首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Mechanisms of bubble coalescence in silicic magmas   总被引:1,自引:1,他引:0  
Bubble coalescence is an important process that strongly affects magmatic degassing. Without coalescence, bubbles remain isolated from one another in the melt, severely limiting gas release. Despite this fact, very little has been done to identify coalescence mechanisms from textures of magmatic rocks or to quantify the dynamics of bubble coalescence in melts. In this paper, we present a systematic study of bubble-coalescence mechanisms and dynamics in natural and experimentally produced bubbly rhyolite magma. We have used a combination of natural observations aided by high-resolution X-ray computed tomography, petrological experiments, and physical models to identify different types of bubble?Cbubble interaction that lead to coalescence on the timescales of magma ascent and eruption. Our observations and calculations suggest that bubbles most efficiently coalesce when inter-bubble melt walls thin by stretching rather than by melt drainage from between converging bubble walls. Orders of magnitude are more rapid than melt drainage, bubble wall stretching produces walls thin enough that inter-bubble pressure gradients may cause the melt wall to dimple, further enhancing coalescence. To put these results into volcanogical context, we have identified magma ascent conditions where each coalescence mechanism should act, and discuss the physical conditions for preserving coalescence structures in natural pumice. The timescales we propose could improve volcanic eruption models, which currently do not account for bubble coalescence. Although we do not address the effect of shear strain on bubble coalescence, the processes discussed here may operate in several different eruption regimes, including vesiculation of lava domes, post-fragmentation frothing of vulcanian bombs, and bubbling of pyroclasts in conduits.  相似文献   

2.
Equilibrium and disequilibrium degassing of a volatile phase from a magma of K-phonolitic composition was investigated to assess its behavior upon ascent. Decompression experiments were conducted in Ar-pressurized externally heated pressure vessels at superliquidus temperature (1050 °C), in the pressure range 10–200 MPa using pure water as fluid phase. All experiments were equilibrated at 200 MPa and then decompressed to lower pressures with rates varying from 0.0028 to 4.8 MPa/s. Isobaric saturation experiments were performed at the same temperature and at 900–950 °C to determine the equilibrium water solubility in the pressure range 30–250 MPa. The glasses obtained from decompression experiments were analyzed for their dissolved water content, vesicularity and bubble size distribution. All decompressed samples presented a first event of bubble nucleation at the capsule–melt interface. Homogeneous bubble nucleation in the melt only occurred in fast-decompressed experiments (4.8 and 1.7 MPa/s), for ΔP ≅ 100 MPa. For these decompression rates high water over-saturations were maintained until a rapid exsolution was triggered at ΔP > 150 MPa. For slower rates (0.0028, 0.024, 0.17 MPa/s) the degassing of the melt took place by diffusive growth of the bubbles nucleating at the capsule–melt interface. This process sensibly reduced water over-saturation in the melt, preventing homogeneous nucleation to occur. For decompression rates of 0.024 and 0.17 MPa/s low water over-saturations were attained in the melt, gradually declining toward equilibrium concentrations at low pressures. A near-equilibrium degassing path was observed for a decompression rate of 0.0028 MPa/s. Experimental data combined with natural pumice textures suggest that both homogeneous and heterogeneous bubble nucleations occurred in the phonolitic magma during the AD 79 Vesuvius plinian event. Homogeneous bubble nucleation probably occurred at a depth of ∼ 3 km, in response to a fast decompression of the magma during the ascent.  相似文献   

3.
Critical to understanding explosive eruptions is establishing how accurately representative pyroclasts are of processes during magma vesiculation and fragmentation. Here, we present data on densities, and vesicle size and number characteristics, for representative pyroclasts from six silicic eruptions of contrasting size and style from Raoul volcano (Kermadec arc). We use these data to evaluate histories of bubble nucleation, coalescence, and growth in explosive eruptions and to provide comparisons with pumiceous dome carapace material. Density/vesicularity distributions show a scarcity of pyroclasts with ~65–75 % vesicularity; however, pyroclasts closest to this vesicularity range have the highest bubble number density (BND) values regardless of eruptive intensity or style. Clasts with vesicularities greater than this 65–75 % “pivotal” vesicularity range have decreasing BNDs with increasing vesicularities, interpreted to reflect continuing bubble growth and coalescence. Clasts with vesicularities less than the pivotal range have BNDs that decrease with decreasing vesicularity and preserve textures indicative of processes such as stalling and open system degassing prior to vesiculation in a microlite-rich magma, or vesiculation during slow ascent of degassing magma. Bubble size distributions (BSDs) and BNDs show variations consistent with 65–75 % representing the vesicularity at which vesiculating magma is most likely to undergo fragmentation, consistent with the closest packing of spheres. We consider that the observed vesicularity range may reflect the development of permeability in the magma through shearing as it flows through the conduit. These processes can act in concert with multiple nucleation events, generating a situation of heterogeneous bubble populations that permit some regions of the magma to expand and bubbles to coalesce with other regions in which permeable networks are formed. Fragmentation preserves the range in vesicularity seen as well as any post-fragmentation/pre-quenching expansion which may have occurred. We demonstrate that differing density pyroclasts from a single eruption interval can have widely varying BND values corresponding to the degree of bubble maturation that has occurred. The modal density clasts (the usual targets for vesicularity studies) have likely undergone some degree of bubble maturation and are therefore may not be representative of the magma at the onset of fragmentation.  相似文献   

4.
Dacitic magma, a mixture of high-temperature (T) aphyric magma and low-T crystal-rich magma, was erupted during the 1991–1995 Mount Unzen eruptive cycle. Here, the crystallization processes of the low-T magma were examined on the basis of melt inclusion analysis and phase relationships. Variation in water content of the melt inclusions (5.1–7.2 wt% H2O) reflected the degassing history of the low-T magma ascending from deeper levels (250 MPa) to a shallow magma chamber (140 MPa). The ascent rate of the low-T magma decreased markedly towards the emplacement level as crystal content increased. Cooling of magma as well as degassing-induced undercooling drove crystallization. With the decreasing ascent rate, degassing-induced undercooling decreased in importance, and cooling became more instrumental in crystallization, causing local and rapid crystallization along the margin of the magma body. Some crystals contain scores of melt inclusions, whereas there are some crystals without any inclusions. This heterogeneous distribution suggests the variation in the crystallization rate within the magma body; it also suggests that cooling was dominant cause for melt entrapment. Numerical calculations of the cooling magma body suggest that cooling caused rapid crystal growth and enhanced melt entrapment once the magma became a crystal-rich mush with evolved interstitial melt. The rhyolitic composition of melt inclusions is consistent with this model.Editorial responsibility: H Shinohara  相似文献   

5.
The 79 AD eruption of Vesuvius included 8 eruption units (EU1–8) and several complex transitions in eruptive style. This study focuses on two important transitions: (1) the abrupt change from white to gray pumice during the Plinian phase of the eruption (EU2 to EU3) and (2) the shift from sustained Plinian activity to the onset of caldera collapse (EU3 to EU4). Quantification of the textural features within individual pumice clasts reveals important changes in both the vesicles and groundmass crystals across each transition boundary. Clasts from the white Plinian fall deposit (EU2) present a simple story of decompression-driven crystallization followed by continuous bubble nucleation, growth and coalescence in the eruptive conduit. In contrast, pumices from the overlying gray Plinian fall deposit (EU3) are heterogeneous and show a wide range in both bubble and crystal textures. Extensive bubble growth, coalescence, and the onset of bubble collapse in pumices at the base of EU3 suggest that the early EU3 magma experienced protracted vesiculation that began during eruption of the EU2 phase and was modified by the physical effects of syn-eruptive mingling-mixing. Pumice clasts from higher in EU3 show higher bubble and crystal number densities and less evidence of bubble collapse, textural features that are interpreted to reflect more thorough mixing of two magmas by this stage of the eruption, with consequent increases in both vesiculation and crystallization. Pumice clasts from a short-lived, high column at the onset of caldera collapse (EU4) continue the trend of increasing crystallization (enhanced by mixing) but, unexpectedly, the melt in these clasts is more vesicular than in EU3 and, in the extreme, can be classified as reticulite. We suggest that the high melt vesicularity of EU4 reflects strong decompression following the partial collapse of the magma chamber.Editorial responsibility: D.B. Dingwell  相似文献   

6.
A series of experiments was conducted to test concepts of porous flow degassing of rhyolitic magma during ascent and of the subsequent collapse of vesicles in degassed magma to form obsidian. Dense, synthetically hydrated, natural glasses were pressurized under water-saturated conditions and then decompressed to achieve a range of porosities in the presence of a tracer vapor, D2O. Rapid isotopic exchange indicative of vapor transport rather than of simple diffusion occurred at a porosity >60 vol.%, in accord with earlier gas permeability measurements on cold natural samples. In another series of experiments, natural and synthetic pumices, vesiculated by degassing to atmospheric pressure, rapidly collapsed to dense glass on repressurization to the modest pressures prevailing in lava flows. No relict bubble textures remained. These results support the hypothesis that effusive eruptions result from the syneruptive escape of gas from permeable magmatic foam, and that a process analogous to welding yields dense lavas when such foams are extruded.  相似文献   

7.
8.
The 79 ad Plinian eruption of Vesuvius produced first a white pumice fallout from a high steady eruptive column, and then a grey pumice fallout originating from an oscillatory eruptive column with several partial column collapse events after which there was a total column collapse. This first total collapse was followed by renewed Plinian activity and produced the last grey pumice (GP) fallout deposit of the eruption. Textural characteristics (vesicularity and microcrystallinity) of a complete sequence of the pumice fallout deposits are presented along with the major element compositions and residual volatile contents (H2O, Cl) to constrain the degassing processes and the eruptive dynamics. Large variations in residual volatile contents exist between the different eruptive units. Textural features also strongly differ between white and grey pumices, but also within the grey pumices. The degassing processes were thus highly heterogeneous. We propose a new model of the 79 ad eruption in which pre-eruptive conditions (H2O saturation, magma temperature and viscosity) are the critical controls on the diversity of the syn-eruptive degassing processes and hence the eruptive dynamics. Cl contents measured in melt inclusions show that only the white pumice and the upper part of the grey pumice magma were H2O saturated prior to eruption. The white pumice eruptive units represent a typical closed-system degassing evolution, whereas the first grey pumice one, stored under similar pre-eruptive saturation conditions, follows a particular open-system degassing evolution. We suggest that the oscillatory regime that dominated the grey pumice eruptive phase is linked to pre-eruptive water undersaturation of most of the grey magma, and the associated time delays necessary for H2O exsolution. We also suggest that the high residual H2O content of the last grey pumice, deposited after the renewal of Plinian activity following the first total column collapse event, is due to syn-eruptive saturation of GP magma and reduced H2O exsolution efficiency resulting from speciation of dissolved H2O in the melt.  相似文献   

9.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

10.
Chemical analyses of 30 melt inclusions from Satsuma-Iwojima volcano, Japan, were carried out to investigate volatile evolution in a magma chamber beneath the volcano from about 6300 yr BP to the present. Large variations in volatile concentrations of melts were observed. (1) Water concentration of rhyolitic melts decreases with time; 3–4.6 wt.% at the time of latest caldera-forming eruption of Takeshima pyroclastic flow deposit (ca. 6300 yr BP), 3 wt.% for small pyroclastic flow (ca. 1300 yr BP) of Iwodake, post-caldera rhyolitic dome, and 0.7–1.4 wt.% for submarine lava eruption (Showa-Iwojima) in 1934. (2) Rhyolitic melts of the Takeshima and Iwodake eruptions contained CO2 of less than 40 ppm, while the Showa-Iwojima melt has higher CO2 concentration of up to 140 ppm. (3) Water and CO2 concentrations of basaltic to andesitic melt of Inamuradake, a post-caldera basaltic scoria cone, are 1.2–2.8 wt.% and ≤290 ppm, respectively.Volatile evolution in the magma chamber is interpreted as follows: (1) the rhyolitic magma at the time of the latest caldera-forming eruption (ca. 6300 yr BP) was gas-saturated due to pressure variation in the magma chamber because the large variation in water concentration of the melt was attributed to exsolution of volatile in the magma prior to the eruption. Iwodake eruption (ca. 1300 yr BP) was caused by a remnant of the caldera-forming rhyolitic magma, suggested from the similarity of major element composition between these magmas. (2) Volatile composition of the Showa-Iwojima rhyolitic melt agrees with that of magmatic gases presently discharging from a summit of Iwodake, indicating the low pressure degassing condition. (3) The degassing of the magma chamber by magma convection in a conduit of Iwodake during non-eruptive but active degassing period for longer than 800 years decreased water concentration of the rhyolitic magma. (4) Geological and petrological observations indicate that a stratified magma chamber, which consists of a lower basaltic layer and an upper rhyolitic layer, might have existed during the post-caldera stage. Addition of CO2 from the underlying basaltic magma to the upper gas-undersaturated (degassed) rhyolitic magma increased CO2 concentration of the rhyolitic magma.  相似文献   

11.
Analytical models for decompressional bubble growth in a viscous magma are developed to establish the influence of high magma viscosity on vesiculation and to assess the time-scales on which bubbles respond to decompression. Instantaneous decompression of individual bubbles, analogous to a sudden release of pressure (e.g. sector collapse), is considered for two end-member cases. The infinite melt model considers the growth of an isolated bubble before significant bubble interaction occurs. The shell model considers the growth of a bubble surrounded by a thin shell and is analogous to bubble growth in a highly vesicular magmatic foam. Results from the shell model show that magmas less viscous than 109 Pa s can freely expand without developing strong overpressures. The timescales for pressure re-equilibration are shortened by increased ratios of bubble radius to shell thickness and by larger decompression. Time-scales for isolated bubbles in rhyolitic melts (infinite melt model) are significantly longer, implying that such bubbles could experience internal pressures greater than the ambient pressure for at least a few hours following a sudden release of pressure. The shell model is developed to assess bubble growth during the linear decompression of a magma body of constant viscosity. For the range of decompression rates and viscosities associated with actual volcanic eruptions, bubble growth continues at approximately the equilibrium rate, with no attendant excess of internal pressure. The results imply that viscosity does not have any significant role in preventing the explosive expansion of high viscosity foams. However, for viscosities of >109 Pa s there is the potential for a viscosity quench under the extreme decompression rates of an explosive eruption. It is proposed that the typical vesicularities of pumice of 0.7–0.8 are a consequence of the viscosity of the degassing magmas becoming sufficiently high to inhibit bubble expansion over the characteristic time-scale of eruption. For fully degassed silicic lavas with viscosities in the range 1010 to 1012 Pa s time-scales for decompression of isolated bubbles can be hours to many months.  相似文献   

12.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

13.
X-ray computed microtomography (μCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for μCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93–98 μm) and mean throat size (~23–29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.  相似文献   

14.
 Fragmentation, or the "coming apart" of magma during a plinian eruption, remains one of the least understood processes in volcanology, although assumptions about the timing and mechanisms of fragmentation are key parameters in all existing eruption models. Despite evidence to the contrary, most models assume that fragmentation occurs at a critical vesicularity (volume percent vesicles) of 75–83%. We propose instead that the degree to which magma is fragmented is determined by factors controlling bubble coalescence: magma viscosity, temperature, bubble size distribution, bubble shapes, and time. Bubble coalescence in vesiculating magmas creates permeability which serves to connect the dispersed gas phase. When sufficiently developed, permeability allows subsequent exsolved and expanded gas to escape, thus preserving a sufficiently interconnected region of vesicular magma as a pumice clast, rather than fully fragmenting it to ash. For this reason pumice is likely to preserve information about (a) how permeability develops and (b) the critical permeability needed to insure clast preservation. We present measurements and calculations that constrain the conditions (vesicularity, bubble size distribution, time, pressure difference, viscosity) necessary for adequate permeability to develop. We suggest that magma fragments explosively to ash when and where, in a heterogeneously vesiculating magma, these conditions are not met. Both the development of permeability by bubble wall thinning and rupture and the loss of gas through a permeable network of bubbles require time, consistent with the observation that degree of fragmentation (i.e., amount of ash) increases with increasing eruption rate. Received: 5 July 1995 / Accepted: 27 December 1995  相似文献   

15.
The vesicularity, permeability, and structure of pumice clasts provide insight into conditions of vesiculation and fragmentation during Plinian fall and pyroclastic flow-producing phases of the ~7,700 cal. year B.P. climactic eruption of Mount Mazama (Crater Lake), Oregon. We show that bulk properties (vesicularity and permeability) can be correlated with internal textures and that the clast structure can be related to inferred changes in eruption conditions. The vesicularity of all pumice clasts is 75-88%, with >90% interconnected pore volume. However, pumice clasts from the Plinian fall deposits exhibit a wider vesicularity range and higher volume percentage of interconnected vesicles than do clasts from pyroclastic-flow deposits. Pumice permeabilities also differ between the two clast types, with pumice from the fall deposit having higher minimum permeabilities (~5᎒-13 m2) and a narrower permeability range (5-50᎒-13 m2) than clasts from pyroclastic-flow deposits (0.2-330᎒-13 m2). The observed permeability can be modeled to estimate average vesicle aperture radii of 1-5 µm for the fall deposit clasts and 0.25-1 µm for clasts from the pyroclastic flows. High vesicle number densities (~109 cm-3) in all clasts suggest that bubble nucleation occurred rapidly and at high supersaturations. Post-nucleation modifications to bubble populations include both bubble growth and coalescence. A single stage of bubble nucleation and growth can account for 35-60% of the vesicle population in clasts from the fall deposits, and 65-80% in pumice from pyroclastic flows. Large vesicles form a separate population which defines a power law distribution with fractal dimension D=3.3 (range 3.0-3.5). The large D value, coupled with textural evidence, suggests that the large vesicles formed primarily by coalescence. When viewed together, the bulk properties (vesicularity, permeability) and textural characteristics of all clasts indicate rapid bubble nucleation followed by bubble growth, coalescence and permeability development. This sequence of events is best explained by nucleation in response to a downward-propagating decompression wave, followed by rapid bubble growth and coalescence prior to magma disruption by fragmentation. The heterogeneity of vesicle sizes and shapes, and the absence of differential expansion across individual clasts, suggest that post-fragmentation expansion played a limited role in the development of pumice structure. The higher vesicle number densities and lower permeabilities of pyroclastic-flow clasts indicate limited coalescence and suggest that fragmentation occurred shortly after decompression. Either increased eruption velocities or increased depth of fragmentation accompanying caldera collapse could explain compression of the pre-fragmentation vesiculation interval.  相似文献   

16.
Before the 1991–1992 activity, a large andesite lava dome belonging to the penultimate Pinatubo eruptive period (Buag ∼ 500 BP) formed the volcano summit. Buag porphyritic andesite contains abundant amphibole-bearing microgranular enclaves of basaltic–andesite composition. Buag enclaves have lower K2O and incompatible trace element (LREE, U, Th) contents than mafic pulses injected in the Pinatubo reservoir during the 1991–1992 eruptive cycle. This study shows that Buag andesite formed by mingling of a hot, water-poor and reduced mafic magma with cold, hydrous and oxidized dacite. Depending on their size, enclaves experienced variable re-equilibration during mixing/mingling. Re-equilibration resulted in hydration, oxidation and transfer of mobile elements (LILE, Cu) from the dacite to the mafic melts and prompted massive amphibole crystallization. In Buag enclaves, S-bearing phases (sulfides, apatite) and melt inclusions in amphibole and plagioclase record the evolution of sulfur partition among melt, crystal and fluid phases during magma cooling and oxidation. At high temperature, sulfur is partitioned between andesitic melt and sulfides (Ni-pyrrhotite). Magma cooling, oxidation and hydration resulted in exsolution of a S–Cl–H2O vapor phase at the S-solubility minimum near the sulfide–sulfate redox boundary. Primary magmatic sulfide (pyrrhotite) and xenocrystic sulfide grains (pyrite), recycled together with olivines and pyroxenes from old mafic intrusives, were replaced by Cu-rich phases (chalcopyrite, cubanite) and, partially, by Ba–Sr sulfate. Sulfides degassed and transformed into residual spongy magnetite in response to fS2 drop during final magma ascent and decompression. Our research suggests that a complete evaluation of the sulfur budget at Pinatubo must take into account the en route S assimilation from the country rocks. Moreover, this study shows that the efficiency of sulfur transfer between mafic recharges and injected magmas is controlled by the extent and rate of mingling, hydrous flushing and melt oxidation. Vigorous mixing/mingling and transformation of the magmatic recharge into a spray of small enclaves is required in order to efficiently strip their primary S-content that otherwise remains locked in the sulfides. Hydrous flushing increases the magma oxidation state of the recharges and modifies their primary volatile concentrations that cannot be recovered by the study of late-formed mineral phases and melt inclusions. Conversely, S stored in both late-formed Cu-rich sulfides and interstitial rhyolitic melt represents the pre-eruptive sulfur budget immediately available for release from mafic enclaves during their decompression.  相似文献   

17.
The pyroclastic deposits of many basaltic volcanic centres show abrupt transitions between contrasting eruptive styles, e.g., Hawaiian versus Strombolian, or `dry' magmatic versus `wet' phreatomagmatic. These transitions are controlled dominantly by variations in degassing patterns, magma ascent rates and degrees of interaction with external water. We use Crater Hill, a 29 ka explosive/effusive monogenetic centre in the Auckland volcanic field, New Zealand, as a case study of the transitions between these end-member eruptive styles. The Crater Hill eruption took place from at least 4 vents spaced along a NNE-trending, 600-m-long fissure that is contained entirely within a tuff ring generated during the earliest eruption phases. Early explosive phases at Crater Hill were characterised by eruption from multiple unstable and short-lived vents; later, dominantly extrusive, volcanism took place from a more stable point source. Most of the Crater Hill pyroclastic deposits were formed in 3 phreatomagmatic (P) and 4 `dry' magmatic (M) episodes, forming in turn the outer tuff ring and maar crater (P1, M1, P2) and scoria cone 1 (M2–M4). This activity was followed by formation of a lava shield and scoria cone 2. Purely `wet' activity is represented by the bulk of P1 and P2, and purely `dry' activity by much of M2–M4. However, M1 and parts of M2 and M4 show evidence for simultaneous eruptions of differing style from adjacent vents and rapid variations in the extent and timing of magma:water interaction at each vent. The nature of the wall-rock lithics, and these rapid variations in inferred water/magma ratios imply interaction was occurring mostly at depths of ≤80 m, and the vesicularity patterns in juvenile clasts from these and the P beds imply that rapid degassing occurred at these shallow levels. We suggest that abrupt transitions between eruptive styles, in time and space, at Crater Hill were linked to changes in the local magma supply rate and patterns and vigour of degassing during the final metres of ascent.  相似文献   

18.
We report on the unusual occurrence of the products of lava fountaining in a Pliocene calc-alkaline rhyolitic monogenetic center from northern Chile. Corral de Coquena is a discontinuous ring of lava located in the moat of La Pacana caldera (23°27' S, 67°23.5' W), part of the Altiplano-Puna Volcanic Complex of the Central Andes. The volcanic structure is composed of a maar-like crater, with an associated pyroclastic (possibly phreatomagmatic) unit, that is overlain by rhyolitic glassy lava ramparts, in which evidence of spatter, agglutinate and clastogenic material is found. Typical explanations for the unusual textures in a rhyolitic lava, such as peralkaline composition, high volatile content, or superheated magma are untenable in this case. We propose that the most likely explanation for this extreme style of rhyolitic volcanism is a combination of moderately high eruption rate and efficient degassing prior to eruption. In the light of reports of several other bodies of fountain-fed silicic magma from the UK, US, and Japan, we propose that Corral de Coquena is a rhyolitic spatter ring superimposed upon a maar-like crater. We further propose that pyroclastic fountaining should be considered an end-member of the spectrum of eruptive styles of calc-alkaline silicic magmas, and that Corral de Coquena is a rare example, preserved because of the hyper-arid climate in the Altiplano-Puna Volcanic Complex.  相似文献   

19.
Vesiculation and crystallization in ascending magmas are key processes that control the eruption behavior, and they interplay each other through the water exsolution process. We conducted a numerical study in order to quantitatively understand the water exsolution and crystallization processes in natural eruptions (decompression history is unknown) and in laboratory experiments (the amount of decompression is constant with time). The numerical results, which take into account homogeneous or heterogeneous nucleation and growth of bubbles with varying diffusivity of water, viscosity, and the amount of decompression, provide a quantitative understanding of their control on bubble formation and water exsolution in the constant amount of decompression. The bubble nucleation in the homogeneous nucleation can be divided into two regimes – the diffusion control regime and viscosity control regime – depending on the modified Peclet number and the effective supersaturation. In the cases of both homogeneous and heterogeneous nucleations, the bubble growth is controlled by diffusion or viscosity, depending on the modified Peclet number and bubble number density. The water exsolution rate, which is controlled by the modified Peclet number in the viscosity control regime and by the bubble number density and diffusive driving force in the diffusion control regime, acts as an effective cooling rate in a decompression-induced crystallization process. A comparison of the numerical results with the results of laboratory experiments suggests that water exsolution proceeds by the diffusion-limited growth of bubbles under disequilibrium vesiculation through the heterogeneous nucleation of bubbles, and this in turn controls the crystallization kinetics of microlite with the homogeneous nucleation of microlite and the diffusion-limited growth of crystal. The several orders of variation of microlite number density with the amount of decompression in laboratory experiments can be interpreted as the effect of the amount of decompression on the driving force for the diffusive bubble growth that controls the water exsolution rate.  相似文献   

20.
The Fontana Lapilli deposit is one of very few examples of basaltic Plinian eruptions discovered so far. Juvenile clasts have uniform chemical composition and moderate ranges of density and bulk vesicularity. However, clast populations include two textural varieties which are microlite-poor and microlite-rich respectively. These two clast types have the same clast density range, making a distinction impossible on that base alone. The high bubble number density (~ 107 cm? 3) and small bubble population of the Fontana clasts suggest that the magma underwent coupled degassing following rapid decompression and fast ascent rate, leading to non-equilibrium degassing with continuous nucleation as it is common for silicic analogues. The Fontana products have lower microlite contents (10–60 vol.%) with respect to the other documented basaltic Plinian eruptions suggesting that the brittle fragmentation, implied for the other basaltic Plinian deposits, does not apply to the Fontana products and another fragmentation mechanism led the basaltic magma to erupt in a Plinian fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号