首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J.W. Roy  M.C. Ryan 《Ground water》2010,48(6):869-877
Measurement of dissolved gases in groundwater is becoming increasingly common and important. Many of these measurements involve monitoring or sampling within wells or from water pumped from wells. We used total dissolved gas pressure (TDGP) sensors placed in the screened section of various wells (4 to 72 m deep) to assess the dissolved gas conditions for open wells compared to the conditions when sealed (i.e., isolated from the atmosphere) with a hydraulic packer (one well) or when pumped. When the packer was installed (non-pumping conditions), TDGP rose from <1.7 to >3.1 atm (<172 to >314 kPa), with declines noted when the packer was removed or deflated. While pumping, TDGP measured in many of the wells rose to substantially higher levels, up to 4.0 atm (408 kPa) in one case. Thus, when groundwater is gas charged, the background aquifer TDGP, and likewise the dissolved gas concentrations, may be substantially higher than initially measured in open wells, indicating significant in-well degassing. This raises concerns about past and current methods of measuring the dissolved gases in groundwater. Additional procedures that may be required to obtain representative measurements from wells include (1) installing in-well hydraulic packers to seal the well, or (2) pumping to bring in fresh groundwater. However, observed transient decreased TDGPs during pumping, believed to result from gas bubble formation induced by drawdown in the well below a critical pressure (relative to TDGP), may disrupt the measurements made during or after pumping. Thus, monitoring TDGP while pumping gas-charged wells is recommended.  相似文献   

2.
Past studies of entrapped air dissolution have focused on one‐dimensional laboratory columns. Here the multidimensional nature of entrapped air dissolution was investigated using an indoor tank (180 × 240 × 600 cm3) simulating an unconfined sand aquifer with horizontal flow. Time domain reflectometry (TDR) probes directly measured entrapped air contents, while dissolved gas conditions were monitored with total dissolved gas pressure (PTDG) probes. Dissolution occurred as a diffuse wedge‐shaped front from the inlet downgradient, with preferential dissolution at depth. This pattern was mainly attributed to increased gas solubility, as shown by PTDG measurements. However, compression of entrapped air at greater depths, captured by TDR and leading to lower quasi‐saturated hydraulic conductivities and thus greater velocities, also played a small role. Linear propagation of the dissolution front downgradient was observed at each depth, with both TDR and PTDG, with increasing rates with depth (e.g, 4.1 to 5.7× slower at 15 cm vs. 165 cm depth). PTDG values revealed equilibrium with the entrapped gas initially, being higher at greater depth and fluctuating with the barometric pressure, before declining concurrently with entrapped air contents to the lower PTDG of the source water. The observed dissolution pattern has long‐term implications for a wide variety of groundwater management issues, from recharge to contaminant transport and remediation strategies, due to the persistence of entrapped air near the water table (potential timescale of years). This study also demonstrated the utility of PTDG probes for simple in situ measurements to detect entrapped air and monitor its dissolution.  相似文献   

3.
The total dissolved gas pressure (PTDG ) probe has been used in groundwater studies for over a decade, but rarely in assessing contaminant degradation, despite the many degradation reactions that produce or consume dissolved gases. Here we present three studies to demonstrate the application of PTDG measurements to groundwater experiencing contaminant degradation, with discussion of its benefits and limitations. The first study is a pilot‐scale laboratory experiment simulating dissolved ethanol contamination of an anaerobic sand aquifer. Continuous monitoring of PTDG showed the rapid onset of microbial hydrocarbon degradation via denitrification and fermentation. The subsequent formation of a gas phase was revealed when PTDG began mimicking the bubbling pressure (PG *; sum of hydrostatic and atmospheric pressure), fluctuating with atmospheric pressure. Some deviations of PTDG above PG * occurred also, which may hold promise for signalling substantial changes in the rate or type of degradation process (here, the onset of methanogenesis). In the second study, synoptic field measurements at a petroleum plume site demonstrated how elevated PTDG could identify wells with evidence of hydrocarbon degradation (denitrification and/or methanogenesis). And finally, combined field measurements of dissolved oxygen (DO) and PTDG in monitoring wells of a nitrate‐contaminated aquifer (Abbottsford‐Sumas) revealed areas where denitrification was likely occurring. Limitations to PTDG use identified in these studies included the masking of degradation processes by the presence of a gas phase, as when trapped following water table fluctuations or formed from rigorous degradation reactions, and confounded assessment of PTDG patterns from other natural or anthropogenic processes that can also influence groundwater PTDG .  相似文献   

4.
Gas‐saturated groundwater forms bubbles when brought to atmospheric pressure, preventing precise determination of its in situ dissolved gas concentrations. To overcome this problem, a modeling approach called the atmospheric sampling method is suggested here to recover the in situ dissolved gas concentrations of groundwater collected ex situ under atmospheric conditions at the Horonobe Underground Research Laboratory, Japan. The results from this method were compared with results measured at the same locations using two special techniques, the sealed sampler and pre‐evacuated vial methods, that have been developed to collect groundwater under its in situ conditions. In gas‐saturated groundwater cases, dissolved methane and inorganic carbon concentrations derived using the atmospheric sampling method were mostly within ±4 and ±10%, respectively, of values from the sealed sampler and pre‐evacuated vial methods. In gas‐unsaturated groundwater, however, the atmospheric sampling method overestimated the in situ dissolved methane concentrations, because the groundwater pressure at which bubbles appear (Pcritical) was overestimated. The atmospheric sampling method is recommended for use where gas‐saturated groundwater can be collected only ex situ under atmospheric conditions.  相似文献   

5.
Detection of free-phase gas (FPG) in groundwater wells is critical for accurate assessment of dissolved gas concentrations and the occurrence of FPG in the subsurface, with consequent implications for understanding groundwater contamination and greenhouse gas emissions. However, identifying FPG is challenging during routine groundwater monitoring and there is poor agreement on the best approach to detect the occurrence of FPG in groundwater. In this study, laboratory experiments in a water column were designed to mimic nonflowing and flowing conditions in a groundwater well to evaluate how the presence of FPG affects water pressure and commonly used continuous field parameters. The laboratory results were extrapolated to interpret field data at an abandoned exploration well with episodic release of free-gas CO2. The FPG effect on water pressure varied between flowing and nonflowing wells, and depending on whether the FPG was above or below the sensor. Electrical conductivity values were decreased and/or behaved erratically when FPG was present in the water column. Findings from this study have shown that the combined measurement of water pressure, electrical conductivity, and total dissolved gas pressure can provide information about the occurrence of FPG in groundwater wells. Measurement of these parameters at different depths can also provide information about relative depths and amounts of FPG within the well water column. This approach can be used for long-term monitoring of groundwater gases, managing gas-locking in production wells with gassy groundwater, and measuring fugitive greenhouse gas emissions from groundwater wells.  相似文献   

6.
In situ pH profiles are reported for the first time for Lakes Nyos and Monoun. The pH profiles were converted to CO2 profiles using HCO3 profiles calculated from conductivity data. Recent observations (1993–1996) at Lake Nyos indicates that CO2 still accumulates below 180 m depth at a rate of 125 Mmol year−1. At Lake Monoun, the majority of CO2 is present below a depth of 60 m, only 25 m below the saturation depth. Consequently, a potential danger of gas explosion is high at both lakes, and artificial degassing of the lakes should be performed as soon as possible. A system for industrial degassing of the lakes is proposed. The system, based on the self-sustained gas lift principle, consists of multiple pipes (14 cm in diameter) with different intake depths; 12 pipes for Lake Nyos (four each at 185, 195 and 205 m) and three pipes for Lake Monoun (at 70, 80 and 90 m). The stepped degassing at different depths is intended to keep the maximum stability of the lakes. The proposed degassing operation was simulated using the code for both lakes. In 5 years, approximately 50% of currently dissolved CO2 in Lake Nyos and 90% in Lake Monoun will be removed. The expected changes in the thermal and chemical structures of the lakes as degassing proceeds will be most easily monitored with a carefully calibrated CTD equipped with a pH sensor. The simulation indicates that the discharged degassed water will sink to a level of neutral buoyancy, i.e. to a maximum of 70 m at Lake Nyos and 35 m at Lake Monoun. There would be no possibility of triggering a gas explosion by this plunge of discharged water because the water present there would have already been replaced by water at lower CO2 concentration, during the degassing from shallower pipes.  相似文献   

7.
Abstract

An analytical solution is developed to delineate the capture zone of a pumping well in an aquifer with a regional flow perpendicular to a stream, assuming a leaky layer between the stream and the aquifer. Three different scenarios are considered for different pumping rates. At low pumping rates, the capture zone boundary will be completely contained in the aquifer. At medium pumping rates, the tip of the capture zone boundary will intrude into the leaky layer. Under these two scenarios, all the pumped water is supplied from the regional groundwater flow in the aquifer. At high pumping rates, however, the capture zone boundary intersects the stream and pumped water is supplied from both the aquifer and the stream. The two critical pumping rates which separate these three scenarios, as well as the proportion of pumped water from the stream and the aquifer, are determined for different hydraulic settings.

Editor D. Koutsoyiannis; Associate editor A. Koussis

Citation Asadi-Aghbolaghi, M., Rakhshandehroo, G.R., and Kompani-Zare, M., 2013. An analytical approach to capture zone delineation for a well near a stream with a leaky layer. Hydrological Sciences Journal, 58 (8), 1813–1823.  相似文献   

8.
δ87Sr values and Ca/Sr ratios were employed to quantify solute inputs from atmospheric and lithogenic sources to a catchment in NW Germany. The aquifer consists primarily of unconsolidated Pleistocene eolian and fluviatile deposits predominated by >90% quartz sand. Accessory minerals include feldspar, glauconite, and mica, as well as disperse calcium carbonate in deeper levels. Decalcification of near-surface sediment induces groundwater pH values up to 4.4 that lead to enhanced silicate weathering. Consequently, low mineralized Ca–Na–Cl- and Ca–Cl-groundwater types are common in shallow depths, while in deeper located calcareous sediment Ca–HCO3-type groundwater prevails. δ87Sr values and Ca/Sr ratios of the dissolved pool range from 7.3 to −2.6 and 88 to 493, respectively. Positive δ87Sr values and low Ca/Sr ratios indicate enhanced feldspar dissolution in shallow depths of less than 20 m below soil surface (BSS), while equilibrium with calcite governs negative δ87Sr values and elevated Ca/Sr ratios in deep groundwater (>30 m BSS). Both positive and negative δ87Sr values are evolved in intermediate depths (20–30 m BSS). For groundwater that is undersaturated with respect to calcite, atmospheric supplies range from 4% to 20%, while feldspar-weathering accounts for 8–26% and calcium carbonate for 62–90% of dissolved Sr2+. In contrast, more than 95% of Sr2+ is derived by calcium carbonate and less than 5% by feldspar dissolution in Ca–HCO3-type groundwater. The surprisingly high content of carbonate-derived Sr2+ in groundwater of the decalcified portion of the aquifer may account for considerable contributions from Ca-containing fertilizers. Complementary tritium analyses show that equilibrium with calcite is restricted to old groundwater sources.  相似文献   

9.
In the semi‐arid region of the Loess Plateau in China, a portable photosynthesis system (Li‐6400) and a portable steady porometer (Li‐1600) were used to study the quantitative relation between the soil water content (SWC) and trees' physiological parameters including net photosynthesis rate (Pn), carboxylation efficiency (CE), transpiration rate (Tr), water use efficiency of leaf (WUEL), stomatic conductivity (Gs), stomatal resistance (Rs), intercellular CO2 (Ci), and stomatal limitation (Ls). These are criteria for grading and evaluating soil water productivity and availability in forests of Black Locust (Robinia pseudoacacia) and Oriental Arborvitae (Platycladus orientalis). The results indicated: To the photosynthesis of Locust and Arborvitae, the SWC of less than 4.5 and 4.0% (relative water content (RWC) 21.5 and 19.0%) belong to “non‐productivity and non‐efficiency water”; the SWC of 4.5–10.0% (RWC 21.5–47.5%) and 4.0–8.5% (RWC 19.0–40.5%) belong to “low productivity and low efficiency water”; the SWC of 10.0–13.5% (RWC 47.5–64.0%) and 8.5–11.0% (RWC 40.5–52.0%) belong to “middle productivity and high efficiency water”; the SWC of 13.5–17.0% (RWC 64.0–81.0%) and 11.0–16.0% (RWC 52.0–76.0%) belong to “high productivity and middle efficiency water”; the SWC of 17.0–19.0% (RWC 81.0–90.5%) and 16.0–19.0% (RWC 76.0–90.5%) belong to “middle productivity and low efficiency water”; the SWC of more than 19.0% (RWC 90.5%) belongs to “low productivity and low efficiency water”. The SWC of about 13.5 and 11.0% (RWC 64.0 and 52.0%) are called “high productivity and high efficiency water”, which provides the further evidence for Locust and Arborvitae to get both higher productivity (Pn and CE) and the highest WUEL and adaptation to the local environment, respectively.  相似文献   

10.
The primary objective of this study was to evaluate use of the hydraulic profiling tool‐groundwater sampler (HPT‐GWS) log data as an indicator of water quality (level of dissolved ionic species) in an alluvial aquifer. The HPT‐GWS probe is designed for direct push advancement into unconsolidated formations. The system provides both injection pressure logs and electrical conductivity (EC) logs, and groundwater may be sampled at multiple depths as the probe is advanced (profiling). The combination of these three capabilities in one probe has not previously been available. During field work it was observed that when HPT corrected pressure (Pc) indicates a consistent aquifer unit then bulk formation EC can be used as an indicator of water quality. A high correlation coefficient (R 2 = 0.93) was observed between groundwater specific conductance and bulk formation EC in the sands and gravels of the alluvial aquifer studied. These results indicate that groundwater specific conductance is exerting a controlling influence on the bulk formation EC of the coarse‐grained unit at this site, and probably many similar sites, consistent with Archie's Law. This simple relationship enables the use of the EC and Pc logs, with targeted water samples and a minimum of core samples, to rapidly assess groundwater quality over extended areas at high vertical resolution. This method was used to identify both a brine impacted zone at the base of the aquifer investigated and a groundwater recharge lens developing below storm water holding ponds in the upper portion of the same aquifer. Sample results for trace level, naturally occurring elements (As, Ba, U) further demonstrate the use of this system to sample for low level groundwater contamination.  相似文献   

11.
In complex hydrogeological environments the effective management of groundwater quality problems by pump‐and‐treat operations can be most confidently achieved if the mixing dynamics induced within the aquifer by pumping are well understood. The utility of isotopic environmental tracers (C‐, H‐, O‐, S‐stable isotopic analyses and age indicators—14C, 3H) for this purpose is illustrated by the analysis of a pumping test in an abstraction borehole drilled into flooded, abandoned coal mineworkings at Deerplay (Lancashire, UK). Interpretation of the isotope data was undertaken conjunctively with that of major ion hydrochemistry, and interpreted in the context of the particular hydraulic setting of flooded mineworkings to identify the sources and mixing of water qualities in the groundwater system. Initial pumping showed breakdown of initial water quality stratification in the borehole, and gave evidence for distinctive isotopic signatures (δ34S(SO4) ? ?1.6‰, δ18O(SO4) ? +15‰) associated with primary oxidation of pyrite in the zone of water table fluctuation—the first time this phenomenon has been successfully characterized by these isotopes in a flooded mine system. The overall aim of the test pumping—to replace an uncontrolled outflow from a mine entrance in an inconvenient location with a pumped discharge on a site where treatment could be provided—was swiftly achieved. Environmental tracing data illustrated the benefits of pumping as little as possible to attain this aim, as higher rates of pumping induced in‐mixing of poorer quality waters from more distant old workings, and/or renewed pyrite oxidation in the shallow subsurface.  相似文献   

12.
In this study a field‐sampling technique for dissolved hydrogen (H2) in groundwater will be presented which allows the transport of gaseous samples into the laboratory for further analysis. The method consists of transferring the headspace trapped in a gas‐sampling bulb which is continuously purged by groundwater into previously evacuated vials using a gas‐tight syringe. Three transfer steps with preceding evacuation of the vial led to a H2‐recovery of 100 % in laboratory experiments. The method has been applied to determine H2 concentrations in an aquifer contaminated with chlorinated solvents. Tests concerning the effect of different pumping techniques on H2 concentrations revealed that most reliable values were obtained with a bladder pump, while an electrically driven submersible pump generated considerable amounts of hydrogen due to electrochemical interactions with the sampled water. Concentrations of dissolved hydrogen in field and laboratory samples were about two orders of magnitude higher when sampling was performed with the electrically driven submersible pump compared to sampling with the bladder pump and a peristaltic pump. Lab experiments with a Plexiglas reservoir to produce H2‐enriched water were used to study the effect of two tubing materials (PVC, polyamide) on H2 losses. PVC tubing turned out to allow transfer of H2‐enriched water over 25 m without significant losses, while PA‐tubing was not suitable for sampling of H2.  相似文献   

13.
Accepting the Gerlach and Graeber (1985) estimates of the initial CO2 and H2O concentrations, we have calculated the variation of the concentrations of these gases, dissolved and/or exsolved, in Hawaiian tholeiite from the moment it is generated until it solidifies at the Earth's surface. These computations are extensions of our previous work (Bottinga and Javoy 1989, 1990a, 1990b) on the nucleation, growth and ascent of bubbles in mid-oceanic ridge basalt. The present study is different in that we consider low-pressure (P>1 bar) bubble nucleation and the presence of H2O. Our results indicate that: (1) Hawaiian liquid tholeiite is supersaturated with respect to CO2 when it erupts; (2) degassing of the basaltic liquid takes place during different stages, each of which gives rise to a compositionally distinct bubble population, which to a large extent is lost before the formation of a new population; (3) fumarolic gas compositions are affected by the pressure and temperature at which gas bubbles are released from the lava and the velocity with which lava is ejected from the magma chamber.  相似文献   

14.
Abstract

Plant root systems can utilize soil water to depths of 10 m or more. Spatial pattern data of deep soil water content (SWC) at the regional scale are scarce due to the labour and time constraints of field measurements. We measured gravimetric deep SWC (DSWC) at depths of 200, 300, 400, 500, 600, 800 and 1000 cm at 382 sites across the Loess Plateau, China. The coefficient of variation was high for soil water content (SWC) in the horizontal direction (48%), but was relatively small for SWC in the vertical direction (9%). Semivariogram ranges for DSWC at different depths were between 198 and 609 km. Kriged distribution maps indicated that deep soil layers became moister along northwest to southeast transects. Multiple statistical analyses related DSWC to plant characteristics (e.g. plant age explained >21% of the variability), geographical location and altitude (8–13%), soil texture and infiltrability, evaporation zone and eco-hydrological processes (P < 0.05). Regional land management decisions can be based on our DSWC distribution data to determine land uses and plant species appropriate for the soil type and location that would maintain a stable soil water balance. Maintaining infiltrability is of great importance in this and other water-scarce regions of the world.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Wang, Y.Q., Shao, M.A., Liu, Z.P. and Warrington, D.N., 2012. Regional spatial pattern of deep soil water content and its influencing factors. Hydrological Sciences Journal, 57 (2), 265–281.  相似文献   

15.
Growing evidence suggests microbial respiration of dissolved organic carbon (DOC) may be a principal driver of subsurface dissolution and cave formation in eogenetic carbonate rock. Analyses of samples of vadose zone gasses, and geochemical and hydrological data collected from shallow, uncased wells on San Salvador Island, Bahamas, suggest tidally varying water tables may help fuel microbial respiration and dissolution through oxygenation. Respiration of soil organic carbon transported to water tables generates dysaerobic to anaerobic groundwater, limiting aerobic microbial processes. Positive correlations of carbon dioxide (CO2), radon-222 (222Rn) and water table elevation indicate, however, that tidal pumping of water tables pulls atmospheric air that is rich in oxygen, and low in CO2 and 222Rn, into contact with the tidal capillary fringe during falling tides. Ratios of CO2 and O2 in vadose gas relative to the atmosphere indicate this atmospheric oxygen fuels respiration within newly-exposed, wetted bedrock. Deficits of expected CO2 relative to O2 concentrations indicate some respired CO2 is likely removed by carbonate mineral dissolution. Tidal pumping also appears capable of transferring oxygen to the freshwater lens, where it could also contribute to respiration and dissolution; dissolved oxygen concentrations at the water table are at least 5% saturated and decline to anaerobic conditions 1–2 m below. Our results demonstrate how tidal pumping of air to vadose zones can drive mineral dissolution reactions that are focused near water tables and may contribute to the formation of laterally continuous vuggy horizons and potentially caves. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
Processes driving carbonate diagenesis in islands of the northern Bahamas are investigated using major ion, dissolved oxygen and dissolved organic carbon analyses of water samples from surface and ground waters, and measurements of soil gas P. Meteoric waters equilibrate with aragonite, but reactions are water controlled rather than mineral‐controlled and drive dissolution rather than concurrent precipitation of calcite. Surface runoff waters equilibrate with atmospheric P and rapidly recharge the vadose zone, limiting subaerial bedrock dissolution to only 6·6–15 mg l?1 Ca. P of soil gas measured in the summer wet season ((7·4 ± 3·7) × 10?3 atm) is elevated compared with that of the atmosphere, despite the thin skeletal organic nature of the soil and the discontinuous soil cover. Soil waters retained in surface pockets are equilibrated with respect to aragonite and have dissolved 51 ± 19 mg l?1 Ca. This is substantially less than the 93 ± 18 mg l?1 Ca in samples from pumping boreholes that sample meteoric waters from the freshwater lens. The high P of the freshwater lens ((16 ± 8·3) × 10?3 atm for pumping boreholes) suggests that significant additional CO2 may be derived by oxidation of soil‐ and surface‐derived organic carbon within the lens. The suboxic nature of the majority of the freshwater lens and the observed depletion in sulphate support this suggestion, and indicate that both aerobic and anaerobic oxidation may take place. Shallow lens samples from observation boreholes are calcite supersaturated and have a lower P than deeper lens waters, indicating that CO2 degasses from the water table, driving precipitation of calcite cements. We suggest that the geochemical evolution of waters in the vadose zone and upper part of the freshwater lens may be determined by the presence of a body of ground air with P controlled by production in the freshwater lens and soil and by degassing to the atmosphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Gas emissions from Erebus volcano, Antarctica, were measured by open-path Fourier transform infrared spectroscopy to understand degassing of its magmatic system. Two degassing phonolite lava lakes were present in the summit crater during observation in December 2004. We report analyses of H2O, CO2, CO, SO2, HF, HCl and OCS, (in order of molar abundance) in the plumes. Variations in the proportions of these species strongly reflect the dynamics of degassing, and sourcing of gas from different depths in the magmatic network. The highest observed ratios of CO2 and H2O are consistent with gas extracted from the melt at a depth of up to ∼ 2 km below the lava lakes. Magma degassing above this depth contributes to a higher H2O/CO2 proportion in the airborne plume. The ratio therefore reflects the balance of deeper vs. shallower contributions of volatiles and, possibly, a combination of closed- and open-system degassing. We observe a strong contrast in HF content in emissions from the two lava lakes, which we attribute to differing levels of magma ascent and/or cooling and crystallization of the magma supply. Fluxes of all gas species were determined using independent SO2 flux determinations and measured gas ratios. In the case of CO2 and water, ∼ 1 and ∼ 0.4 m3 s− 1, respectively, of parental basanite magma are required to sustain the calculated output. The discrepancy between the two figures is readily explained by sequestration of part of the magma supply at depth such that it only partially degasses its complement of water.  相似文献   

18.
Optimizing layout of pumping well plays a vital role in curbing the groundwater level decline. A novel optimization model is presented in this study. First, the optimal well number is obtained by taking into account factors of local economy and environment based on nonlinear programming model. Then, the well spatial layout assessment model is attained based on information entropy weight and technique for order preference by similarity to ideal solution (TOPSIS). After that, the relative closeness to positive ideal solution of alternative (ci) on the rationality of well spatial layout in cultivated land is calculated, and a set of alternatives are ranked according to the descending order of ci. Finally, the well optimization layout is obtained by combining the optimal well number with well spatial layout assessment result based on the GIS data of pumping wells. As a case study, this method was applied in Yongchang Irrigation District of Shiyang River Basin, the arid region of northwest China. Results show that under the conditions of sustainable use of water resources, the irrigation district needed 724 wells for irrigation, with a decrease of 31.0% when compared with the existing number of wells. The wells with low flow rate and operating efficiency distributed in high density where groundwater is over‐exploitation were recommended to be closed. This well optimization layout method is expected to play a significant role in helping make plans for exploiting groundwater at more sustainable level, curbing the groundwater level decline trend, and improving the local ecological environment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point‐specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1‐D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine‐Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ13CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1‐D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine‐Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream‐gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water.  相似文献   

20.
An integrated study using geophysical method in combination with pumping tests and geochemical method was carried out to delineate groundwater potential zones in Mian Channu area of Pakistan. Vertical electrical soundings (VES) using Schlumberger configuration with maximum current electrode spacing (AB/2 = 200 m) were conducted at 50 stations and 10 pumping tests at borehole sites were performed in close proximity to 10 of the VES stations. The aim of this study is to establish a correlation between the hydraulic parameters obtained from geophysical method and pumping tests so that the aquifer potential can be estimated from the geoelectrical surface measurements where no pumping tests exist. The aquifer parameters, namely, transmissivity and hydraulic conductivity were estimated from Dar Zarrouyk parameters by interpreting the layer parameters such as true resistivities and thicknesses. Geoelectrical succession of five‐layer strata (i.e., topsoil, clay, clay sand, sand, and sand gravel) with sand as a dominant lithology was found in the study area. Physicochemical parameters interpreted by World Health Organization and Food and Agriculture Organization were well correlated with the aquifer parameters obtained by geoelectrical method and pumping tests. The aquifer potential zones identified by modeled resistivity, Dar Zarrouk parameters, pumped aquifer parameters, and physicochemical parameters reveal that sand and gravel sand with high values of transmissivity and hydraulic conductivity are highly promising water bearing layers in northwest of the study area. Strong correlation between estimated and pumped aquifer parameters suggest that, in case of sparse well data, geophysical technique is useful to estimate the hydraulic potential of the aquifer with varying lithology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号