首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

2.
Abstract

The Complex Terminal (CT) and Plio-Quaternary (P-Q) aquifers in the Chott Gharsa plain in southwestern Tunisia have been investigated with the aid of chemical and isotopic tools. It has been demonstrated that groundwater from the CT is mainly of palaeo-origin, especially in the western and central parts of the plain where the most negative values of δ18O and δ2H were observed (between??8.1 and??7.6‰ for δ18O, and??60 to??57‰ for δ2H), combined with low concentrations of radiocarbon (6.8–7.5 pmc) and absence of tritium. Modern recharge of the aquifer occurs only in the eastern part of the system where younger waters were observed, as indicated by their stable isotope composition, relatively high radiocarbon content and presence of tritium. Groundwater from the P-Q multi-layer aquifer represents mixtures of ascending deep CT waters and modern water recharging the P-Q aquifer system. Isotope mass balance was used to quantify mixing proportions. The calculations showed that the contribution of deep CT groundwater to the P-Q aquifer system reaches about 75% in the western and central parts of the plain where the CT aquifer remains strongly artesian. This contribution decreases to about 15% towards the eastern part of the plain, as a consequence of significant reduction of artesian pressure in this area of the CT aquifer. Chemical data suggest that mineralization of the studied groundwater systems is controlled mainly by dissolution of evaporative minerals (halite, anhydrite and gypsum) and cation exchange reactions with the matrix, possibly enhanced by recent anthropogenic disturbance of the system caused by lowering of the water table due to heavy exploitation and return flow of saline irrigation water into the P-Q aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Yangui, H., Abidi, I., Zouari, K., and Rozanski, K., 2012. Deciphering groundwater flow between the Complex Terminal and Plio-Quaternary aquifers in Chott Gharsa plain (southwestern Tunisia) using isotopic and chemical tools. Hydrological Sciences Journal, 57 (5), 967–984.  相似文献   

3.
The effect of pressure-driven groundwater recharge signal propagation in the Andean-Atacamenian environment is investigated by assessing a record of 15 years of water table fluctuations of an unconfined–confined aquifer system. Based on a singular spectrum analysis of water table time series, it is shown that, in the given case, groundwater levels in the central Atacama Desert are hydraulically controlled by two distant recharge areas associated with the Andes. The maximum observed range of the pressure signal propagation is ~50 km over an elevation difference of more than 3000 m at a lag of ~25 months. Several findings indicate that an often-cited study misinterpreted a water level rise at the same site as an in-situ alluvial fan recharge. Thus, the effect’s impact on groundwater dynamics in complex aquifer systems can easily be overlooked. Singular spectrum analysis could be of use to investigate pressure effects at hydrologically comparable sites.  相似文献   

4.
Abstract

Chemical and isotopic data of groundwater of the Upper Cretaceous aquifer in the Orontes basin, Syria, have been used to assess the groundwater geochemistry, the origin of groundwater recharge and groundwater residence time. The chemical data indicate that dissolution of evaporite minerals is the main process controlling groundwater mineralization. The composition of stable isotopes δ18O and δ2H, together with 14C activity, reflect the existence of three different groups: (a) groundwater in the Coastal Mountains with δ18O of –6.65‰, quite similar to modern-day precipitation, and high 14C (>50 pmC); (b) groundwater in the unconfined aquifer of the Hama Uplift, which has δ18O of –5.52‰ and 14C near 20 pmC, and is recharged locally; and (c) groundwater from the confined aquifer of the Homs Depression, which is characterized by more depleted δ18O,, –8.01‰, and low 14C (<7 pmC), and might be recharged in the northern piedmont of the Anti-Lebanon Mountains. The distinctive isotope signatures of the latter two groups indicate different recharge elevations and palaeoclimatic effects. The low recharge rate of the groundwater in the Hama Uplift aquifer, and the even slower recharge rate in the Homs Depression aquifer, are reflected by groundwater 14C residence times of 5 and over 22 Ka BP, respectively.

Editor D. Koutsoyiannis

Citation Al-Charideh, A., 2013. Recharge and mineralization of groundwater of the Upper Cretaceous aquifer in Orontes basin (Syria). Hydrological Sciences Journal, 58 (2), 452–467.  相似文献   

5.
Abstract

Despite the Sahelian drought of the 1970s–1990s, the unconfined aquifer in southwest Niger exhibits a multidecadal increase in groundwater reserves. Recent changes in land surface conditions have enhanced runoff and thus indirect groundwater recharge below endorheic ponds. This paper presents a model-based investigation of surface runoff and groundwater recharge at mesoscale (~5000 km2). A new lumped-conceptual runoff model applicable to the large number of ungauged endorheic catchments is specially developed, derived from an existing fine-scale, physically-based hydrologic model. Runoff simulated for sites identified as groundwater recharge sources are used to derive recharge forcing for a Modflow-based model of the aquifer. The rising water table trend and its spatial distribution over the period 1992–2003 are generally well simulated, albeit smoothed year-to-year dynamics. Comparison with alternative methods of recharge estimation suggests, however, that there may presently exist more recharging sites and/or contributing surfaces than those considered so far.

Citation Massuel, S., Cappelaere, B., Favreau, G., Leduc, C., Lebel, T. & Vischel, T. (2011) Integrated surface water–groundwater modelling in the context of increasing water reserves of a regional Sahelian aquifer. Hydrol. Sci. J. 56(7), 1242–1264.  相似文献   

6.
Abstract

Major ions and stable isotopes in groundwaters of the Plio-Quaternary shallow aquifer of the Djerid oases, southern Tunisia, were investigated to elucidate the origin of groundwater recharge and the mineralization processes. It has been demonstrated that the groundwater composition is mainly controlled by the water–rock interaction, the encroachment of brines from the Chotts and the return flow of irrigation waters. The isotopically depleted groundwater samples suggest that the recharge waters derive from an old palaeoclimatic origin. However, the enriched groundwater samples reflect the presence of evaporated recharge water. Furthermore, the large negative deuterium-excess values indicate the effect of secondary evaporation processes, probably related to the return flow of irrigation waters pumped from the underlying aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Tarki, M., Dassi, L. and Jedoui, Y., 2012. Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrological Sciences Journal, 57 (4), 790–804.  相似文献   

7.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Reply     
Abstract

This paper develops a new analytical solution for the aquifer system, which comprises an unconfined aquifer on the top, a semi-confined aquifer at the bottom and an aquitard between them. This new solution is derived from the Boussinesq equation for the unconfined aquifer and one-dimensional leaky confined flow equation for the lower aquifer using the perturbation method, considering the water table over-height at the remote boundary. The head fluctuation predicted from this solution is generally greater than the one solved from the linearized Boussinesq equation when the ratio of the tidal amplitude to the thickness of unconfined aquifer is large. It is found that both submarine groundwater discharges from upper and lower aquifers increase with tidal amplitude–aquifer thickness ratio and may be underestimated if the discharge is calculated based on the average head fluctuation. The effects of the aquifer parameters and linearization of the Boussinesq equation on the normalized head fluctuation are also investigated.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Chuang, M.-H., Mahdi, A.-A. and Yeh, H.-D., 2012. A perturbation solution for head fluctuations in a coastal leaky aquifer system considering water table over-height. Hydrological Sciences Journal, 57 (1), 162–172.  相似文献   

9.
In variably confined carbonate platforms, impermeable confining units collect rainfall over large areas and deliver runoff to rivers or conduits in unconfined portions of platforms. Runoff can increase river stage or conduit heads in unconfined portions of platforms faster than local infiltration of rainfall can increase groundwater heads, causing hydraulic gradients between rivers, conduits and the aquifer to reverse. Gradient reversals cause flood waters to flow from rivers and conduits into the aquifer where they can dissolve limestone. Previous work on impacts of gradient reversals on dissolution has primarily emphasized individual caves and little research has been conducted at basin scales. To address this gap in knowledge, we used legacy data to assess how a gradient of aquifer confinement across the Suwannee River Basin, north‐central Florida affected locations, magnitudes and processes of dissolution during 2005–2007, a period with extreme ranges of discharge. During intense rain events, runoff from the confining unit increased river stage above groundwater heads in unconfined portions of the platform, hydraulically damming inputs of groundwater along a 200 km reach of river. Hydraulic damming allowed allogenic runoff with SICAL < ?4 to fill the entire river channel and flow into the aquifer via reversing springs. Storage of runoff in the aquifer decreased peak river discharges downstream and contributed to dissolution within the aquifer. Temporary storage of allogenic runoff in karst aquifers represents hyporheic exchange at a scale that is larger than found in streams flowing over non‐karst aquifers because conduits in karst aquifers extend the area available for exchange beyond river beds deep into aquifers. Post‐depositional porosity in variably confined carbonate platforms should thus be enhanced along rivers that originate on confining units. This distribution should be considered in models of porosity distribution used to manage water and hydrocarbon resources in carbonate rocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The deeply buried river‐connected Xishan karst aquifer (XKA) in western Beijing, China, has been suffering from diminishing recharge for several decades, which in turn leads to the disappearing of spring water outflows and continuously lowering of groundwater level in the area. Thus, it is important to correctly recognize the groundwater recharge and flow paths for the sustainable development of the XKA. To investigate these issues, the hydrochemical and isotopic compositions are analysed for both surface water and groundwater samples collected over an area of about 280 km2. Results show that (a) the river water is characterized by high Na contents; (b) the δ2H and δ18O values in the river water are distinctively higher than those of groundwater samples, after experiencing the long‐time evaporative enrichment in the upstream reservoir; (c) the Sr concentrations and 87Sr/86Sr ratios of groundwater clearly indicated the interaction between water and carbonate minerals but excluded the water–silicate interaction; and (d) the groundwater samples in the direct recharge area of the XKA have the lowest Na concentrations and the δ2H and δ18O values. Based on the large differences in the Na contents and 18O values of groundwater and surface water, a simple two‐component mixing model is developed for the study area and the fractions of the river water are estimated for groundwater samples. We find that the distribution pattern of the river water fractions in the XKA clearly shows a change of directions in the preferential flow path of the groundwater from its source zone to the discharge area. Overall, our results suggest that the recharged surface water can be a useful evidence for delineating the groundwater flow path in river‐connected karst aquifer. This study improves our understanding of the heterogeneity in karst groundwater systems.  相似文献   

12.
Determination of hydraulic diffusivity of aquifers by spectral analysis   总被引:1,自引:1,他引:0  
This study uses the cyclical frequency to develop the mathematical relationship between hydraulic diffusivity and spectral density functions calculated from groundwater level variation. Such relationship can be applied to (1) unsteady state, one-dimensional confined aquifer with time-dependent water level on both end boundaries, and (2) linearized unconfined aquifer with or without vertical recharge. The spectral density functions of groundwater fluctuations are largely affected by the spectral density functions obtained from time-dependent end boundaries and their cross-spectral density functions. Hydraulic diffusivity of an aquifer can be solved by type-curve matching technique at a specified frequency band under the conditions of (1) confined aquifer having equal time-dependent boundaries on both ends, (2) unconfined aquifer having equal time-dependent boundaries on both ends with surface recharge, and (3) unconfined aquifer subjected to surface recharge but neglecting the water table fluctuations on both end boundaries.  相似文献   

13.
Seasonal signals of stable isotopes in precipitation, combined with measurements of isotope ratios in soil water, can be used for quantitative estimation of groundwater recharge rates. This study investigates the applicability of using the piston flow principle and the peak shift displacement method to estimate actual groundwater recharge rates in a humid Nordic region located in the province of Quebec, Canada. Two different sites with and without vegetation (C1 and C2) in an unconfined aquifer were tested by measuring soil water isotope ratios (18O/16O and 2H/1H) and volumetric pore water content. Core samples were obtained along the vadose zone down to the groundwater table at the two sites (2.45 m for Site C1 and 4.15 m for Site C2). The peak shift method to estimate groundwater recharge rates was shown to be accurate only in certain specific conditions inherent to the soil properties and the topographical situation of the investigated sites. Indeed, at Site C2, recharge from the snowmelt could not be estimated because of heterogeneity in the lower part of the vadose zone. At this same site the later recharge after the snowmelt (in the period from late spring to early autumn) could be estimated accurately because the upper part of the vadose zone was homogeneous. Furthermore, at site C1, runoff/runon phenomena hampered calculations of actual infiltration and thus produced inaccurate results for recharge. These two different site effects (heterogeneity in the first site and runoff/runon in the other site) were identified as being limiting factors in the accurate assessment of actual recharge. This study therefore recommends the use of the peak shift method for (1) humid Nordic regions, (2) homogeneous and thick vadose zones, and (3) areas with few or limited site effects (runoff/runon).  相似文献   

14.
Abstract

Using a groundwater flow model and long historical meteorological time series data, the evolution of the groundwater flow regime in a multi-layered groundwater flow basin in northern Belgium during the last one and a half centuries (since 1833) is reconstructed. Model output parameters such as piezometric levels, depth to water table, seepage fluxes in the valleys and calculated baseflow to the river system are presented and inter-annual and decadal variations are evaluated against seasonal fluctuations. The main time-varying boundary condition in the model is the aquifer recharge which was estimated using the method of Thornthwaite and Mather based on precipitation and temperature data. The model does not take into account changes in boundary conditions due to changes in land use (deforestation, drainage of cultivated land) or groundwater exploitation. Variations in model output parameters are therefore only due to climatological forcing. Only the natural non-exploited state of the aquifer is considered. Although few historical piezometric measurements are available to verify model output, the results give an indication of the natural hydrodynamic variations on a time scale of decades.

Citation Van Camp, M., Coetsiers, M., Martens, K. & Walraevens, K. (2010) Effects of multi-annual climate variability on the hydrodynamic evolution (1833 to present) in a shallow aquifer system in northern Belgium. Hydrol. Sci. J. 55(5), 763–779.  相似文献   

15.
We examined the fire‐induced changes in groundwater recharge rate. This aspect is particularly important in the case of large forested areas growing over a coastal aquifer affected by saltwater intrusion. In the Ravenna coastal area (Italy), pine forests grow on coastal dune belts, overlying a sandy unconfined aquifer, which is strongly affected by marine ingression. Three groundwater profiles across the forest and perpendicular to the coastline were monitored for groundwater level, physical, and chemical parameters. The aims were to define groundwater quality, recharge rate, freshwater volume, and highlight change, which occurred after a forest fire with reference to pre‐fire conditions. Analytical solutions based on Darcy Law and the Dupuit Equation were applied to calculate unconfined flow and compare recharge rates among the profiles. The estimated recharge rates increased in the partially and completely burnt areas (219 and 511 mm year?1, respectively) compared with the pristine pine forest area (73 mm year?1). Although pre‐fire conditions were similar in all monitored profiles, a post‐fire decrease in salinity was observed across the burnt forest, along with an increase in infiltration and freshwater lens thickness. This was attributed to decrease canopy interception and evapotranspiration caused by vegetation absence after the fire. This research provided an example of positive forest fire feedback on the quantity and quality of fresh groundwater resources in a lowland coastal aquifer affected by saltwater intrusion, with limited availability of freshwater resources. The fire provided an opportunity to evaluate a new forest management approach and consider the restoration and promotion of native dune herbaceous vegetation.  相似文献   

16.
Abstract

Abstract Land development often results in adverse environmental impact for surface and subsurface water systems. For areas close to the coast, land changes may also result in seawater intrusion into coastal aquifers. Due to this, it is important to evaluate potential adverse effects in advance of any land development. For evaluation purposes a combined groundwater recharge model is proposed with a quasi three-dimensional unconfined groundwater flow equation. The catchment water balance for a planned new campus area of Kyushu University in southern Japan, was selected as a case study to test the model approach. Since most of the study area is covered with forest, the proposed groundwater recharge model considers rainfall interception by forest canopy. The results show that simulated groundwater and surface runoff agree well with observations. It is also shown that actual evapotranspiration, including rainfall interception by forest canopy, is well represented in the proposed simulation model. Several hydrological components such as direct surface runoff rate, groundwater spring flow rate to a ground depression, trans-basin groundwater flow etc., were also investigated.  相似文献   

17.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

18.
It was found in previous studies that groundwater levels may fluctuate as a temporal fractal. In this study numerical simulations of groundwater level fluctuations in an unconfined aquifer near a river were conducted to investigate the effects of aquifer heterogeneity and river stage variations on the fractal behavior of the water levels, h(t). Groundwater recharge was taken to be a white-noise process. The aquifer heterogeneity was simulated with a second-order stationary field of hydraulic conductivity (K) with an exponential variogram model. The results showed that groundwater levels fluctuate as a temporal fractal in both homogeneous and heterogeneous aquifers as long as K is less than 10 m/d. Most aquifers may indeed act as a fractal filter which takes a random non-fractal recharge inputs and produces a fractal responses of groundwater level fluctuations. A crossover in temporal scaling of h(t) may appear in more permeable aquifers. Fluctuations of the groundwater level in a homogeneous aquifer are dominated by the recharge process when the river stage is constant or by the river stage variations when the river stage varies in highly permeable aquifers. Heterogeneity plays an important role in the temporal scaling of h(t) in more permeable aquifers: the stronger the heterogeneity, the stronger the temporal scaling of h(t).  相似文献   

19.
《水文科学杂志》2013,58(4):700-712
Abstract

The groundwater flow equation governing the elevation (h) of the steady-state phreatic surface in a sloping aquifer fed by constant recharge over a bi-circular sector is rhh′ ? r 2 Bh′ + Pr 2 ? PR 2 = 0, where r is the radial coordinate, P is a constant involving recharge and aquifer properties, and B is the slope of the aquifer—bedrock boundary. The derived flow equation describes radially convergent flow through a sloping aquifer that discharges to a water body of fixed head. One important simplification is that in which the width of the bi-circular sector is constant, and the draining land becomes a rectangular aquifer. The bi-circular sector and rectangular-strip groundwater flow problems are solved in terms of implicit equations. The solutions for the steady-state phreatic surfaces depend on the ratio of recharge to hydraulic conductivity, the slope of the aquifer-bedrock, and the downstream constant-head boundary. Computational examples illustrate the application of the solutions.  相似文献   

20.
Sulfur hexafluoride (SF6) is an established tracer for use in managed aquifer recharge projects. SF6 exsolves from groundwater when it encounters trapped air according to Henry's law. This results in its retardation relative to groundwater flow, which can help determine porous media saturation and flow dynamics. SF6 and the conservative, nonpartitioning tracer, bromide (Br added as KBr), were introduced to recharge water infiltrated into stacked glacial aquifers in Thurston County, Washington, providing the opportunity to observe SF6 partitioning. Br, which is assumed to travel at the same velocity as the groundwater, precedes SF6 at most monitoring wells (MWs). Average groundwater velocity in the unconfined aquifer in the study area ranges from 3.9 to 40 m/d, except in the southwestern corner where it is slower. SF6 in the shallow aquifer exhibits an average retardation factor of 2.5 ± 3.8, suggesting an air-to-water ratio on the order of 10−3 to 10−2 in the pore space. Notable differences in tracer arrival times at adjacent wells indicate very heterogeneous conductivity. One MW exhibits double peaks in concentrations of both tracers with different degrees of retardation for the first and second peaks. This suggests multiple flowpaths to the well with variable saturation. The confining layer between the upper two aquifers appears to allow intermittent connection between aquifers but serves as an aquitard in most areas. This study demonstrates the utility of SF6 partitioning for evaluating hydrologic conditions at prospective recharge sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号