首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (Db) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, Db reached ~?30 s at the maximum PGA while it was ~?50 s at the maximum peak ground velocity above the threshold of MMI?=?5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.  相似文献   

2.
At the beginning of the 21st century, a series of great earthquakes were recorded in northeastern Tibet, along the periphery of the Bayan Hara lithospheric block. An earthquake with MS = 8.1 occurred within the East Kunlun fault zone in the Kunlun Mountains, which caused an extended surface rupture with left-lateral strike slip. An earthquake with MS = 8 occurred in Wenchuan (China) on May 12, 2008, giving rise to an extended overthrust along the Lunmanshan fault zone. An earthquake with MS = 7.1 occurred in Yushu (China) on April 14, 2010; its epicenter was on the Grazze–Yushu–Funchuoshan fault; a left-lateral strikeslip offset was observed on the surface. An earthquake with MS = 7 occurred in the vicinity of Lushan on April 20, 2013; its epicenter was within the Lunmanshan fault zone, 103 km southwest of the zone of the catastrophic Wenchuan earthquake. An earthquake with MS = 8.2 occurred in Nepal on April 25, 2015. Based on the CSN seismic catalog, the energy of all earthquakes in eastern Tibet at the end of the 20th and beginning of the 21st centuries was estimated. It was found that Tibet was seismically quiet from 1980 to 2000. The beginning of the 21st century has been marked by seismic activation with earthquake sources migrating southward to surround the Bayan Hara lithospheric block from every quarter. Therefore, this block can be regarded as one of the most seismically active regions of China.  相似文献   

3.
A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and surface-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the v S model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the two located to the northeast of 2013 M S 7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes (M ≥ 5) in the region occurring from 2008 to 2015 are located around the high-velocity zones, indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau.  相似文献   

4.
The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north (~100 mm) to south (~10 mm). This earthquake revealed a near N–S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW–SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014–2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015–2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.  相似文献   

5.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

6.
This paper reports a study of the Tolud earthquake sequence; the sequence was a burst of shallow seismicity between November 28 and December 7, 2012; it accompanied the initial phase in the Tolbachik Fissure Eruption of 2012?2013. The largest earthquake (the Tolud earthquake of November 30, 2012, to be referred to as the Tolud Earthquake in what follows, with KS = 11.3, ML = 4.9, MC = 5.4, and MW = 4.8) is one of the five larger seismic events that have been recorded at depths shallower than 10 km beneath the entire Klyuchevskoi Volcanic Cluster in 1961?2015. It was found that the Tolud earthquake sequence was the foreshock–aftershock process of the Tolud Earthquake. This is one of the larger seismicity episodes ever to have occurred in the volcanic areas of Kamchatka. Data of the Kamchatka seismic stations were used to compute some parameters for the Tolud Earthquake and its largest (ML = 4.3) aftershock; the parameters include the source parameters and mechanisms, and the moment magnitudes, since no information on these is available at the world seismological data centers. The focal mechanisms for the Tolud Earthquake and for its aftershock are consistent with seismic ruptures at a tension fault in the rift zone. Instrumental data were used to estimate the intensity of shaking due to the Tolud Earthquake. We discuss the sequence of events that was a signature of the time-dependent seismic and volcanic activity that took place in the Tolbachik zone in late November 2012 and terminated in the Tolud burst of seismicity. Based on the current ideas of the tectonics and magma sources for the Tolbachik volcanic zone, we discuss possible causes of these earthquakes.  相似文献   

7.
根据场源不同可将地电场E分为大地电场ET和自然电场ESP。空间Sq电流系和固体潮一般被认为是大地电场ET的起源;自然电场ESP源于地下介质的物理化学作用,其局部性变化相对稳定。2013年南北地震带相继发生了芦山MS7.0地震(30.3°N,103.0°E)和岷县、漳县MS6.6地震(34.5°N,104.2°E)。两次地震周边约400 km范围内的地电场台站(成都、汉王)数据表明震前自然电场ESP出现明显的小幅度突跳或大幅度跃变,同时在时间上具有准同步性,其他地电场台站也有类似变化。基于大地电场岩体裂隙水(电荷)渗流(移动)模型,对两次地震周边自然电场ESP的变异机理进行探讨,尝试解析其物理过程。  相似文献   

8.
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md?=?1.4–3.4, which occurred at distances up to 250 km during 2001–2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune’s source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217–226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.The analysis showed that both P-wave and especially S-wave displacement spectra of quarry blasts demonstrate the corner frequencies lower than those obtained from earthquakes of similar magnitudes. A clear separation between earthquake and explosion populations was obtained for ratios of P- to S-wave corner frequency f 0(P)/f 0(S). The ratios were computed for each event with corner frequencies f 0 of P- and S-wave, which were obtained from the measured f 0 I at individual stations, then corrected for distance and finally averaged. We obtained empirically the average estimation of f 0(P)/f 0(S)?=?1.23 for all used earthquakes, and 1.86 for all explosions. We found that the difference in the ratios can be an effective discrimination parameter which does not depend on estimated moment magnitude M w .The new multi-station Corner Frequency Discriminant (CFD) for earthquakes and explosions in Israel was developed based on ratios P- to S-wave corner frequencies f 0(P)/f 0(S), with the empirical threshold value of the ratio for Israel as 1.48.  相似文献   

9.
A great earthquake of M S=8.1 took place in the west of Kunlun Pass on November 14, 2001. The epicenter is located at 36.2°N and 90.9°E. The analysis shows that some main precursory seismic patterns appear before the great earthquake, e.g., seismic gap, seismic band, increased activity, seismicity quiet and swarm activity. The evolution of the seismic patterns before the earthquake of M S=8.1 exhibits a course very similar to that found for earthquake cases with M S≥7. The difference is that anomalous seismicity before the earthquake of M S=8.1 involves in the larger area coverage and higher seismic magnitude. This provides an evidence for recognizing precursor and forecasting of very large earthquake. Finally, we review the rough prediction of the great earthquake and discuss some problems related to the prediction of great earthquakes.  相似文献   

10.
We assessed the ambient noise level in the Aegean region and analyzed its diurnal variation and its relation to the earthquake detection capability of the Aegean Region Seismic Network (ARSN). We prepared probability density functions (PDFs) for 19 broadband stations in the Aegean region operated by the Earth and Marine Sciences Institute (EMSI) of the Marmara Research Center (MRC) of the Turkish Scientific Research Council (TÜB?TAK). The power spectral densities (PSDs) used to construct PDFs for each station were computed for the periods between ~?0.02 and 180 s. In addition, we generated noise map of the Aegean region for different periods using the PDFs to assess the origin of the noise. We analyzed earthquake activity in the region and found that there are more local events recorded at night than during the day for each station. This difference is strongly related to diurnal variation of background noise level for the period range mostly covering the frequency range for the local events. We observed daytime noise level ~?15 to 20 dB higher than that at the nighttime in high frequencies for almost all stations caused by its proximity to settled areas and roads. Additionally, we observed a splitting peak within the Double Frequency (DF) microseism band; it showed a clear noise increase around the short period DF band at all the stations, decreasing inland. This peak may be related to sea waves locally generated in the Aegean Sea. We also identified a prominent increase related to marble saw companies in some stations’ noise PDFs.  相似文献   

11.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

12.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

13.
To study the prospective areas of upcoming strong-to-major earthquakes, i.e., M w  ≥ 6.0, a catalog of seismicity in the vicinity of the Thailand-Laos-Myanmar border region was generated and then investigated statistically. Based on the successful investigations of previous works, the seismicity rate change (Z value) technique was applied in this study. According to the completeness earthquake dataset, eight available case studies of strong-to-major earthquakes were investigated retrospectively. After iterative tests of the characteristic parameters concerning the number of earthquakes (N) and time window (T w ), the values of 50 and 1.2 years, respectively, were found to reveal an anomalous high Z-value peak (seismic quiescence) prior to the occurrence of six out of the eight major earthquake events studied. In addition, the location of the Z-value anomalies conformed fairly well to the epicenters of those earthquakes. Based on the investigation of correlation coefficient and the stochastic test of the Z values, the parameters used here (N = 50 events and T w  = 1.2 years) were suitable to determine the precursory Z value and not random phenomena. The Z values of this study and the frequency-magnitude distribution b values of a previous work both highlighted the same prospective areas that might generate an upcoming major earthquake: (i) some areas in the northern part of Laos and (ii) the eastern part of Myanmar.  相似文献   

14.
In this paper, observation data in 25 GPS reference stations of China have been analyzed by calculating GPS position coordinate time-series with GIPSY. Result shows there is an obvious trend variation in such time-series. The trend variations of time series along the longitude and latitude coordinate reflect the motion of each position in the global-plate, in which the trend variation in the vertical direction reveals some large-scale construction information or reflects the local movement around the positions. The analysis also shows that such time-series have a variation cycle of nearly 1.02 a, but the reason still remains to be further studied. At the end of this paper, response of the time-series of M S=8.1 Kunlunshan earthquake was analyzed, and the seismogenic process of M S=8.1 Kunlunshan earthquake, according to the time proceeding and the feature of anomaly, was divided into 3 phases—changes in blocks with forces, strain accumulation, quick accumulation and slow release of energy. At the initial stage of seismogenic process of M S=8.1 earthquake and at the imminent earthquake, coseismic process as well as during the post earthquake recovery, anomaly in vertical direction is always in a majority. The anomalous movement in vertical direction at the initial stage resulted in a blocking between faults, while at the middle stage of seismogenic process, the differential movement between blocks are in a majority, which is the major reason causing energy accumulating at the blocking stage of faults.  相似文献   

15.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

16.
On the 27 June 2015, at 15:34:03 UTC, a moderate-sized earthquake of M w 5.0 occurred in the Gulf of Aqaba. Using teleseismic P waves, the focal mechanism of the mainshock was investigated by two techniques. The first technique used the polarities of the first P wave onsets, and the second technique was based on the normalized waveform modeling technique. The results showed that the extension stress has a NE orientation with a shallow southward plunge while the compression stress has a NW trend with a nearly shallow westward plunge, obtaining a strike-slip mechanism. This result agrees well with the typical consequence of crustal deformation resulting from the ongoing extensional to shear stress regime in the Gulf of Aqaba (NE-SW extension and NW-SE compression). The grid search method over a range of focal depths indicates an optimum solution at 15 ± 1 km. To identify the causative fault plane, the aftershock hypocenters were relocated using the local waveform data and the double-difference technique. Considering the fault trends, the spatial distribution of relocated aftershocks demarcated a NS-oriented causative fault, in consistence with one of the nodal planes of the focal mechanism solution, emphasizing the dominant stress regime in the region. Following the Brune model, the estimates of source parameters exhibited fault lengths of 0.29 ≤ L ≤ 2.48 km, moment magnitudes of 3.0 ≤ M w ≤ 5.0, and stress drops of 0.14 ≤ Δσ < 1.14 MPa, indicating a source scaling similar to the tectonic earthquakes related to plate boundaries.  相似文献   

17.
In this study, pre-seismic and post-seismic total electron content (TEC) anomalies of 63 Mw?≥?5.0 earthquakes in Turkey (36°–42°N, 26°–45°E) were statistically investigated. The largest earthquake that occurred in Turkey during 2003–2016 is the Mw 7.1 Van earthquake on October 23, 2011. The TEC data of epicenters is obtained from CODE-GIM using a simple 4-point bivariate interpolation. The anomalies of TEC variations were determined by using a quartile-based running median process. In order to validate GIM results, we used the GPS-TEC data of available four IGS stations within the size of the Van earthquake preparation area. The anomalies that are detected by GIM and GPS-TEC show a similar pattern. Accordingly, the results obtained with CODE-GIM are reliable. The statistical results show that there are not prominent earthquake precursors for Mw?≤?6.0 earthquakes in Turkey.  相似文献   

18.
The deep-focus Sea of Okhotsk earthquake that occurred on May 24, 2013 (h = 630 km, M w = 8.3) was accompanied by anomalous effects that were unknown previously. A combined analysis of published data concerning the source rupture evolution and some features of the deep structure provided an explanation of some anomalous effects, such as the large number of aftershocks and the low level of ground shaking in the epicentral area. However, GPS observations revealed high coseismic vertical displacements in the area. The seafloor uplift in the Sea of Okhotsk and the adjacent coasts was 3–12 mm, peaking at the approximate center of the sea, while Kamchatka and the North Kuril Islands subsided by 3–18 mm, peaking at the Apacha station 190 km east of the earthquake epicenter. These maximum estimates are 1.2–1.8 times the analogous values (10 mm) for the Chile mega-earthquake of May 20, 1960 (M w ~ 9.5). It is known that the large distances at which ground shaking is felt during deep-focus earthquakes are due to the fact that the body waves travel through the high-Q lower mantle. However, this does not explain the paradox of the present earthquake in the Sea of Okhotsk, viz., a constant intensity of shaking (two grades) in the range of epicentral distances between 1300 and 9500 km. The explanation requires consideration of the earth’s free oscillations excited by the earthquake.  相似文献   

19.
The time variations in the Gutenberg–Richter b-value are minutely studied based on the data of highly accurate seismological observations at the Garm prognostic site, Tajikistan, where a stationary network of seismic stations of the Complex Seismological Expedition (CSE) of Schmidt Institute of Physics of the Earth (IPE) of the USSR (Russian) Academy of Sciences was in operation from 1955 to 1992. A total of 93035 local earthquakes ranging from 0.0 to 6.3 in the Ml magnitudes are considered. The spatiotemporal fluctuations in the minimal magnitude of completeness of the earthquakes, Mc, are analyzed. The study considers a 25-year interval of the observations at the center of the observation system within which Mc = 0.9. It is shown that in most cases, the b-value and log10E2/3 experience characteristic time variations before the earthquakes with magnitudes higher than the minimal magnitude of the predicted earthquake (MPE). The 6-year anomaly in the parameters’ b-value, log10E2/3, and log10N associated with the single strongest earthquake with M = 6.3 that occurred in the observation region on October 26, 1984 is revealed. The inversely proportional relationship is established between the time variations in the b-value and the time variations in the velocities of seismic waves Vp and Vp/Vs. It is shown that the exponent p in the power function which links the time variations of the b-value and log10E2/3 is higher in the zones of crustal compression than in the zones of extension. It is simultaneously confirmed that the average b-value in the zones of compression is lower than in the zones of extension. It is established that in the case of earthquakes with M ≥ 2.6, the time series of seismic activity log10Ni and the time series of the b-value are highly cross correlated with a coefficient of r ≈ 0.75, whereas in the case of earthquakes with M ≥ 0.9, the coefficient of cross correlation between these time series is close to zero (r ≈ 0.06). The law of variations in the slope of the lines approximating the relationship between the log10Ni time series in the different magnitude ranges (MMci) and b-value time series is obtained. It is hypothesized that the seismic activity of the earthquakes with high magnitudes can be estimated provided that the parameters of the time series of the b-value and time series of the number of earthquakes logNMi) in the range of low magnitudes are known. It is concluded that using the parameter log10N for prognostic estimates of the strong earthquakes only makes sense for earthquakes having moderate and large magnitudes. It is inferred that the time variations in the b-value are predominantly contributed by the time variations of the earthquakes with relatively large magnitudes.  相似文献   

20.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号