首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An automatic tomography algorithm, based on differential semblance optimization (DSO), has been used to invert real cross-well seismic data for the background velocity. The method relies on the first-arrival transmitted waves. Given a background velocity model, the traveltimes between the sources and the receivers are computed, then semblance panels are created by back-propagating the data traces. If the velocity model is correct all the first-arrival transmitted waves will be aligned in the semblance panels. The DSO method consists of finding the background velocity by minimizing the L 2-norm of the difference between adjacent back-propagated traces. Thanks to the good behaviour of this DSO cost function about the solution, a local (gradient) optimization can be performed. This provides a relatively fast algorithm when ray tracing and analytic computation of the gradient are used.
Unfortunately the method fails in the presence of caustics in the data. However, this difficulty can be circumvented by applying suitable masks to the data. This approach is first applied to a synthetic example then to two real data sets: the McElroy data set recorded in West Texas and the NIMR data set recorded in Oman. The results are quite encouraging and similar to those obtained with classical tomography.  相似文献   

2.
Velocity analysis using AB semblance   总被引:1,自引:0,他引:1  
I derive and analyse an explicit formula for a generalized semblance attribute, which is suitable for the velocity analysis of prestack seismic gathers with distinct amplitude trends. While the conventional semblance can be interpreted as a squared correlation with a constant, the AB semblance is defined as a correlation with a trend. This measure is particularly attractive for analysing class II AVO anomalies and converted waves. Analytical derivations and numerical experiments show that the resolution of the AB semblance is approximately twice as low as that of the conventional semblance. However, this does not prevent it from being an effective attribute. I use synthetic and field data examples to demonstrate the improvements in velocity analysis from AB semblance.  相似文献   

3.
We propose a two-dimensional, non-linear method for the inversion of reflected/converted traveltimes and waveform semblance designed to obtain the location and morphology of seismic reflectors in a lateral heterogeneous medium and in any source-to-receiver acquisition lay-out. This method uses a scheme of non-linear optimization for the determination of the interface parameters where the calculation of the traveltimes is carried out using a finite-difference solver of the Eikonal equation, assuming an a priori known background velocity model. For the search for the optimal interface model, we used a multiscale approach and the genetic algorithm global optimization technique. During the initial stages of inversion, we used the arrival times of the reflection phase to retrieve the interface model that is defined by a small number of parameters. In the successive steps, the inversion is based on the optimization of the semblance value determined along the calculated traveltime curves. Errors in the final model parameters and the criteria for the choice of the best-fit model are also estimated from the shape of the semblance function in the model parameter space. The method is tested and validated on a synthetic dataset that simulates the acquisition of reflection data in a complex volcanic structure. This study shows that the proposed inversion approach is a valid tool for geophysical investigations in complex geological environments, in order to obtain the morphology and positions of embedded discontinuities.  相似文献   

4.
Seismograms predicted from acoustic or elastic earth models depend very non-linearly on the long wavelength components of velocity. This sensitive dependence demands the use of special variational principles in waveform-based inversion algorithms. The differential semblance variational principle is well-suited to velocity inversion by gradient methods, since its objective function is smooth and convex over a large range of velocity models. An extension of the adjoint state technique yields an accurate estimate of the differential semblance gradient. Non-linear conjugate gradient iteration is quite successful in locating the global differential semblance minimum, which is near the ordinary least-squares global minimum when coherent data noise is small. Several examples, based on the 2D primaries-only acoustic model, illustrate features of the method and its performance.  相似文献   

5.
Migration velocity analysis aims at determining the background velocity model. Classical artefacts, such as migration smiles, are observed on subsurface offset common image gathers, due to spatial and frequency data limitations. We analyse their impact on the differential semblance functional and on its gradient with respect to the model. In particular, the differential semblance functional is not necessarily minimum at the expected value. Tapers are classically applied on common image gathers to partly reduce these artefacts. Here, we first observe that the migrated image can be defined as the first gradient of an objective function formulated in the data‐domain. For an automatic and more robust formulation, we introduce a weight in the original data‐domain objective function. The weight is determined such that the Hessian resembles a Dirac function. In that way, we extend quantitative migration to the subsurface‐offset domain. This is an automatic way to compensate for illumination. We analyse the modified scheme on a very simple 2D case and on a more complex velocity model to show how migration velocity analysis becomes more robust.  相似文献   

6.
Wave equation–based migration velocity analysis techniques aim to construct a kinematically accurate velocity model for imaging or as an initial model for full waveform inversion applications. The most popular wave equation–based migration velocity analysis method is differential semblance optimization, where the velocity model is iteratively updated by minimizing the unfocused energy in an extended image volume. However, differential semblance optimization suffers from artefacts, courtesy of the adjoint operator used in imaging, leading to poor convergence. Recent findings show that true amplitude imaging plays a significant role in enhancing the differential semblance optimization's gradient and reducing the artefacts. Here, we focus on a pseudo-inverse operator to the horizontally extended Born as a true amplitude imaging operator. For laterally inhomogeneous models, the operator required a derivative with respect to a vertical shift. Extending the image vertically to evaluate such a derivative is costly and impractical. The inverse operator can be simplified in laterally homogeneous models. We derive an extension of the approach to apply the full inverse formula and evaluate the derivative efficiently. We simplified the implementation by applying the derivative to the imaging condition and utilize the relationship between the source and receiver wavefields and the vertical shift. Specifically, we verify the effectiveness of the approach using the Marmousi model and show that the term required for the lateral inhomogeneity treatment has a relatively small impact on the results for many cases. We then apply the operator in differential semblance optimization and invert for an accurate macro-velocity model, which can serve as an initial velocity model for full waveform inversion.  相似文献   

7.
Recent advances in commodity high-performance computing technology have dramatically reduced the computational cost for solving the seismic wave equation in complex earth structure models. As a consequence, wave-equation-based seismic tomography techniques are being actively developed and gradually adopted in routine subsurface seismic imaging practices. Wave-equation travel-time tomography is a seismic tomography technique that inverts cross-correlation travel-time misfits using full-wave Fréchet kernels computed by solving the wave equation. This technique can be implemented very efficiently using the adjoint method, in which the misfits are back-propagated from the receivers (i.e., seismometers) to produce the adjoint wave-field and the interaction between the adjoint wave-field and the forward wave-field from the seismic source gives the gradient of the objective function. Once the gradient is available, a gradient-based optimization algorithm can then be adopted to produce an optimal earth structure model that minimizes the objective function. This methodology is conceptually straightforward, but its implementation in practical situations is highly complex, error-prone and computationally demanding. In this study, we demonstrate the feasibility of automating wave-equation travel-time tomography based on the adjoint method using Kepler, an open-source software package for designing, managing and executing scientific workflows. The workflow technology allows us to abstract away much of the complexity involved in the implementation in a manner that is both robust and scalable. Our automated adjoint wave-equation travel-time tomography package has been successfully applied on a real active-source seismic dataset.  相似文献   

8.
时间域相邻道地震波衰减成像研究   总被引:18,自引:2,他引:18       下载免费PDF全文
在时间域中,利用地震记录中的振幅与上升时间信息可以计算出岩石介质的品质因子Q值.由于震源能量难以测量,本文通过共炮点道集相邻道循环对比的方法,消除了震源对计算过程的影响,推导出时间域相邻道振幅与上升时间衰减成像的计算公式,并在振幅衰减成像的计算过程中,去除了非粘滞性衰减成分.为了更全面地综合利用波形信息,并充分利用各种方法的长处,将波速成像、振幅衰减成像、上升时间衰减成像集成到一个处理流程中,通过在岩体结构研究中的实际应用,证明这种综合方法具有灵活、实用、可靠的特点.  相似文献   

9.
是否能够正确地建立深度域三维速度模型是三维叠前深度偏移成败的关键 .本文根据Deregowski循环 ,利用叠前深度域地震成像对速度模型变化的敏感性 ,采用偏移迭代逐次逼近最佳成像速度 ,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术 .借鉴时间域CDP(共深度点 )道集上常规叠加速度分析的策略 ,在深度域CRP(共反射点 )道集上 ,提出剩余慢度平方谱的概念并建立相应的实现技术 .导出深度域中均方根速度与层速度之间的关系 ;按照串级偏移原理确定偏移循环过程中初始速度、剩余速度及修改后速度之间的关系 ;采用蒙特卡洛非线性优化算法实现从剩余慢度平方谱中自动拾取层速度 ,讨论了其地质速度约束条件和蒙特卡洛非线性优化的收敛准则 ,使得所拾取的层速度模型具有合理的地质意义并获得最佳偏移成像效果 .SEG EAGE理论模型数值试算验证了方法的有效性 ,在海拉尔盆地霍多莫尔工区 ,5 8km2 三维资料的速度模型建立并获得满意的三维叠前深度偏移成像 .  相似文献   

10.
In this paper, we discuss high‐resolution coherence functions for the estimation of the stacking parameters in seismic signal processing. We focus on the Multiple Signal Classification which uses the eigendecomposition of the seismic data to measure the coherence along stacking curves. This algorithm can outperform the traditional semblance in cases of close or interfering reflections, generating a sharper velocity spectrum. Our main contribution is to propose complexity‐reducing strategies for its implementation to make it a feasible alternative to semblance. First, we show how to compute the multiple signal classification spectrum based on the eigendecomposition of the temporal correlation matrix of the seismic data. This matrix has a lower order than the spatial correlation used by other methods, so computing its eigendecomposition is simpler. Then we show how to compute its coherence measure in terms of the signal subspace of seismic data. This further reduces the computational cost as we now have to compute fewer eigenvectors than those required by the noise subspace currently used in the literature. Furthermore, we show how these eigenvectors can be computed with the low‐complexity power method. As a result of these simplifications, we show that the complexity of computing the multiple signal classification velocity spectrum is only about three times greater than semblance. Also, we propose a new normalization function to deal with the high dynamic range of the velocity spectrum. Numerical examples with synthetic and real seismic data indicate that the proposed approach provides stacking parameters with better resolution than conventional semblance, at an affordable computational cost.  相似文献   

11.
12.
Imaging the change in physical parameters in the subsurface requires an estimate of the long wavelength components of the same parameters in order to reconstruct the kinematics of the waves propagating in the subsurface. One can reconstruct the model by matching the recorded data with modeled waveforms extrapolated in a trial model of the medium. Alternatively, assuming a trial model, one can obtain a set of images of the reflectors from a number of seismic experiments and match the locations of the imaged interfaces. Apparent displacements between migrated images contain information about the velocity model and can be used for velocity analysis. A number of methods are available to characterize the displacement between images; in this paper, we compare shot‐domain differential semblance (image difference), penalized local correlations, and image‐warping. We show that the image‐warping vector field is a more reliable tool for estimating displacements between migrated images and leads to a more robust velocity analysis procedure. By using image‐warping, we can redefine the differential semblance optimization problem with an objective function that is more robust against cycle‐skipping than the direct image difference. We propose an approach that has straightforward implementation and reduced computational cost compared with the conventional adjoint‐state method calculations. We also discuss the weakness of migration velocity analysis in the migrated‐shot domain in the case of highly refractive media, when the Born modelling operator is far from being unitary and thus its adjoint (migration) operator poorly approximates the inverse.  相似文献   

13.
Seismic velocity analysis in the scattering-angle/azimuth domain   总被引:2,自引:0,他引:2  
Migration velocity analysis is carried out by analysing the residual moveout and amplitude variations in common image point gathers (CIGs) parametrized by scattering angle and azimuth. The misfit criterion in the analysis is of the differential-semblance type. By using angles to parametrize the imaging we are able to handle and exploit data with multiple arrivals, although artefacts may occur in the CIGs and need to be suppressed. The CIGs are generated by angle migration, an approach based on the generalized Radon transform (GRT) inversion, and they provide multiple images of reflectors in the subsurface for a range of scattering angles and azimuths. Within the differential semblance applied to these CIGs, we compensate for amplitude versus angle (AVA) effects. Thus, using a correct background velocity model, the CIGs should have no residual moveout nor amplitude variation with angles, and the differential semblance should vanish. If the velocity model is incorrect, however, the events in the CIGs will appear at different depths for different angles and the amplitude along the events will be non-uniform. A standard, gradient-based optimization scheme is employed to develop a velocity updating procedure. The model update is formed by backprojecting the differential semblance misfits through ray perturbation kernels, within a GRT inverse. The GRT inverse acts on the data, subject to a shift in accordance with ray perturbation theory. The performance of our algorithm is demonstrated with two synthetic data examples using isotropic elastic models. The first one allows velocity variation with depth only. In the second one, we reconstruct a low-velocity lens in the model that gives rise to multipathing. The velocity model parametrization is based upon the eigentensor decomposition of the stiffness tensor and makes use of B-splines.  相似文献   

14.
The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.  相似文献   

15.
In seismic tomography the observed traveltimes or amplitudes of direct waves are inverted to obtain an estimate of seismic velocity or absorption of the section surveyed. There has been much recent interest in using cross-well traveltime tomography to observe the progress of fluids injected into the reservoir rocks during enhanced oil recovery (EOR) processes. If repeated surveys are carried out, then EOR processes may be monitored over a period of time. This paper describes the results of a simulated time-lapse tomography experiment to image the flood zone in an EOR process. Two physical models were made out of epoxy resins to simulate an essentially plane-layered sedimentary sequence containing a reservoir layer and simple geological structure. The models differed only in the reservoir layer, which was uniform in the ‘pre-flood’ model and contained a flood zone of known geometry in the ‘post-flood’ model. Data sets were acquired from each model using a cross-well survey geometry. Traveltime and amplitude tomographic imaging techniques have been applied to these data in an attempt to locate the extent of the flood zone. Traveltime tomography locates the flood zone quite accurately. Amplitude tomography shows the flood zone as a region of higher absorption, but does not image its boundaries as precisely. This is primarily because of multipathing and diffraction effects, which are not accounted for by the ray-based techniques for inverting seismic amplitudes. Nevertheless, absorption tomograms could complement velocity tomograms in real, heterogeneous reservoirs because absorption and velocity respond differently to changes in liquid/gas saturations for reservoir rocks.  相似文献   

16.
利用联合反演技术进行反射地震的波速成象   总被引:5,自引:0,他引:5       下载免费PDF全文
本文介绍了根据反射地震数据进行波速成象的一种方法,其基础为多种反演技术的综合。由于要求的波速图象C(x,z)具有间断性,除利用走时数据T(x,t)外,在地层比较水平的情况下,还利用了均方根速度V(x,t)和统计子波W(t)的数据来成象。计算机层析成象过程分为三步:首先重做速度分析,取得与初次反射走时一致的均方根速度数据;然后用反射走时与均方根速度联合反演对应分析道的层速度和界面深度;最后由联合反演结果和反射面走时求波速图象函数的数字化版。文中还给出了波速成象方法在我国西北某沉积盆地上的应用及验证结果。  相似文献   

17.
A new type of seismic imaging, based on Feynman path integrals for waveform modelling, is capable of producing accurate subsurface images without any need for a reference velocity model. Instead of the usual optimization for traveltime curves with maximal signal semblance, a weighted summation over all representative curves avoids the need for velocity analysis, with its common difficulties of subjective and time‐consuming manual picking. The summation over all curves includes the stationary one that plays a preferential role in classical imaging schemes, but also multiple stationary curves when they exist. Moreover, the weighted summation over all curves also accounts for non‐uniqueness and uncertainty in the stacking/migration velocities. The path‐integral imaging can be applied to stacking to zero‐offset and to time and depth migration. In all these cases, a properly defined weighting function plays a vital role: to emphasize contributions from traveltime curves close to the optimal one and to suppress contributions from unrealistic curves. The path‐integral method is an authentic macromodel‐independent technique in the sense that there is strictly no parameter optimization or estimation involved. Development is still in its initial stage, and several conceptual and implementation issues are yet to be solved. However, application to synthetic and real data examples shows that it has the potential for becoming a fully automatic imaging technique.  相似文献   

18.
特征高斯波包叠前深度偏移方法   总被引:3,自引:3,他引:0       下载免费PDF全文
李辉  王华忠  冯波  胡英  张才 《地球物理学报》2014,57(7):2258-2268
高斯波包(Gaussian packet)传播算子可在局部时空域高效地计算局部波包的传播.高斯波包叠前深度偏移的基础是在Gabor变换域描述观测数据,再利用高斯波包传播算子计算炮点波场和检波点波场,两者相关即可得到偏移结果.利用炮道集的局部τ-p特征在Gabor变换域表达观测数据,可以仅关注部分高斯波包框架函数上的数据投影,这样既实现了波场的压缩存储,同时可利用高斯波包传播算子反传框架函数以实现整个炮道集的快速反传.这些综合了观测数据局部τ-p特征的高斯波包函数称为特征高斯波包(characteristic Gaussian packet,CGP),相应的波场反传称为特征高斯波包反传.理论及数值分析证明了上述特征高斯波包反传方法是有效且快速的.炮点正传波场也利用高斯波包传播算子模拟.利用互相关成像条件可实现特征高斯波包叠前深度偏移(characteristic Gaussian packet pre-stack depth migration,CGPM).由于高斯波包传播算子描述了局部方向及局部空间的波场,所以CGPM可以自然地提取角度域成像道集(ADCIG),并易于实现面向目标叠前深度偏移,从而作为偏移引擎为偏移速度分析(MVA)服务.数值实验证明了CGPM和面向目标CGPM的有效性和实用性.  相似文献   

19.
Migration velocity analysis and waveform inversion   总被引:3,自引:0,他引:3  
Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.  相似文献   

20.
Downhole monitoring with fibre-optic Distributed Acoustic Sensing (DAS) systems offers unprecedented spatial resolution. At the same time, costs are reduced since repeated wireline surveys can be replaced by the permanent installation of comparatively cheap fibre cables. However, the single component nature of fibre data requires novel approaches when designing a monitoring project such as cross-well seismics. At the example of the shallow CO2 injection test site in Svelvik, Norway, we model the evolution of velocity changes during CO2 injection based on rock physics theory. Different cross-well seismic design scenarios are then considered to evaluate the best design and the limits of this method to detect containment breach. We present a series of evaluation tools to compare the effect of different well spacings for cross-well seismic tomography. In addition to travel-times, we also consider characteristic amplitude changes along the fibre unique to DAS strain measurements, which might add a constraint to the inversion. We also compare the effect of using helical fibres instead of classical straight fibres. We thus present a toolbox to evaluate and compare different monitoring design options for fibre optic downhole installations for cross-well monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号