首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Sewer inlet structures are vital components of urban drainage systems and their operational conditions can largely affect the overall performance of the system. However, their hydraulic behaviour and the way in which it is affected by clogging is often overlooked in urban drainage models, thus leading to misrepresentation of system performance and, in particular, of flooding occurrence. In the present paper, a novel methodology is proposed to stochastically model stormwater urban drainage systems, taking the impact of sewer inlet operational conditions (e.g. clogging due to debris accumulation) on urban pluvial flooding into account. The proposed methodology comprises three main steps: (i) identification of sewer inlets most prone to clogging based upon a spatial analysis of their proximity to trees and evaluation of sewer inlet locations; (ii) Monte Carlo simulation of the capacity of inlets prone to clogging and subsequent simulation of flooding for each sewer inlet capacity scenario, and (iii) delineation of stochastic flood hazard maps. The proposed methodology was demonstrated using as case study design storms as well as two real storm events observed in the city of Coimbra (Portugal), which reportedly led to flooding in different areas of the catchment. The results show that sewer inlet capacity can indeed have a large impact on the occurrence of urban pluvial flooding and that it is essential to account for variations in sewer inlet capacity in urban drainage models. Overall, the stochastic methodology proposed in this study constitutes a useful tool for dealing with uncertainties in sewer inlet operational conditions and, as compared to more traditional deterministic approaches, it allows a more comprehensive assessment of urban pluvial flood hazard, which in turn enables better-informed flood risk assessment and management decisions.  相似文献   

2.
Flood hazard and risk assessment was conducted to identify the priority areas in the southwest region of Bangladesh for flood mitigation. Simulation of flood flow through the Gorai and Arial Khan river system and its floodplains was done by using a hydrodynamic model. After model calibration and verification, the model was used to simulate the flood flow of 100‐year return period for a duration of four months. The maximum flooding depths at different locations in the rivers and floodplains were determined. The process in determining long flooding durations at every grid point in the hydrodynamic model is laborious and time‐consuming. Therefore the flood durations were determined by using satellite images of the observed flood in 1988, which has a return period close to 100 years. Flood hazard assessment was done considering flooding depth and duration. By dividing the study area into smaller land units for hazard assessment, the hazard index and the hazard factor for each land unit for depth and duration of flooding were determined. From the hazard factors of the land units, a flood hazard map, which indicates the locations of different categories of hazard zones, was developed. It was found that 54% of the study area was in the medium hazard zone, 26% in the higher hazard zone and 20% in the lower hazard zone. Due to lack of sufficient flood damage data, flood damage vulnerability is simply considered proportional to population density. The flood risk factor of each land unit was determined as the product of the flood hazard factor and the vulnerability factor. Knowing the flood risk factors for the land units, a flood risk map was developed based on the risk factors. These maps are very useful for the inhabitants and floodplain management authorities to minimize flood damage and loss of human lives. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Flood modelling inputs used to create flood hazard maps are normally based on the assumption of data stationarity for flood frequency analysis. However, changes in the behaviour of climate systems can lead to nonstationarity in flood series. Here, we develop flood hazard maps for Ho Chi Minh City, Vietnam, under nonstationary conditions using extreme value analysis, a coupled 1D–2D model and high-resolution topographical data derived from LiDAR (Light Detection and Ranging) data. Our findings indicate that ENSO (El Niño Southern Oscillation) and PDO (Pacific Decadal Oscillation) influence the magnitude and frequency of extreme rainfall, while global sea-level rise causes nonstationarity in local sea levels, having an impact on flood risk. The detailed flood hazard maps show that areas of high flood potential are located along river banks, with 0.60 km2 of the study area being unsafe for people, vehicles and buildings (H5 zone) under a 100-year return period scenario.  相似文献   

4.
On the basis of the disaster system theory and comprehensive analysis of flood risk factors, including the hazard of the disaster-inducing factors and disaster-breeding environment, as well as the vulnerability of the hazards-bearing bodies, the primary risk assessment index system of flood diversion district as well as its assessment standards were established. Then, a new model for comprehensive flood risk assessment was put forward in this paper based on set pair analysis (SPA) and variable fuzzy sets (VFS) theory, named set pair analysis-variable fuzzy sets model (SPA-VFS), which determines the relative membership degree function of VFS by using SPA method and has the advantages of intuitionist course, simple calculation and good generality application. Moreover, the analytic hierarchy process (AHP) was combined with trapezoidal fuzzy numbers to calculate the weights of assessment indices, thus the weights for flood hazard and flood vulnerability were determined by the fuzzy AHP procedure, respectively. Then SPA-VFS were applied to calculate the flood hazard grades and flood vulnerability grades with rank feature value equation and the confidence criterion, respectively. Under the natural disasters risk expression recommended by the Humanitarian Affairs Department of United Nations, flood risk grades were achieved from the flood hazard grades and flood vulnerability grades with risk grade classification matrix, where flood hazard, flood vulnerability and flood risk were all classified into five grades as very low, low, medium, high and very high. Consequently, integrated flood risk maps could be carried out for flood risk management and decision-making. Finally, SPA-VFS and fuzzy AHP were employed for comprehensive flood risk assessment of Jingjiang flood diversion district in China, and the computational results demonstrate that SPA-VFS is reasonable, reliable and applicable, thus has bright prospects of application for comprehensive flood risk assessment, and moreover has potential to be applicable to comprehensive risk assessment of other natural disasters with no much modification.  相似文献   

5.
This paper investigates the development of flood hazard and flood risk delineations that account for uncertainty as improvements to standard floodplain maps for coastal watersheds. Current regulatory floodplain maps for the Gulf Coastal United States present 1% flood hazards as polygon features developed using deterministic, steady‐state models that do not consider data uncertainty or natural variability of input parameters. Using the techniques presented here, a standard binary deterministic floodplain delineation is replaced with a flood inundation map showing the underlying flood hazard structure. Additionally, the hazard uncertainty is further transformed to show flood risk as a spatially distributed probable flood depth using concepts familiar to practicing engineers and software tools accepted and understood by regulators. A case study of the proposed hazard and risk assessment methodology is presented for a Gulf Coast watershed, which suggests that storm duration and stage boundary conditions are important variable parameters, whereas rainfall distribution, storm movement, and roughness coefficients contribute less variability. The floodplain with uncertainty for this coastal watershed showed the highest variability in the tidally influenced reaches and showed little variability in the inland riverine reaches. Additionally, comparison of flood hazard maps to flood risk maps shows that they are not directly correlated, as areas of high hazard do not always represent high risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper interprets differences in flood hazard projections over Europe and identifies likely sources of discrepancy. Further, it discusses potential implications of these differences for flood risk reduction and adaptation to climate change. The discrepancy in flood hazard projections raises caution, especially among decision makers in charge of water resources management, flood risk reduction, and climate change adaptation at regional to local scales. Because it is naïve to expect availability of trustworthy quantitative projections of future flood hazard, in order to reduce flood risk one should focus attention on mapping of current and future risks and vulnerability hotspots and improve the situation there. Although an intercomparison of flood hazard projections is done in this paper and differences are identified and interpreted, it does not seems possible to recommend which large-scale studies may be considered most credible in particular areas of Europe.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR not assigned  相似文献   

7.
太湖流域位于长江入海口,地处中国沿海经济带和长江沿线内陆经济带的交汇处,是中国高度城镇化地区之一.流域汛期降水受到多重天气系统的影响,不同的天气系统带来时空分布各异的降水,给该地区城镇防洪排涝工作造成了巨大的挑战.本文基于Copula理论对太湖流域汛期洪涝风险进行研究,考虑了因降水主导因素不同所造成的流域洪涝风险的时空差异性.在时间角度,采用降水主导因素发生时间的概率分布,将汛期划分为梅汛期和台汛期;在空间角度,通过Copula函数,对研究区进行聚类划分;在此基础上,根据太湖流域防洪规划,对流域梅汛期和台汛期的洪涝风险进行分析.研究结果表明:①太湖流域的汛期划分为:6月24日7月21日为梅汛期,7月22日9月22日为台汛期;②根据各分区降水和太湖水位的联合分布函数拟合效果的优劣,在梅汛期,太湖流域被划分为P-Ⅰ区、P-Ⅱ区和P-Ⅲ区;在台汛期,整个流域的降水作为一个整体,不分区;③到2025年,太湖流域在梅汛期和台汛期出现排涝不利情境的风险概率分别为2.4%和1.1%.本文的研究方法可以为太湖流域设计暴雨的调整、洪水资源的利用以及防洪排涝实时调度的决策提供科学参考.  相似文献   

8.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

9.
The aim of this study is to promote appropriate land development policies and to improve operations of flood risk in urban areas. This study first illustrated a multi-parameter flood hazard index (FHI) model for assessing potential flood risk areas in the Guanzhong Urban Area (GUA), a large-scale urban area in northwestern China. The FHI model consisted of the following seven parameters: rainfall intensity, flow accumulation, distance from the river network, elevation, land use, surface slope, and geology. The parameter weights were assigned using an analytical hierarchy process and the sum weight of the first three parameters accounted for 71.21% of the total weight and had significant influence on flooding. By combining with population factor, the FHI model was modified to estimate the flood control area in the GUA. The spatial distribution of the flood risk was obviously different in the flood hazard area and flood control area. The very low risk and medium risk area in the flood control area increased by 11.19% and reduced by 9.03% compared to flood hazard area, but there were no obvious differences in other levels of risk areas. The flood control assessment indicated that very high flood risk areas were principally concentrated along river banks (the Weihe River and its tributaries) and in the middle of the Guanzhong Plain. Land use and population distribution are related to flooding. Especially, forestland was located in 84.48% of the very low risk area, while low risk areas were mainly located in 91.49% of high population dispersion area.  相似文献   

10.
东南沿海水库下游地区基于动态模拟的洪涝风险评估   总被引:1,自引:1,他引:0  
我国东南沿海地区大多为一些中小流域,这些流域上游多建有水库工程,下游则为人口稠密的平原区,流域调蓄能力小,汇流时间短.同时,随着近年来城镇化快速发展,洪涝风险不断加大.因此,迫切需要开展水库下游不同暴雨重现期下的洪涝风险评估研究,以便为防洪决策提供技术支撑.为此,本文利用遥感、GIS、水文水动力学模型等相关技术方法,建立洪涝动态模拟模型来评估洪涝危险性;采用层次分析法和因子叠加法,从洪涝危险性和洪涝易损性两方面开展洪涝风险综合评估分析.研究表明,通过多学科与多技术手段相结合方法,来模拟预测不同暴雨重现期洪水动态淹没过程,再结合相关社会经济属性,可以有效地评估研究区洪涝灾害的风险,从而为水库调度及流域防洪减灾提供有力支撑.  相似文献   

11.
In northern regions, river ice‐ jam flooding can be more severe than open‐water flooding causing property and infrastructure damages, loss of human life and adverse impacts on aquatic ecosystems. Very little has been performed to assess the risk induced by ice‐related floods because most risk assessments are limited to open‐water floods. The specific objective of this study is to incorporate ice‐jam numerical modelling tools (e.g. RIVICE, Monte‐Carlo simulation) into flood hazard and risk assessment along the Peace River at the Town of Peace River (TPR) in Alberta, Canada. Adequate historical data for different ice‐jam and open‐water flooding events were available for this study site and were useful in developing ice‐affected stage‐frequency curves. These curves were then applied to calibrate a numerical hydraulic model, which simulated different ice jams and flood scenarios along the Peace River at the TPR. A Monte‐Carlo analysis was then carried out to acquire an ensemble of water level profiles to determine the 1 : 100‐year and 1 : 200‐year annual exceedance probability flood stages for the TPR. These flood stages were then used to map flood hazard and vulnerability of the TPR. Finally, the flood risk for a 200‐year return period was calculated to be an average of $32/m2/a ($/m2/a corresponds to a unit of annual expected damages or risk). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Flood hazard maps were developed using remote sensing (RS) data for the historical event of the 1988 flood with data of elevation height, and geological and physiographic divisions. Flood damage depends on the hydraulic factors which include characteristics of the flood such as the depth of flooding, rate of the rise in water level, propagation of a flood wave, duration and frequency of flooding, sediment load, and timing. In this study flood depth and “flood-affected frequency” within one flood event were considered for the evaluation of flood hazard assessment, where the depth and frequency of the flooding were assumed to be the major determinant in estimating the total damage function. Different combinations of thematic maps among physiography, geology, land cover and elevation were evaluated for flood hazard maps and a best combination for the event of the 1988 flood was proposed. Finally, the flood hazard map for Bangladesh and a flood risk map for the administrative districts of Bangladesh were proposed.  相似文献   

13.
Permanent fault displacements (PFDs) because of fault ruptures emerging at the surface are critical for seismic design and risk assessment of continuous pipelines. They impose significant compressive and tensile strains to the pipe cross‐section at pipe‐fault crossings. The complexity of fault rupture, inaccurate mapping of fault location and uncertainties in fault‐pipe crossing geometries require probabilistic approaches for assessing the PFD hazard and mitigating pipeline failure risk against PFD. However, the probabilistic approaches are currently waived in seismic design of pipelines. Bearing on these facts, this paper first assesses the probabilistic PFD hazard by using Monte Carlo‐based stochastic simulations whose theory and implementation are given in detail. The computed hazard is then used in the probabilistic risk assessment approach to calculate the failure probability of continuous pipelines under different PFD levels as well as pipe cross‐section properties. Our probabilistic pipeline risk computations consider uncertainties arising from complex fault rupture and geomorphology that result in inaccurate mapping of fault location and fault‐pipe crossings. The results presented in this paper suggest the re‐evaluation of design provisions in current pipeline design guidelines to reduce the seismic risk of these geographically distributed structural systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

A global flood risk index (FRI) is established, based on both natural and social factors. The advanced flood risk index (AFRI) is the expectation of damage in the case of a single flood occurrence, estimated by a linear regression-based approach as a function of hazard and vulnerability metrics. The resulting equations are used to predict potential flood damage given gridded global data for independent variables. It is new in the aspect that it targets floods by units of events, instead of a long-term trend. Moreover, the value of the AFRI is that it can express relative potential flood risk with the process of flood damage occurrence considered. The significance of this study is that not only the hazard parameters which contribute directly to flood occurrence, but vulnerability parameters which reflect the conditions of the region where flood occurred, including its residential and social characteristics, were shown quantitatively to affect flood damage.

Citation Okazawa, Y., Yeh, P., Kanae, S. & Oki, T. (2011) Development of a global flood risk index based on natural and socioeconomic factors. Hydrol. Sci. J. 56(5), 789–804.  相似文献   

15.
Climatological drivers of changes in flood hazard in Germany   总被引:1,自引:0,他引:1  
Since several destructive floods have occurred in Germany in the last decades, it is of considerable interest and relevance (e.g., when undertaking flood defense design) to take a closer look at the climatic factors driving the changes in flood hazard in Germany. Even if there also exist non-climatic factors controlling the flood hazard, the present paper demonstrates that climate change is one main driver responsible for the increasing number of floods. Increasing trends in temperature have been found to be ubiquitous in Germany, with impact on air humidity and changes in (intense) precipitation. Growing trends in flood prone circulation pattern and heavy precipitation are significant in many regions of Germany over a multi-decade interval and this can be translated into the rise of flood hazard and flood risk.  相似文献   

16.
Tools for accurately predicting environmental risks, such as the location and spatial extent of potential inundation, are not widely available. A dependence on calibration and a lack of available flood data have prevented the widespread application of existing hydrodynamic methods for predicting the extent of inundation. We use the height above the nearest drainage (HAND) terrain model to develop a simple static approach for mapping the potential extent of inundation that does not depend on flood observations and extends beyond methods for mapping low‐lying areas. While relying on the contour concept, the method utilizes drainage‐normalized topography and flowpaths to delineate the relative vertical distances (drop) to the nearest river. The HAND‐delineated relative drop is an effective distributed predictor of flood potential, which is directly related to the river stage height. We validated the new HAND contour approach using a flood event in Southern Brazil for which high‐resolution maps were available. The results indicated that the flood hazard‐mapping method accurately predicted the inundation extent of the channel carrying the flood wave and the channels influenced by flooding. For channels positioned outside of the flood‐wave area, the method overestimated the actual flood extent. As an original static assessment of floodwaters across the landscape, the HAND contour method could be used to map flood hazards in areas with poor information and could promote the development of new methods for predicting hydrological hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Impact assessment of urbanization on flood risk in the Yangtze River Delta   总被引:2,自引:0,他引:2  
The Yangtze River Delta region is the region with highest urbanization speed in China. In this study, 6 typical urbanization areas in Yangtze River Delta were selected as the objectives of study. Flood risk assessment index system was established based on the flood disaster formation mechanism, and analytic hierarchy process was utilized to define the weight of indices. The flood hazard, the exposure of disaster bearing body, the vulnerability of disaster bearing body and the comprehensive flood risk corresponding to three typical years in different urbanization stages, 1991, 2001 and 2006 were assessed. The results show that the flood hazard and the exposure of disaster bearing body in the 6 areas are all with an increasing trend in the process of urbanization, among which, the increasing trend of the exposure of disaster bearing body is especially obvious. Though the vulnerabilities of disaster bearing body in the 6 areas are all with decreasing trend owe to the enhancement of flood control and disaster mitigation capability, the comprehensive flood risks in the 6 areas increased as a whole, which would pose a serious threat to urban sustainable development. Finally, effective countermeasures for flood risk management of urbanization areas in Yangtze River Delta were put forward based on the assessment results.  相似文献   

18.
ABSTRACT

In this study, a GIS-based integration of multi-criteria analysis and the Height Above Nearest Drainage (HAND) terrain model was adopted to delineate potential flood hazard zones and vulnerability of the Ogun River Basin, Nigeria. Flood causative factors were used as input for multi-criteria analysis using an analytical hierarchy process (AHP) and weighted overlay in ArcGIS 10.5 to generate potential flood hazard zones. The flood hazard map was overlaid with demographic population data to identify areas where vulnerable people and assets are located. The results show the varying degree of people’s susceptibility to flood hazards. Flood hazard zones were classified into Very High, High, Moderate, Low and Very Low, with area coverage of 1269.40, 14139.50, 7188.40, 17.41 and 0.85 km2, respectively (occupied by 466 290, 355 542, 69 554, 231 and 54 people, respectively). This study serves as a preliminary guide for early warning and policy decision-making for flood disaster risk reduction.  相似文献   

19.
The numerical modeling of flood wave propagation following the hypothetical breaks of the embankments of the Bielkowo hydro-power plant storage reservoir (Kolbudy II Reservoir) on the Radunia River in Poland has been presented. The results of computations were used to estimate the parameters of the flood waves, which are indispensable for the flood zone determination and mapping and then for the flood risk analysis. When estimating the reach and area of the inundation, related to the embankments failures, digital terrain model, and mathematical model of flood wave propagation are necessary. For the numerical simulations of flood, the mathematical model of free surface, two-dimensional unsteady water flow was applied. Four locations of potential breaks of the reservoir embankments were considered. The computed flood zones were presented on the flood hazard maps. The maps have been used by the local authorities and the dam owner to manage the flood risk related to hydro-power plants operations on the Radunia River. This type of research has been done for the first time for the water plant managed by the ENERGA Elektrownie Straszyn.  相似文献   

20.
Flooding hazard evaluation is the basis of flooding risk assessment which has significances to natural environment, human life and social economy. This study develops a spatial framework integrating naïve Bayes (NB) and geographic information system (GIS) to assess flooding hazard at regional scale. The methodology was demonstrated in the Bowen Basin in Australia as a case study. The inputs into the framework are five indices: elevation, slope, soil water retention, drainage proximity and density. They were derived from spatial data processed in ArcGIS. NB as a simplified and efficient type of Bayesian methods was used, with the assistance of remotely sensed flood inundation extent in the sampling process, to infer flooding probability on a cell-by-cell basis over the study area. A likelihood-based flooding hazard map was output from the GIS-based framework. The results reveal elevation and slope have more significant impacts on evaluation than other input indices. Area of high likelihood of flooding hazard is mainly located in the west and the southwest where there is a high water channel density, and along the water channels in the east of the study area. High likelihood of flooding hazard covers 45 % of the total area, medium likelihood accounts for about 12 %, low and very low likelihood represents 19 and 24 %, respectively. The results provide baseline information to identify and assess flooding hazard when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in the study offer an integrated approach in evaluation of flooding hazard with spatial distributions and indicative uncertainties. It can also be applied to other hazard assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号