首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper presents an experimental investigation on the seismic behavior of H‐beam to circular tubular column connections stiffened by an outer ring diaphragm. An innovative three‐dimensional (3D) connection subassembly testing system was first described. Specimens representative of two‐dimensional (2D) interior columns, 3D interior and exterior columns in a steel building frame were then tested to failure under unidirectional or bidirectional cyclic loads. Various specimen parameters are used to evaluate their effects on connection behavior. Test results indicate significantly different failure modes for 2D and 3D weak panel connections, with panel shear buckling and local distortion of outer diaphragm occurring only for 3D connections. The weak beam connections unexceptionally exhibited final fracture at the junction between diaphragm and beam flange. In contrast with weak beam connections, weak panel connections demonstrated better seismic performance and ductility. As a result, a seismic design philosophy considering panel zone yielding before beam flexural yielding is proposed. Based on experiment observations, small diaphragm width and simplified fillet welding are found to be feasible especially for weak beam connections, improving architectural appearance and facilitating construction. Strength evaluations also suggest that current AIJ design provisions may be appropriate when applied to panel zones in 3D connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This study details a new moment connection that overcomes difficulties in achieving field‐weld quality and eliminates steel beam buckling encountered in steel moment connections. This study presents cyclic test and finite element analysis results of full‐scale subassemblies using steel reduced flange plates (RFPs) to connect steel beam flanges and the column without any other direct connection. Since the RFP connection is designed as strong column‐strong beam‐weak RFPs, the RFP functions as a structural fuse that eliminates weld fractures and beam buckling. Test and analytical results show that (1) the connections transferred the entire beam flexural strength to the column and reached an interstorey drift of 4% with minor strength degradation, (2) failure of the connections was owing to buckling or fracturing of the RFP and not of the beam, and (3) the RFP connection subassembly, modelled using the nonlinear finite element computer program ABAQUS, exhibited hysteretic behaviour similar to that of the flange plate (FP) moment connection subassembly. The inelastic buckling force of the RFP was also evaluated by nonlinear regression analyses performed on a nonlinear model that relates buckling force to RFP geometries. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates the effect of the composite action on the seismic performance of steel special moment frames (SMFs) through collapse. A rational approach is first proposed to model the hysteretic behavior of fully restrained composite beam‐to‐column connections, with reduced beam sections. Using the proposed modeling recommendations, a system‐level analytical study is performed on archetype steel buildings that utilize perimeter steel SMFs, with different heights, designed in the West‐Coast of the USA. It is shown that in average, the composite action may enhance the seismic performance of steel SMFs. However, bottom story collapse mechanisms may be triggered leading to rapid deterioration of the global strength of steel SMFs. Because of composite action, excessive panel zone shear distortion is also observed in interior joints of steel SMFs designed with strong‐column/weak‐beam ratios larger than 1.0. It is demonstrated that when steel SMFs are designed with strong‐column/weak‐beam ratios larger than 1.5, (i) bottom story collapse mechanisms are typically avoided; (ii) a tolerable probability of collapse is achieved in a return period of 50 years; and (iii) controlled panel zone yielding is achieved while reducing the required number of welded doubler plates in interior beam‐to‐column joints. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Six cyclic tests were conducted on three full‐scale subassemblies to investigate the behavior of interior beam‐to‐column post‐tensioned (PT) connections. Strands were placed along each side of the steel beam web, passing through the steel column to provide precompression between the beams and a column. Top and bottom energy‐dissipating (ED) bars, passing through the column and welded to the beam, were used to increase the moment capacity and ED capacity of the connection. One of the subassemblies also had a composite concrete slab with discontinuity at the column centerline to eliminate restraint from the metal deck, reinforcement, and welded wire mesh. The objectives of this paper were to investigate the following: the durability of the connection by loading each specimen twice, the ED capacity of the ED bar, and the effects that the type of ED bar and type of composite slab have on the self‐centering behavior of the connection. The experimental results showed that: (1) the connection could sustain severe inelastic cyclic loading at least twice without strength degradation, (2) the ED capacity of the bar was much larger than that dissipated by a single AISC loading protocol, and (3) a specimen with a discontinuous composite slab, which opened freely at the centerline of the column, ensured the same self‐centering hysteretic behavior as the bare steel specimen. However, the decompression moment of the PT connection decreased significantly at each interstory drift, resulting in an early opening of a gap at the beam–column interface. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Numerous non‐ductile reinforced concrete (RC) buildings with little or no shear reinforcement in beam‐column joints can be found in regions of moderate seismicity. To strengthen such substandard beam‐column joints, this study proposes a method in which RC wing walls are installed beside existing columns, which overcomes the lack of realistic strengthening methods for congested connections in RC buildings. The proposed strengthening mechanism improves the joint moment capacity by utilizing tension and compression acting on the beam–wing wall boundaries; thus, brittle joint hinging failure is prevented. Three 3/4‐scale RC exterior beam‐column joint specimens without shear reinforcement, two of which were strengthened by installing wing walls with different strengthening elements, were fabricated and tested. The test results verified the effectiveness of the proposed strengthening method and the applicability of this method to seismically substandard beam‐column joints. © 2017 The Authors. Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

7.
Moment connections in an existing steel building located in Kaohsiung, Taiwan were rehabilitated to satisfy seismic requirements based on the 2005 AISC seismic provisions. Construction of the building was ceased in 1996 due to financial difficulties and was recommenced in 2007 with enhanced connection performance. Steel moment connections in the existing building were constructed by groove welding the beam flanges and bolting the beam web to the column. Four moment connections, two from the existing steel building, were cyclically tested. A non‐rehabilitated moment connection with bolted web‐welded flanges was tested as a benchmark. Three moment connections rehabilitated by welding full‐depth side plates between the column face and beam flange inner side were tested to validate the rehabilitation performance. Test results revealed that (1) the non‐rehabilitated existing moment connection made by in situ welding process prior to 1996 had similar deformation capacity as contemporary connection specimens made by laboratory welding process, (2) all rehabilitated moment connections exhibited excellent performance, exceeding a 4% drift without fractures of beam flange groove‐welded joints, and (3) presence of the full‐depth side plates effectively reduced beam flange tensile strain near the column face by almost half compared with the non‐rehabilitated moment connection. The connection specimens were also modeled using the non‐linear finite element computer program ABAQUS to further confirm the effectiveness of the side plate in transferring beam moments to the column and to investigate potential sources of connection failure. A design procedure was made based on experimental and analytical studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a design‐variable‐based inelastic hysteretic model for beam–column connections. It has been well known that the load‐carrying capacity of connections heavily depends on the types and design variables even in the same connection type. Although many hysteretic connection models have been proposed, most of them are dependent on the specific connection type with presumed failure mechanisms. The proposed model can be responsive to variations both in design choices and in loading conditions. The proposed model consists of two modules: physical‐principle‐based module and neural network (NN)‐based module in which information flow from design space to response space is formulated in one complete model. Moreover, owing to robust learning capability of a new NN‐based module, the model can also learn complex dynamic evolutions in response space under earthquake loading conditions, such as yielding, post‐buckling and tearing, etc. Performance of the proposed model has been demonstrated with synthetic and experimental data of two connection types: extended‐end‐plate and top‐ and seat‐angle with double‐web‐angle connection. Furthermore, the design‐variable‐based model can be customized to any structural component beyond the application to beam–column connections. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents the results of a multi‐level pseudo‐dynamic seismic test program that was performed to assess the performance of a full‐scale three‐bay, two‐storey steel–concrete composite moment‐resisting frame built with partially encased composite columns and partial‐strength beam‐to‐column joints. The system was designed to develop a ductile response in the joint components of beam‐to‐column joints including flexural yielding of beam end plates and shear yielding of the column web panel zone. The ground motion producing the damageability limit state interstorey drift caused minor damage while the ultimate limit state ground motion level entailed column web panel yielding, connection yielding and plastic hinging at the column base connections. The earthquake level chosen to approach the collapse limit state induced more damage and was accompanied by further column web panel yielding, connection yielding and inelastic phenomena at column base connections without local buckling. During the final quasi‐static cyclic test with stepwise increasing displacement–amplitudes up to an interstorey drift angle of 4.6%, the behaviour was ductile although cracking of beam‐to‐end‐plate welds was observed. Correlations with numerical simulations taking into account the inelastic cyclic response of beam‐to‐column and column base joints are also presented in the paper together. Inelastic static pushover and time history analysis procedures are used to estimate the structural behaviour and overstrength factors of the structural system under study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper first presents the force–deformation relationship of a post‐tensioned (PT) steel beam‐to‐column connection constructed with bolted web friction devices (FDs). This paper then describes the test program conducted in the National Center for Research on Earthquake Engineering, Taiwan, on four bolted FDs and four full‐scale PT beam‐to‐column moment connection subassemblies using the FDs. Tests confirm that (1) the hysteretic behavior of four bolted FDs is very stable, (2) the friction coefficient between the steel plate and the brass shim is about 0.34, (3) the proposed force–deformation relationships reasonably predict the experimental responses of the PT connections under cyclically increasing deformations up to a beam peak rotation of 0.05 rad, and (4) the decompression moments do not degrade as beam cyclic deformations increase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The seismic capacity of beam‐to‐column connections in steel high‐rise frames is a matter of concern, particularly when they are subjected to long‐period ground motions. A previous full‐scale shaking table test conducted at the E‐Defense National Research Institute for Earth Science and Disaster Prevention in Japan disclosed cracks and fractures in such beam‐to‐column connections. This paper examines the effects of three types of beam‐to‐column connection retrofit: supplemental welds, wing plates, and a haunch. Quasi‐static member tests and a series of shaking table tests applied to a full‐scale specimen are conducted to quantify the respective performances of the retrofit schemes. The performance of a total of 28 connections tested by the member and shaking table tests is evaluated together with that of an additional 12 unretrofitted connections tested in the previous test. When the supplemental welds are applied only to the shear tab to the web, the connection fractures at the same instant as the connection without retrofit. The corresponding cumulative plastic rotation is not improved. When the supplement welds are further applied to the web‐to‐column connection, strain concentration at the bottom flange, primarily promoted by the presence of the RC floor slab, is significantly reduced, and the cumulative plastic rotation capacity is increased to eight times that of the connection without retrofit. For the wing plate connection and haunch connection, the critical section is moved from the beam end to the beam cross‐section corresponding to the tip of the wing plates or haunch, resulting in an improvement of ductility by eight times that of the unretrofitted connection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A rate‐dependent modeling technique is developed for moment resisting steel connections that utilize non‐linear viscous dampers. First, a model of the Maxwell‐type is developed that considers the non‐linear viscous damper and connection flexibility for translational motion. This model is compared with experimental results at several input motion frequencies to validate the results. The model is then extended to represent an exterior steel beam‐to‐column connection using damage‐avoidance design and non‐linear viscous dampers. By including terms to represent structural member and connection flexibility, using appropriate geometric transformations the model can be formulated to give the overall lateral load‐drift structural performance. Validation analysis shows good agreement between experimental observations and the model predictions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A refined component model is proposed to predict the inelastic monotonic response of exterior and interior beam‐to‐column joints for partial‐strength composite steel–concrete moment‐resisting frames. The joint typology is designed to exhibit ductile seismic response through plastic deformation developing simultaneously in the column web panel in shear, the bolted end‐plate connection, the column flanges in bending and the steel reinforcing bars in tension. The model can handle the large inelastic deformations consistent with high ductility moment‐resisting frames. Slip response between the concrete slab and the beams was taken into account. A fibre representation was adopted for the concrete slab to accurately capture the non‐uniform stress distribution and progressive crushing of the concrete at the interface between the concrete slab and the column flange. The model is validated against results from full‐scale subassemblages monotonic physical tests performed at the University of Pisa, Italy. A parametric study is presented to illustrate the capabilities of the model and the behaviour of the joints examined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The self‐centering prestressed concrete (SCPC) moment resisting frame (MRF) with web friction devices (WFDs) is a new type of structure that integrates advantages of post‐tensioned precast concrete MRFs and self‐centering steel MRFs. In this paper, the configuration of the connection and design guidelines are presented. To further reduce damage to the connection under cyclic loading and facilitate implementation in practice, several significant improvements are proposed and experimentally validated in this study, including the following: (i) the welded connection is replaced by the bolted connection; (ii) aluminum plates are used for friction instead of brass plates to reduce the material costs without decreasing the energy dissipation capacity; and (iii) post‐tensioned tendons at the corners of the beam are replaced by a bundle of tendons at the beam centroid in order to facilitate the field assembly. The resulting improvements of seismic performances are experimentally demonstrated by 10 cyclic tests of two full‐scale SCPC beam–column connections. Numerical simulation of the proposed connection is conducted using the Open System for Earthquake Engineering Simulation (OpenSees) to replicate the experimental results. Seismic behaviors are taken into account, such as the gap opening/closing at the beam–column interface, the self‐centering capacity, and the friction energy dissipation. Good agreement is observed between the numerical simulation and the test results. The proposed SCPC connection with bolted WFDs is demonstrated to have good performance when subjected to cyclic loading. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
The work presented is aimed at the investigation of the influence of beam‐to‐column connections on the seismic response of MR‐Frames, with and without ‘set‐backs’, designed according to the Theory of Plastic Mechanism Control. The investigated connection typologies are four partial strength connections whose structural details have been designed to obtain the same flexural resistance. The first three joints are designed by means of hierarchy criteria based on the component approach and are characterized by different location of the weakest joint component, leading to different values of joint rotational stiffness and plastic rotation supply and affecting the shape of the hysteresis loops governing the dissipative capacity. The last typology is a beam‐to‐column connection equipped with friction pads devoted to the dissipation of the earthquake input energy, thus preventing the connection damage. An appropriate modelling is needed to accurately represent both strength and deformation characteristics, especially with reference to partial‐strength connections where the dissipation of the earthquake input energy occurs. To this aim, beam‐to‐column joints are modelled by means of rotational inelastic springs located at the ends of the beams whose moment‐rotation curve is characterized by a cyclic behaviour which accounts for stiffness and strength degradation and pinching phenomena. The parameters characterizing the cyclic hysteretic behaviour have been calibrated on the base of experimental results aiming to the best fitting. Successively, the prediction of the structural response of MR‐Frames, both regular frames and frames with set‐backs, equipped with such connections has been carried out by means of both push‐over and Incremental Dynamic Analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
通过柱端加载的低周反复荷载试验对8个内隔板三边焊接,而在未焊一边柱壁板上布置圆柱头栓钉的方钢管混凝土柱-H形钢梁节点进行了试验研究,研究了不同轴压比情况下节点的破坏模式、延性、耗能性能等。试验结果表明,破坏之前节点具有良好的滞回性能、延性及耗能能力,满足现行抗震规范的要求。该节点可以用于方钢管混凝土柱两侧弯矩相差较大时,弯矩较小一侧节点。提出了相关的设计建议。  相似文献   

18.
Brittle fractures were observed at the welded beam‐to‐column connections of a number of steel moment frame buildings following the M6.7 1994 Northridge earthquake. Such fractures cause a rapid loss of connection strength and stiffness, as well as a sudden release of the strain energy stored by the connection at the time of fracture. Immediately following the fracture, a number of highly transient phenomena occur locally in the members adjacent to the connection, as well as globally in the structure as a whole. Four significant local phenomena were observed locally during shaking table tests of a one‐third scale, two‐story, one‐bay steel moment frame in which quasi‐brittle beam‐to‐column fractures occurred: (a) change in beam deflected shape; (b) change in moment distribution in adjacent members; (c) generation and propagation of elastic waves; and (d) initiation of dynamic modal response at the member level. Owing to the highly transient nature of these phenomena, they were observed to have second‐order effects on overall behavior of the system. In comparison, the reductions in local strength and stiffness caused by the fractures had much more significant effects on system behavior. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Reversed cyclic loading behavior of jointed precast prestressed concrete beam‐to‐column connections are computationally modeled and validated against full‐scale experimental results. Response simulations are performed with and without supplemental high force‐to‐volume (HF2V) energy dissipation devices. The experimental specimen is a three‐dimensional corner connection of a jointed precast concrete frame structure, utilizing unbonded post‐tensioned tendons consisting of high‐alloy, high‐strength thread‐bars. The joint region is armored, to avoid damage, by providing steel plates at the beam–column (rocking) contact points. The analytical model of the connection is developed to include modifications for the effects of changing connection behavior. These effects are friction within the prestressing system, yielding of the prestressing tendons, reduction or elimination of prestress attributable to prior tendon yield, and directional dependence caused by an asymmetrical prestress system. Particular attention is given to developing a robust model that can accommodate small reversals in the displacement loading. The model is extended to incorporate the effects of the HF2V energy dissipation devices and the associated flexibility from the elements that connect the devices to the structure. Although the model is applied to the use of HF2V (lead extrusion) energy dissipation devices, it is general and can accommodate any non‐linear rate‐dependent damper. The computational model is based almost entirely on rational mechanics and shows good agreement with the full‐scale experimental observations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The seismic performance of two RC interior wide beam-column connections representative of existing frames designed and detailed according to past construction practices in the moderate-seismicity Mediterranean area was investigated experimentally. The specimens were subjected to axial loads, moderate levels of gravity loading and cyclic displacements up to failure. The specimens exhibited a “strong column-weak beam” type of flexural yielding mechanism. The wide beams did not reach the expected capacities corresponding to the formation of a full-width plastic hinge. The wide-beam longitudinal bars exhibited significant slippage, and the transverse beams underwent severe torsion cracking and even failure; this caused severe pinching in the load versus displacement hysteretic loops and exacerbated the intrinsic flexibility of this type of connection. The average drift ratios at first yielding of the wide beam longitudinal reinforcement and at failure were 2.7 and 4.5%, respectively. The displacement ductility ratio was about 2.8. The ultimate energy dissipation capacity of each specimen—obtained by dividing the total plastic strain energy by the product of the yield load and yield displacement—was approximately 9, which is about one fourth of the value recommended for providing adequate seismic performance. Finally, a simple approach is suggested for prediction of the bending capacity of existing connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号