首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
Based on the liquefaction performance of sites with seismic activity, the normalized shear wave velocity, Vs1, has been proposed as a field parameter for liquefaction prediction. Because shear wave velocity, Vs, can be measured in the field with less effort and difficulty than other field tests, its use by practitioners is highly attractive. However, considering that its measurement is associated with small strain levels, of the order of 10−4–10−3%, Vs reflects the elastic stiffness of a granular material, hence, it is mainly affected by soil type, confining pressure and soil density, but it is insensitive to factors such as overconsolidation and pre-shaking, which have a strong influence on the liquefaction resistance. Therefore, without taking account of the important factors mentioned above, the correlation between shear wave velocity and liquefaction resistance is weak.In this paper, laboratory test results are presented in order to demonstrate the significant way in which OCR (overconsolidation ratio) affects both shear wave velocity and liquefaction resistance. While Vs is insensitive to OCR, the liquefaction resistance increases significantly with OCR. In addition, the experimental results also confirm that Vs correlates linearly with void ratio, regardless of the maximum and minimum void ratios, which means that Vs is unable to give information about the relative density. Therefore, if shear wave velocity is used to predict liquefaction potential, it is recommended that the limitations presented in this paper be taken into account.  相似文献   

2.
Gravelly soil is generally recognized to have no liquefaction potential. However, liquefaction cases were reported in central Taiwan in the 1999 Chi-Chi Taiwan earthquake and in the 1988 Armenia earthquake. Thus, further studies on the liquefaction potential of gravelly soil are warranted. Because large particles can impede the penetration of both standard penetration test and cone penetration test, shear wave velocity-based correlations and large hammer penetration tests (LPT) are employed to evaluate the liquefaction resistance of gravelly soils. A liquefied gravelly deposit site during the Chi-Chi earthquake was selected for this research. In situ physical properties of soil deposits were collected from exploratory trenches. Instrumented LPT and shear wave velocity (Vs) measurements were performed to evaluate the liquefaction resistance. In addition, large-scale cyclic triaxial tests on remolded gravelly soil samples (15 cm in diameter, 30 cm in height) were conducted to verify and improve LPT-based and Vs-based correlations. The results show that the LPT and shear wave velocity methods are reasonably suitable for liquefaction assessment of gravelly soils.  相似文献   

3.
Shear wave velocity (Vs) measurements from seismic piezocone penetration (SCPTU) soundings have been increasingly used for site characterization and liquefaction potential assessments. Several sites in Tangshan region, China liquefied during the Tangshan earthquake, Mw=7.8 in 1976 and these sites were characterized recently using the SCPTU device. Other sites in the same region where liquefaction was not observed are also included in the present field investigations. Three liquefaction assessment models-based on measured shear wave velocity, shear modulus and tip resistance parameters of SCPTU are evaluated in this paper for their accurate predictions of liquefaction or non-liquefaction at the test sites. Analyses showed that the shear wave velocity—liquefaction resistance model with normalized overburden vertical stress have yielded a success rate of 78% in predicting liquefied site cases and another similar approach with mean stress based normalization has a success rate of 67%. The correlation of qc/Go-CRR7.5 based on geological age has correctly assessed the liquefaction potential at most sites considered in this research. Overall, all three models based on shear wave velocity, shear modulus and cone tip resistance are proven valuable in the assessments of liquefaction at the present test sites in the Tangshan region.  相似文献   

4.
A series of undrained cyclic direct simple shear tests, which used a soil container with a membrane reinforced with stack rings to maintain the K0 condition and integrated bender elements for shear wave velocity measurement, were performed to study the liquefaction characteristics of gap-graded gravelly soils with no fines content. The intergrain state concept was employed to categorize gap-graded sand–gravel mixtures as sand-like, gravel-like, and in-transition soils, which show different liquefaction characteristics. The testing results reveal that a linear relationship exists between the shear wave velocity and the minor fraction content for sand–gravel mixtures at a given skeleton void ratio of the major fraction particles. For gap-graded gravelly sand, the gravel content has a small effect on the liquefaction resistance, and the cyclic resistance ratio (CRR) of gap-graded gravelly sands can be evaluated using current techniques for sands with gravel content corrections. In addition, the results indicate that the current shear wave velocity (Vs) based correlation underestimates the liquefaction resistance for Vs values less than 160 m/s, and different correlations should be proposed for sand-like and gravel-like gravelly soils. Preliminary modifications to the correlations used in current evaluations of liquefaction resistance have thus been proposed.  相似文献   

5.
The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (V s)-void ratio (e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR-V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s-e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.  相似文献   

6.
Liquefaction which is one of the most destructive ground deformations occurs during an earthquake in saturated or partially saturated silty and sandy soils, which may cause serious damages such as settlement and tilting of structures due to shear strength loss of soils. Standard (SPT) and cone (CPT) penetration tests as well as the shear wave velocity (V s)-based methods are commonly used for the determination of liquefaction potential. In this research, it was aimed to compare the SPT and V s-based liquefaction analysis methods by generating different earthquake scenarios. Accordingly, the Erci? residential area, which was mostly affected by the 2011 Van earthquake (M w = 7.1), was chosen as the model site. Erci? (Van, Turkey) and its surroundings settle on an alluvial plain which consists of silty and sandy layers with shallow groundwater level. Moreover, Çald?ran, Erci?–Kocap?nar and Van Fault Zones are the major seismic sources of the region which have a significant potential of producing large magnitude earthquakes. After liquefaction assessments, the liquefaction potential in the western part of the region and in the coastal regions nearby the Lake Van is found to be higher than the other locations. Thus, it can be stated that the soil tightness and groundwater level dominantly control the liquefaction potential. In addition, the lateral spreading and sand boiling spots observed after the 23rd October 2011 Van earthquake overlap the scenario boundaries predicted in this study. Eventually, the use of V s-based liquefaction analysis in collaboration with the SPT results is quite advantageous to assess the rate of liquefaction in a specific area.  相似文献   

7.
剪切波速与地基土的抗剪强度、剪切模量和卓越周期等参数密切相关,是地震安全性评价中判定场地类别的一个主要指标和参数。鉴于海域工程中剪切波速往往难以直接由原位测得,而室内实验结果又常常与野外现场物探测试值存在较大差异,因此,如何通过其他途径有效获取满足工程需要的剪切波速参数在海域工程的地震安全性评价等方面具有迫切的实用需求。为此本文通过对渤海海域数十个石油平台项目中一系列饱和黏性土样品的剪切波速与抗剪强度实验数据的统计分析,尝试采用多种可能的函数来拟合确定二者之间的经验关系。结果表明:对于渤海海域黏性土剪切波速V_s与抗剪强度S_u之间的最佳统计经验关系为幂函数V_s=53.751S_u~(0.376)。此关系可为渤海海域工程中通过不排水抗剪强度估算剪切波速提供一种简便可行的实用性方法。  相似文献   

8.
土体剪切波速是进行土层地震反应分析的动力学参数,对场地地震动参数确定具有重要意义。基于地质地貌分析,将大同盆地划分为5类典型地质单元。对盆地1429个钻孔剪切波速资料进行分析,探讨VS30与VS20的相关性,研究土体埋深、岩性、地质单元、标贯击数及密实度等地质特征对VS的影响,并基于地质单元、剪切波速比、密实度系数及第四系上部覆盖层厚度相关性分析给出土体VS30预测模型。研究结果表明,基于典型地质特征的VS30预测模型拟合优度R2>0.90,预测精度很高,对于离散性较大、直接拟合估算较差及无剪切波速场地来说,以区分地质单元及土体类型的方式进行VS30分解预测是良好的研究思路。首次在区分地质单元及土体类型的前提下提出剪切波速比及密实度系数,并将其与第四系上部覆盖层厚度综合应用于VS30预测研究。研究结果可为大同盆地城市防震减灾规划、震害预测、区域性地震安全评价提供重要技术支撑。  相似文献   

9.
The liquefaction potential of soils is traditionally assessed through geotechnical approaches based on the calculation of the cyclical stress ratio (CSR) induced by the expected earthquake and the ‘resistance’ provided by the soil, which is quantified through standard penetration (SPT), cone penetration (CPT), or similar tests. In more recent years, attempts to assess the liquefaction potential have also been made through measurement of shear wave velocity (VS) in boreholes or from the surface. The latter approach has the advantage of being non-invasive and low cost and of surveying lines rather than single points. However, the resolution of seismic surface techniques is lower than that of borehole techniques and it is still debated whether it is sufficient to assess the liquefaction potential.In this paper we focus our attention on surface seismic techniques (specifically the popular passive and active seismic techniques based on the correlation of surface waves such as ReMiTM, MASW, ESAC, SSAP, etc.) and explore their performance in assessing the liquefaction susceptibility of soils. The experimental dataset is provided by the two main seismic events of ML=5.9 and 5.8 (MW=6.1, MW=6.0) that struck the Emilia-Romagna region (Northern Italy) on May 20 and 29, 2012, after which extensive liquefaction phenomena were documented in an area of 1200 km2.The CPT and drillings available in the area allow us to classify the soils into four classes: A) shallow liquefied sandy soils, B) shallow non-liquefied sandy soils, C) deep non-liquefied sandy soils, and D) clayey–silty soils, and to determine that on average class A soils presented a higher sand content at the depth of 5–8 m compared to class B soils, where sand was dominant in the upper 5 m. Surface wave active–passive surveys were performed at 84 sites, and it was found that they were capable of discriminating among only three soil classes, since class A and B soils showed exactly the same VS distribution, and it is possible to show both experimentally and theoretically that they appear not to have sufficient resolution to address the seismic liquefaction issue.As a last step, we applied the state-of-the art CSR–VS method to assess the liquefaction potential of sandy deposits and we found that it failed in the studied area. This might be due to the insufficient resolution of the surface wave methods in assessing the Vs of thin layers and to the fact that Vs scales with the square root of the shear modulus, which implies an intrinsic lower sensitivity of Vs to the shear resistance of the soil compared to parameters traditionally measured with the penetration tests. However, it also emerged that the pure observation of the surface wave dispersion curves at their simplest level (i.e. in the frequency domain, with no inversion) is still potentially informative and can be used to identify the sites where more detailed surveys to assess the liquefaction potential are recommended.  相似文献   

10.
The liquefaction behavior and cyclic resistance ratio (CRR) of reconstituted samples of non-plastic silt and sandy silts with 50% and 75% silt content are examined using constant-volume cyclic and monotonic ring shear tests along with bender element shear wave velocity (Vs) measurements. Liquefaction occurred at excess pore water pressure ratios (ru) between 0.6 and 0.7 associated with cumulative cyclic shear strains (γ) of 4% to 7%, after which cyclic liquefaction ensued with very large shear strains and excess pore water pressure ratio (ru>0.8). The cyclic ring shear tests demonstrate that cyclic resistance ratio of silt and sandy silts decreases with increasing void ratio, or with decreasing silt content at a certain void ratio. The results also show good agreement with those from cyclic direct simple shear tests on silts and sandy silts. A unique correlation is developed for estimating CRR of silts and sandy silts (with more than 50% silt content) from stress-normalized shear wave velocity measurements (Vs1) with negligible effect of silt content. The results indicate that the existing CRR–Vs1 correlations would underestimate the liquefaction resistance of silts and sandy silt soils.  相似文献   

11.
The application of the simplified method for evaluating the liquefaction potential based on shear wave velocity measurements has increased substantially due to its advantages, especially for microzonation of liquefaction potential. In the simplified method, a curve is proposed to correlate the cyclic resistance ratio (CRR) with overburden stress-corrected shear wave velocity (Vs1). However, the uniqueness of this curve for all types of soils is questionable. The objective of this research is to study whether the correlation between CRR and Vs1 is unique or not. Besides, the necessity of developing the soil-specific correlations is also investigated. Based on laboratory test data, a new semi-empirical method is proposed to establish the soil-specific CRR–Vs1 correlation. To validate the proposed method, a number of undrained cyclic triaxial tests along with bender element tests were performed on two types of sands. Similar experimental data for six other types of sands reported in the literature was also compiled. Applying the proposed method, soil-specific CRR–Vs1 correlation curves were developed for these eight types of sands. It is shown that the correlation is not unique for different types of sands and the boundary curve proposed in the available simplified method can only be used as an initial estimation of liquefaction resistance. Finally, using the results of this study as well as previous ones, a chart is suggested to be used in engineering practice showing the conditions for which a detailed soil-specific CRR–Vs1 correlation study needs to be performed.  相似文献   

12.
To determine the shear wave velocity structure and predominant period features of T?naztepe in ?zmir, Turkey, where new building sites have been planned, active–passive surface wave methods and single-station microtremor measurements are used, as well as surface acquisition techniques, including the multichannel analysis of surface waves (MASW), refraction microtremor (ReMi), and the spatial autocorrelation method (SPAC), to pinpoint shallow and deep shear wave velocity. For engineering bedrock (V s > 760 m/s) conditions at a depth of 30 m, an average seismic shear wave velocity in the upper 30 m of soil (AVs30) is not only accepted as an important parameter for defining ground behavior during earthquakes, but a primary parameter in the geotechnical analysis for areas to be classified by V s30 according to the National Earthquake Hazards Reduction Program (NEHRP). It is also determined that Z1.0, which represents a depth to V s = 1000 m/s, is used for ground motion prediction and changed from 0 to 54 m. The sediment–engineering bedrock structure for T?naztepe that was obtained shows engineering bedrock no deeper than 30 m. When compared, the depth of engineering bedrock and dominant period map and geology are generally compatible.  相似文献   

13.
In this paper, a two-dimensional integrated numerical model is developed to examine the influences of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of a pipeline buried in a porous seabed. In the wave model, the RANS (Reynolds Averaged Navier–Stokes) equation is used to govern the wave motion. In the seabed model, the residual soil response in the vicinity of an embedded pipeline is considered with the 2-D elasto-plastic solution, where the phase-resolved shear stress is used as a source for the build-up of residual pore pressure. Classical Biot׳s consolidation equation is used for linking the solid-pore fluid interaction. The validation of the proposed integrated numerical model is conducted by the comparisons with the previous experimental data. Numerical examples show that the pore pressures can accumulate to a large value, thus resulting in a larger area of liquefaction potential in the given anisotropic soil compared to that with isotropic solution. The influences of anisotropic parameters on the wave-induced residual soil response in the vicinity of pipeline are significant. A high rate of pore pressure accumulation and dissipation is observed and the liquefaction potential develops faster as the anisotropic parameters increase. Finally, a simplified approximation based on a detailed parametric investigations is proposed for the evaluation of maximum liquefaction depth (zL) in engineering application.  相似文献   

14.
For assessing earthquake hazard of metro cities, knowledge of soil amplification, thickness and properties of sedimentary layer are essential. In order to map the soil thickness using microtremor survey method, in Bangalore city, it is required to calibrate the relation between fundamental resonance frequency of the soil layer and its thickness for the region. For this purpose microtremor survey was carried out at 34 locations in the city where borehole log was available. The resonance frequency of the soil is evaluated from the microtremor recordings using the H/V ratio technique. A nonlinear regression relation between the thickness of sedimentary layer h (m), from the borehole logs, and the resonance frequency fr (Hz), was derived as h=(58.3±8.8)fr−(0.95)±0.1. Using the model of shear wave velocity increasing with depth at these locations, the derived average shear wave velocity and the corresponding soil thickness were used, to get an empirical relation between VS (m/s) and depth z(m), as Vs=(174±28)(1+z)0.16±0.07. This relation also compares reasonably with the fit obtained between simulated VS and depth from borehole logs for Bangalore city. The calibrated relations can be used at locations in Bangalore city where borehole logs are not available, for finding the thicknesses and shear wave velocities of the local soil layers at the survey locations.  相似文献   

15.
This study analyzes liquefaction in the Kumluca/Antalya residential area and surroundings, using seismic velocities of soil deposits and the predominant period of the earthquake wave. The liquefaction analysis calculates shear–stress ratio, shear–resistance ratio and safety factor. Shear wave velocity used in liquefaction analysis was determined through surface waves. Moreover, the dynamic parameters of the ground were calculated through seismic velocities. Distributions of groundwater, shear wave velocity, adjusted shear wave velocity, predominant period of vibration, soil amplification and ground acceleration of the research area were mapped. In addition, the liquefied and non-liquefied areas as a result of liquefaction analysis in Kumluca were determined and presented as maps. Examining these maps, among all these maps, the limits of the lagoon sandbar and the old lake area were determined using only the liquefaction map.  相似文献   

16.
Shear‐wave statics in marine seismic exploration data are routinely too large to be estimated using conventional techniques. Near‐surface unconsolidated sediments are often characterized by low values of Vs and steep velocity gradients. Minor variations in sediment properties at these depths correspond to variations in the shear‐wave velocity and will produce significant static shifts. It is suggested that a significant proportion of the shear‐wave statics solution can be estimated by performing a separate high‐resolution survey to target near‐surface unconsolidated sediments. Love‐wave, shear‐wave refraction and geotechnical measurements were individually used to form high‐resolution near‐surface shear‐wave velocity models to estimate the shear‐wave statics for a designated survey line. Comparisons with predicted statics revealed that shear‐wave statics could not be estimated using a velocity model predicted by substituting geotechnical measurements into empirical relationships. Empirical relationships represent a vast simplification of the factors that control Vs and are therefore not sufficiently sensitive to estimate shear‐wave statics. Refraction measurements are potentially sensitive to short‐wavelength variations in sediment properties when combined with accurate navigational data. Statics estimated from Love‐wave data are less sensitive, and sometimes smoothed in appearance, since interpreted velocity values represent an average both laterally and vertically over the receiver array and the frequency–depth sensitivity range, respectively. For the survey site, statics estimated from near‐surface irregularities using shear‐wave refraction measurements represent almost half the total statics solution. More often, this proportion will be greater when bedrock relief is less.  相似文献   

17.
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M w > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V s) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V s profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V s30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V s30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V s and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as ‘V s’ is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile–quantile (Q–Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q–Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V s profiles of the study area for site response studies.  相似文献   

18.
This paper describes a case-history of liquefaction occurred near the village of Vittorito after the April 6, 2009 L’Aquila earthquake (moment magnitude Mw = 6.3), approximately 45 km far from the epicentre. In the document, first, an estimation of the seismic motion in the area has been made. Thereafter, the performed geotechnical investigation is described, followed by the application of some fast assessment criteria for the occurrence of liquefaction, recently proposed by the new Italian Building Code. A careful assessment of all the parameters involved in conventional Seed and Idriss (1971) liquefaction analyses is considered. The cyclic resistance ratio CRR is evaluated by cone penetration tests CPT and by in situ seismic dilatometer tests SMDT; in the latter case CRR is evaluated by different empirical correlations with shear wave velocity Vs and horizontal stress index KD. Analytical data confirmed the observed occurrence of the liquefaction in Vittorito, even if the acceleration field in the area, produced by the L’Aquila earthquake, was very low.  相似文献   

19.
This paper discusses the evaluation of liquefaction potential of soil based on standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). The liquefaction classification accuracy (94.19%) of the developed liquefaction index (LI) model is found to be better than that of available artificial neural network (ANN) model (88.37%) and at par with the available support vector machine (SVM) model (94.19%) on the basis of the testing data. Further, an empirical equation is presented using MGGP to approximate the unknown limit state function representing the cyclic resistance ratio (CRR) of soil based on developed LI model. Using an independent database of 227 cases, the overall rates of successful prediction of occurrence of liquefaction and non-liquefaction are found to be 87, 86, and 84% by the developed MGGP based model, available ANN and the statistical models, respectively, on the basis of calculated factor of safety (F s ) against the liquefaction occurrence.  相似文献   

20.
Field investigations following the 2008 Wenchuan earthquake (Ms=8.0) identified 118 liquefaction sites nearly all of which are underlain by gravelly sediment in the Chengdu Plain and adjacent Mianyang area. Field studies, including core drilling, dynamic penetration tests (DPT), and multiple channel analysis of surface wave velocity tests (MASW) for measurement of shear wave velocities, reveal the following: (1) Sand boils and ground fissures, indicative of liquefaction, occurred across hundreds of square kilometers affecting 120 villages, 8 schools and 5 factories. (2) The Chengdu plain is underlain by sandy gravels ranging in thickness up to 540 m; loose upper layers within the gravels beds liquefied. (3) Mean grain sizes for gravelly layers that liquefied range from 1 mm to more than 30 mm. (4) Shear wave velocities in gravels that liquefied range up to 250 m/s. (5) A 50% probability curve, developed from logistic procedures, correctly bounds all but four data points for the 47 compiled Vs data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号