首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase.Furthermore,buildings are usually constructed on soil;hence,there are interactions between the buildings and the underlying soil that should also be considered.This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings’ seismic responses.The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear viscoelastic contact force model that connects the buildings during pounding.The seismic responses of adjacent buildings due to ground accelerations are obtained for two conditions:fixed-based(FB) and structure-soil-structure interaction(SSSI).The results indicate that pounding worsens the buildings’ condition because their seismic responses are amplified after pounding.Moreover,the underlying soil negatively impacts the buildings’ seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.  相似文献   

2.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

3.
Post-earthquake damages investigation in past and recent earthquakes has illustrated that the building structures are vulnerable to severe damage and/or collapse during moderate to strong ground motion. Among the possible structural damages, seismic induced pounding has been commonly observed in several earthquakes. A parametric study on buildings pounding response as well as proper seismic hazard mitigation practice for adjacent buildings is carried out. Three categories of recorded earthquake excitation are used for input excitations. The effect of impact is studied using linear and nonlinear contact force model for different separation distances and compared with nominal model without pounding consideration. The severity of the impact depends on the dynamic characteristics of the adjacent buildings in combination with the earthquake characteristics. Pounding produces acceleration and shear forces/stresses at various story levels that are greater than those obtained from the no pounding case, while the peak drift depends on the input excitation characteristics. Also, increasing gap width is likely to be effective when the separation is sufficiently wide to eliminate contact. Furthermore, it is effective to provide a shock absorber device system for the mitigation of impact effects between adjacent buildings with relatively narrow seismic gaps, where the sudden changes of stiffness during poundings can be smoothed. This prevents, to some extent, the acceleration peaks due to impact. The pounding forces exerted on the adjacent buildings can be satisfactorily reduced.  相似文献   

4.
In cities and urban areas, building structures located at close proximities inevitably interact under dynamic loading by direct pounding and indirectly through the underlying soil. Majority of the previous adjacent building pounding studies that have taken the structure–soil–structure interaction (SSSI) problem into account have used simple lumped mass–spring–dashpot models under plane strain conditions. In this research, the problem of SSSI‐included pounding problem of two adjacent symmetric in plan buildings resting on a soft soil profile excited by uniaxial earthquake loadings is investigated. To this end, a series of SSSI models considering one‐directional nonlinear impact elements between adjacent co‐planar stories and using a method for direct finite element modeling of 3D inelastic underlying soil volume has been developed to accurately study the problem. An advanced inelastic structural behavior parameter, the seismic damage index, has been considered in this study as the key nonlinear structural response of adjacent buildings. Based on the results of SSSI and fixed base case analyses presented herein, two main problems are investigated, namely, the minimum building separation distance for pounding prevention and seismic pounding effects on structural damage in adjacent buildings. The final results show that at least three times, the International Building Code 2009 minimum distance for building separation recommended value is required as a clear distance for adjacent symmetric buildings to prevent the occurrence of seismic pounding. At the International Building Code‐recommended distance, adjacent buildings experienced severe seismic pounding and therefore significant variations in storey shear forces and damage indices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The effect of different structures configurations on the collision between adjacent planar RC building frames subjected to strong earthquakes is examined in this paper. Two 5‐storey and two 8‐storey frames, regular or with setbacks, are combined together to produce nine different pairs of adjacent RC structures. These pairs of buildings are subjected to six strong ground motions that are absolutely compatible with the design process. Various parameters are investigated such as maximum displacements, permanent displacements, members' ductility and internal forces and interstorey drift ratios. It is concluded that the effect of collision of adjacent frames seems to be unfavourable for most of the cases and, therefore, the structural pounding phenomenon is rather detrimental than beneficial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Experimental research into the seismic performance of buildings with passive oil dampers has so far been restricted to large-scale testing of frames erected on laboratory shaking tables that ignore the foundation soil below. This simplification of the problem falls short of replicating dynamic soil-structure interaction that would occur in the field. This paper presents the first experimental attempt at utilising high gravity dynamic centrifuge testing to replicate the response of a damped building at a reduced model scale. The paper compares the dynamic response of two similar two-degree-of-freedom model sway frames, one control (bare) frame and one frame equipped with miniature oil dampers, both structures founded on shallow raft foundations in dry dense sand. The miniature oil dampers successfully mitigate floor accelerations, drifts, and storey shear forces in the damped frame with minor modification to the frame stiffness. For strong, near resonance motions, global rocking of the undamped frame associated with physical uplifting of the foundation from the soil surface and subsequent yielding of sand beneath has led to floor acceleration levels, which are comparable to those obtained in the damped building fitted with miniature oil dampers. Assessment of the instrumentation installed on the miniature oil dampers reveals a viscoelastic damper behaviour with a dependency on stroke magnitude and on velocity.  相似文献   

7.
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings.The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades.However,no investigation has yet been carried out for the case of soil-structure systems.In the present study,through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns,including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils,the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated.The results of this study show that depending on the level of inelasticity,soil flexibility and number of degrees-of-freedoms(DOFs),structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems.It is also found that at high levels of inelasticity,the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.  相似文献   

8.
Floor diaphragm in-plane stiffness affects building response to horizontal ground accelerations. This paper describes a series of elastic and inelastic time history analyses of symmetric structures with different deformation types, configurations and heights to quantify these effects. It is shown that displacements of single storey elastically responding structures tend to be most significantly affected by diaphragm flexibility. Analyses of these structures were cross-verified by a closed-form mechanics-based formulation developed to describe the response. Simple relationships were proposed to allow designers to conservatively estimate the increase in peak in-plane displacement resulting from diaphragm flexibility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Base‐isolated buildings are typically important facilities expected to remain functional after a major earthquake. However, their behavior under extreme ground shaking is not well understood. A series of earthquake simulator experiments were performed to assess performance limit states of seismically isolated buildings under strong ground motions, including pounding against a moat wall. The test setup consists of a quarter scale three‐story frame isolated at the base with friction pendulum bearings and a moat wall model. An effort was made to properly scale the strength and the stiffness of the frame relative to the bearings properties from a professionally designed isolated three‐story steel intermediate moment‐resisting frame so that realistic yielding mechanisms can be observed. The moat wall was modeled as either a rigid triangle steel stopper or a concrete wall of various thicknesses with soil backfill. The moat wall gap was set to various displacement increments to examine the sensitivity of this parameter and also to assess the effects of impact on the superstructure at different velocities. The test results indicate that the contact forces are largely dependent on the gap distance, impact velocity and wall flexibility and, in extreme cases, pounding can induce yielding in the superstructure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The reports after major earthquakes indicate that the earthquake-induced pounding between insufficiently separated buildings may lead to significant damage or even total collapse of structures. An intensive study has recently been carried out on mitigation of pounding hazards so as to minimize the structural damages or prevent collisions at all. The aim of this paper is to investigate the effectiveness of the method when two adjacent three-storey buildings with different (substantially different) dynamic properties are connected at each storey level by link elements (springs, dashpots or viscoelastic elements). The results of the study indicate that connecting the structures by additional link elements can be very beneficial for the lighter and more flexible building. The largest decrease in the response of the structure has been obtained for links with large stiffness or damping values, which stands for the case when two buildings are fully connected and vibrate in-phase. Moreover, by comparing the effectiveness of different types of link elements, it has been confirmed that the use of viscoelastic elements reduces the peak displacement of the structure at lower stiffness and damping values comparing to the case when spring and dashpot elements are applied alone. On the other hand, the results of the study demonstrate that applying the additional link elements does not really change the response of the heavier and stiffer building. The final conclusion of the study indicates that linking two buildings allows us to reduce the in-between gap size substantially while structural pounding can be still prevented.  相似文献   

11.
This article examines the use of rocking steel braced frames for the retrofit of existing seismically deficient steel building structures. Rocking is also used to achieve superior seismic performance to reduce repair costs and disruption time after earthquakes. The study focuses on low‐rise buildings for which re‐centring is solely provided by gravity loads rather than added post‐tensioning elements. Friction energy dissipative (ED) devices are used to control drifts. The system is applied to 2‐storey and 3‐storey structures located in 2 seismically active regions of Canada. Firm ground and soft soil conditions are considered. The seismic performance of the retrofit scheme is evaluated using nonlinear dynamic analysis and ASCE 41‐13. For all structures, rocking permits to achieve immediate occupancy performance under 2% in 50 years seismic hazard if the braces and their connections at the building's top storeys are strengthened to resist amplified forces due to higher mode response. Base shears are also increased due to higher modes. Impact at column bases upon rocking induces magnified column forces and vertical response in the gravity system. Friction ED is found more effective for drift control than systems with ring springs or bars yielding in tension. Drifts are sufficiently small to achieve position retention performance for most nonstructural components. Horizontal accelerations are generally lower than predicted from ASCE 41 for regular nonrocking structures. Vertical accelerations in the gravity framing directly connected to the rocking frame are however higher than those predicted for ordinary structures. Vertical ground motions have limited effect on frame response.  相似文献   

12.
Open Ground Storey(OGS) framed buildings where the ground storey is kept open without infill walls, mainly to facilitate parking, is increasing commonly in urban areas. However, vulnerability of this type of buildings has been exposed in past earthquakes. OGS buildings are conventionally designed by a bare frame analysis that ignores the stiffness of the infill walls present in the upper storeys, but doing so underestimates the inter-storey drift(ISD) and thereby the force demand in the ground storey columns. Therefore, a multiplication factor(MF) is introduced in various international codes to estimate the design forces(bending moments and shear forces) in the ground storey columns. This study focuses on the seismic performance of typical OGS buildings designed by means of MFs. The probabilistic seismic demand models, fragility curves, reliability and cost indices for various frame models including bare frames and fully infilled frames are developed. It is found that the MF scheme suggested by the Israel code is better than other international codes in terms of reliability and cost.  相似文献   

13.
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure.  相似文献   

14.
In this paper, soil-structure interaction studies are presented for buildings which collapsed at the Tofas automobile factory, Bursa, Turkey, during the 28 March 1970 Gediz earthquake. Acceleration response spectrum curves of the ground were determined using the vibrations of an after shock recorded by a Willmore velocity seismometer. These spectrum curves provide an essential source of information for establishing the reasons of collapse, as well as for explaining the relative response to the earthquake of various buildings in the factory area. The factory not only is 135 km away from the epicentre, but also is far outside the fifth degree damage intensity zone. The prime reason why a low value of ground acceleration caused such surprisingly heavy damage to modern reinforced concrete structures is concluded to be the resonance phenomenon arising from the natural period of the structures coinciding with the predominant period of the soil.  相似文献   

15.
The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process. The method has been widely used in seismic design and other related scientific research; however, the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood. In this study, we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS. All models are computed by the dynamic time-history method or the pushover method. Furthermore, the dynamic time-history solution result is taken as the standard solution, and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section. The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method, and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1. The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods.  相似文献   

16.
A study has been made of the dynamic contact stresses that the foundation of a nine-storey reinforced concrete building exerts on the soil during forced vibration tests. The effects of the flexibility of the foundation on the contact stress distribution and on the force-displacement relationship for the foundation have been examined in an attempt at testing several simplifying assumptions commonly used in soil-structure interaction studies. Comparisons of calculated and observed ground displacements induced by soil-structure interaction in the immediate neighbourhood of the building have also been presented.  相似文献   

17.
Moat wall pounding occurs when a base-isolated building displaces beyond the provided clearance and collides with the surrounding retaining wall, inducing very high floor accelerations and interstory drifts. Previous studies on moat wall pounding typically employ simplified models of the superstructure, with a uniaxial contact spring used to model the entire moat wall. Consequently, researchers have developed sophisticated contact models to estimate the normal-direction contact force that is generated during seismic pounding. This study examines how the choice in contact model affects the seismic response of a base-isolated building subjected to impact-inducing ground excitation. Five widely used state-of-the-art contact models are summarized and implemented into an experimentally-calibrated numerical model of a base-isolated moment frame. Results of nonlinear dynamic time history analyses are shown in detail for one ground motion, followed by a larger parametric study across 28 near-fault ground motions. This work shows that peak impact force and base acceleration are moderately sensitive to the choice in contact model, while upper floor accelerations and interstory drifts are practically not affected.  相似文献   

18.
It is commonly understood that earthquake ground excitations at multiple supports of large dimensional structures are not the same. These ground motion spatial variations may significantly influence the structural responses. Similarly, the interaction between the foundation and the surrounding soil during earthquake shaking also affects the dynamic response of the structure. Most previous studies on ground motion spatial variation effects on structural responses neglected soil–structure interaction (SSI) effect. This paper studies the combined effects of ground motion spatial variation, local site amplification and SSI on bridge responses, and estimates the required separation distances that modular expansion joints must provide to avoid seismic pounding. It is an extension of a previous study (Earthquake Engng Struct. Dyn. 2010; 39 (3):303–323), in which combined ground motion spatial variation and local site amplification effects on bridge responses were investigated. The present paper focuses on the simultaneous effect of SSI and ground motion spatial variation on structural responses. The soil surrounding the pile foundation is modelled by frequency‐dependent springs and dashpots in the horizontal and rotational directions. The peak structural responses are estimated by using the standard random vibration method. The minimum total gap between two adjacent bridge decks or between bridge deck and adjacent abutment to prevent seismic pounding is estimated. Numerical results show that SSI significantly affects the structural responses, and cannot be neglected. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Active energy dissipation is proved to be very effective for abating seismic effects on buildings. The implementation of this concept in seismic design of buildings is studied by response simulations of a single storey building subjected to earthquake motion. Active energy dissipaters can be installed as part of the building lateral load bracing, and they regulate the strength and stiffness of the bracing during the building's response to the seismic events. The energy is dissipated when the bracing load exceeds the axial strength provided by the dissipater, and the bracing telescopes in and out. The design parameters of active energy dissipaters are described using the simulated response of a single storey building to ground pulse and harmonic ground excitation. The feasibility of the energy dissipater is demonstrated by the development and construction of a full-scale prototype device called an Active Slip Bracing Device (ASBD). The device utilizes Coulomb friction. The active characteristics are implemented by a computer controlled clamping mechanism on the friction interface. The ASBD's control of the strength and stiffness is investigated.  相似文献   

20.
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号