coastal upwelling and downwelling is shown to provide a dynamically consistent explanation for the persistent turbid boundary layer observed around the shallow coastal waters of the Gulf.  相似文献   

15.
Inertia theory and the finite element method are used to investigate the effect of marginal seas on coastal upwelling. In contrast to much previous research on wind-driven upwelling, this paper does not consider localized wind effects, but focuses instead on temperature stratification, the slope of the continental shelf, and the background flow field. Finite element method, which is both faster and more robust than finite difference method in solving problems with complex boundary conditions, was developed to solve the partial differential equations that govern coastal upwelling. Our results demonstrate that the environment of the marginal sea plays an important role in coastal upwelling. First, the background flow at the outer boundary is the main driving force of upwelling. As the background flow strengthens, the overall velocity of cross-shelf flow increases and the horizontal scale of the upwelling front widens, and this is accompanied by the movement of the upwelling front further offshore. Second, temperature stratification determines the direction of cross-shelf flows, with strong stratification favoring a narrow and intense upwelling zone. Third, the slope of the continental shelf plays an important role in controlling the intensity of upwelling and the height that upwelling may reach: the steeper the slope, the lower height of the upwelling. An additional phenomenon that should be noted is upwelling separation, which occurs even without a local wind force in the nonlinear model.  相似文献   

16.
本文利用尺度分析理论详尽地论述了旋转海洋中各类运动的特性及其相应的控制方程组,指出现实海洋中可能存在五种大尺度运动,并讨论了存在于这种运动中流场和质量场的适应过程,针对不同类型的运动分别分析了升降流的性质以及层化和摩擦对升降流的影响,估计了地球旋转对海水可压缩性的影响以及非静力平衡在各类海洋运动中的作用。  相似文献   

17.
The results of comparative analysis of sea surface temperature variations along horizontal sections in the coastal zone are given. The data used had been taken by MODIS spectroradiometers (Aqua, Terra) in the Southeastern Baltic, in periods of coastal upwelling—in the periods of autumn differential cooling over coastal continental slopes (facilitating water subsidence along these slopes). Studying 135 SST images of coastal upwelling events in May–October 2000–2014 and four cooling events in October–November 2002, 2004, 2005, and 2009 revealed the specific features of the shape of horizontal temperature profiles on sea surface along sections over coastal continental slopes. In addition to the higher differences between water surface temperatures in the deep and coastal parts of the sea (up to 14°C), upwelling features an appreciable distance from the cold-water core to the coast (up to 3–15 km) and a variable shape of horizontal profiles of water temperature on the sea surface along the sections. Conversely, during autumn differential cooling, water temperature difference on the surface is relatively small, the shape of the dependence of surface water temperature on the distance to the shore does not change over time, varies only slightly with the alongshore displacement of the section, and shows low sensitivity to bathymetry and even to wind effect. Thus, the analysis of the shape of the temperature on the sea surface along horizontal sections over coastal continental slopes enables the diagnostics of the regime of vertical water exchange in the coastal zone.  相似文献   

18.
The paper presents a theoretical study to explain the regular occurrence of a cold water upwelling cell at the southern east coast of the Gotland island in the central Baltic Sea. While for a circular island up- and downwelling patterns would rotate around the island, the responses around the elongated Gotland island with narrow tips at its southern and northern ends are different. The study uses the example of the response of a coastal ocean to a wind band to develop an understanding of important aspects of generation of Kelvin waves and how the waves change the response patterns.  相似文献   

19.
We investigate the relationship between sea surface temperature (SST) cooling and upwelling along Papua New Guinea’s (PNG) north coast before the onset of El Niño events using a hindcast experiment with a high-resolution ocean general circulation model. Coastal upwelling and related SST cooling appear along PNG north coast during the boreal winter before the onsets of six El Niño events occurring during 1981–2005. Relatively cool SSTs appear along PNG north coast during that time, when anomalous northwesterly surface wind stress, which can cause coastal upwelling by offshore Ekman transport appearing over the region. In addition, anomalous cooling tendencies of SST are observed, accompanying anomalous upward velocities at the base of the mixed layer and shallow anomalies of 27°C isotherm depth. It is also shown that entrainment cooling plays an important role in the cooling of the mixed layer temperature in this region.  相似文献   

20.
Summer upwelling and downwelling processes were characterized in the Northern Galician Rias during July and August 2008 by means of sampling carried out onboard R/V Mytilus (CSIC) and R/V Lura (IEO). Thermohaline variables, dissolved oxygen, nutrients, chlorophyll, phytoplankton, ciliates and zooplankton abundances were measured at sections located in the Rias of Viveiro, Barqueiro and Ortigueira and their adjacent shelves. Ekman transport was calculated from QuikSCAT satellite, upwelling intensity estimated with upwelling index from the average daily geostrophic winds, and SST maps obtained from NASA GHRSST satellite. Ekman transport and SST behaviour showed two different patterns: (i) offshore and upwelling favourable conditions on 13–22nd of July; (ii) onshore and downwelling favourable conditions from 23rd July to 19th August. During upwelling, TS diagram showed an intrusion of Eastern North Atlantic Central Water affecting the continental shelf but not the rias. Nutrient salt concentrations increased with depth, reaching their maximum values near the mouth of Ortigueira Ria. During downwelling, coastal water increased its temperature (18.5–19.8 °C) and was retained inside rias; nutrients were nearly depleted, except for the innermost ria (estuarine zone) due to fluvial nutrient inputs. In this inner area, the maximum of chlorophyll-a (Barqueiro Ria) was observed. Low phytoplankton abundances were measured in both cases, even though a short increase in the plankton biomass was observed inside rias during upwelling, while under downwelling a small red tide of Lingulodinium polyedrum was detected. During the upwelling period Northern Rias tend to be mesotrophic systems as revealed by nutrient concentrations, chlorophyll levels and plankton abundances. On the contrary, in similar situations, the Western Rias behaves as eutrophics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号