首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a result of serious soil erosion on the Loess Pla-teau of China, about 1.6 billion tons of silt discharge into the downstream and 0.4 billion tons deposit on the riverbed every year, causing serious threat to the life and property of the local people on both banks of the lower Yellow River[1]. Since the 1950s, the Chinese government has initiated the work on soil and water conservation and environmental management on the Loess Plateau and formulated the guiding principle of hillslope and …  相似文献   

2.
Check dam has become an efficient measure to control sediment transport and soil erosion in the gully areas. It plays an important role in soil erosion control and agricultural production in the Loess Plateau. Due to construction of numerous check dams, it is necessary to assess the impact of check dams on runoff and sediment load at basin scale. This study applied the SWAT model to simulate monthly runoff and sediment load in the Huangfuchuan basin in the middle reaches of the Yellow River. Twenty key check dams are coupled to the SWAT model simulation in the calibration (1978–1984) and validation period (1985–1989). The determination coefficient (R 2) and the Nash–Sutcliffe coefficient (NS) were 0.94 and 0.83 for runoff, and 0.82 and 0.81 for sediment load in the calibration period, respectively. During the validation period, the R 2 and NS were 0.93 and 0.80 for runoff, and 0.90 and 0.83 for sediment load respectively. The results showed that the model simulation was acceptable. Subsequently, the calibrated model was used to examine the effect of check dams on runoff and sediment load between 1990 and 2012. It showed that the increasing check dams contributed 24.8 and 27.7% to the decrease of annual runoff and sediment load during the period of 1990–1999, whereas it reached up to 65.2% for runoff decline and 78.3% for sediment load reduction within 2000–2012. Overall, this study illustrated a case study of the dominant role of check dams on variation of runoff and sediment load in the Huangfuchuan basin.  相似文献   

3.
Gully rehabilitation can contribute to catchment management by stabilizing erosion and reducing downstream sediment yields, yet the globally observed responses are variable. Developing the technical basis for gully rehabilitation and establishing guidelines for application requires studies that evaluate individual rehabilitation measures in specific environments. An eight-year field experiment was undertaken to evaluate sediment yield and vegetation responses to several gully rehabilitation measures. The rehabilitation measures aimed to reduce surface runoff into gully head cuts, trap sediment on gully floors and increase vegetation cover on gully walls and floors. The study occurred in a savanna rangeland in northeast Australia. Two gullies were subject to treatments while four gullies were monitored as untreated controls. A runoff diversion structure reduced headcut erosion from 4.3 to 1.2 m2 yr−1. Small porous check dams and cattle exclusion reduced gully total sediment yields by more than 80%, equivalent to a reduction of 0.3 to 2.4 t ha−1 yr−1, but only at catchment areas less than 10 ha. Fine sediment yields (silt and clay) were reduced by 7 and 19% from the two treated gullies, respectively. The porous check dam deposits contained a lower percentage of the fine fraction than the parent soil. Significant regeneration of gully floor vegetation occurred, associated with trapping of organic litter and fine sediment. Increases in vegetation cover and biomass were comprised of native perennial grasses, trees and shrubs. In variable climates, long-term gully rehabilitation will progress during wetter periods, and regress during droughts. Understanding linkages between rehabilitation measures, their hydrologic, hydraulic and vegetation effects and gully sediment yields is important to defining the conditions for their success.  相似文献   

4.
For sake of improving our current understanding on soil erosion processes in the hilly–gully loess regions of the middle Yellow River basin in China, a digital elevation model (DEM)-based runoff and sediment processes simulating model was developed. Infiltration excess runoff theory was used to describe the runoff generation process while a kinematic wave equation was solved using the finite-difference technique to simulate concentration processes on hillslopes. The soil erosion processes were modelled using the particular characteristics of loess slope, gully slope, and groove to characterize the unique features of steep hillslopes and a large variety of gullies based on a number of experiments. The constructed model was calibrated and verified in the Chabagou catchment, located in the middle Yellow River of China and dominated by an extreme soil-erosion rate. Moreover, spatio-temporal characterization of the soil erosion processes in small catchments and in-depth analysis between discharge and sediment concentration for the hyper-concentrated flows were addressed in detail. Thereafter, the calibrated model was applied to the Xingzihe catchment, which is dominated by similar soil erosion processes in the Yellow River basin. Results indicate that the model is capable of simulating runoff and soil erosion processes in such hilly–gully loess regions. The developed model are expected to contribute to further understanding of runoff generation and soil erosion processes in small catchments characterized by steep hillslopes, a large variety of gullies, and hyper-concentrated flow, and will be beneficial to water and soil conservation planning and management for catchments dealing with serious water and soil loss in the Loess Plateau.  相似文献   

5.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981-2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981―1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990―1998; (3) vegetation cover declined rapidly during 1999―2001; and (4) vegetation cover increased rapidly during 2002―2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has led to some beneficial effect in ecology.  相似文献   

7.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

8.
Spatiotemporal variations of Chinese Loess Plateau vegetation cover during 1981–2006 have been investigated using GIMMS and SPOT VGT NDVI data and the cause of vegetation cover changes has been analyzed, considering the climate changes and human activities. Vegetation cover changes on the Loess Plateau have experienced four stages as follows: (1) vegetation cover showed a continued increasing phase during 1981–1989; (2) vegetation cover changes came into a relative steady phase with small fluctuations during 1990–1998; (3) vegetation cover declined rapidly during 1999–2001; and (4) vegetation cover increased rapidly during 2002–2006. The vegetation cover changes of the Loess Plateau show a notable spatial difference. The vegetation cover has obviously increased in the Inner Mongolia and Ningxia plain along the Yellow River and the ecological rehabilitated region of Ordos Plateau, however the vegetation cover evidently decreased in the hilly and gully areas of Loess Plateau, Liupan Mountains region and the northern hillside of Qinling Mountains. The response of NDVI to climate changes varied with different vegetation types. NDVI of sandy land vegetation, grassland and cultivated land show a significant increasing trend, but forest shows a decreasing trend. The results obtained in this study show that the spatiotemporal variations of vegetation cover are the outcome of climate changes and human activities. Temperature is a control factor of the seasonal change of vegetation growth. The increased temperature makes soil drier and unfavors vegetation growth in summer, but it favors vegetation growth in spring and autumn because of a longer growing period. There is a significant correlation between vegetation cover and precipitation and thus, the change in precipitation is an important factor for vegetation variation. The improved agricultural production has resulted in an increase of NDVI in the farmland, and the implementation of large-scale vegetation construction has led to some beneficial effect in ecology. Supported by the National Natural Science Foundation of China (Grant No. 40671019) and the Knowledge Innovation Project of the Institute of Geographical Sciences and Natural Resources Research of Chinese Academy of Sciences  相似文献   

9.
A typical gully sub-basin with a complex geomorphological form is used to do a model test of gravity erosion of loess by considering the sequence of slopes in a prototype gully creating a sequence of underlying surface forms in the upper reaches. The results show that the runoff from heavy rainfall is the main external force for the erosion of loess, and also is an important influencing factor to stimulate and intensify the development of gravity erosion. The soil structure and the height of the...  相似文献   

10.
Coarse sediment retention by check dams is analyzed for five typical catchments in the Hekou-Longmen section of the midstream of the Yellow River, which is an area of high .coarse sediment concentration. The catchments are the Huangfuchuan, Kuye, Wuding, Sanchuan and Qiushui River Basins. The amount of coarse sediment retained by check clams in these areas for different periods was measured. Sediment reduction due to check clams is compared with other soil conservation measures and the results show that check clams are the most effective to rapidly reduce the amount of coarse sediment entering the Yellow River. If the average percentage of the drainage area with check clams for the five typical catchments reaches 3.0%, the average sediment reduction ratio can reach 60%. Therefore, to rapidly and effectively reduce the amount of sediment, especially coarse sediment, entering the Yellow River, the area percentage of check clams in the Hekou-Longmen section should be kept around 3%. The Kuye and Huangfuchuan River Basins are the preferred main catchments in which such water conservation measures are implemented.  相似文献   

11.
《国际泥沙研究》2020,35(4):408-416
The magnitude of soil erosion and sediment load reduction efficiency of check dams under extreme rainstorms is a long-standing concern. The current paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in a watershed and to identify the difference in sediment interception efficiency of different types of check dams. Based on the sediment deposition at 12 check dams with 100% sediment interception efficiency and sub-catchment clustering by taking 12 dam-controlled catchments as clustering criteria, the amount of soil erosion resulting from an extreme rainstorm event on July 26, 2017 (named “7·26” extreme rainstorm) was estimated in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences in the sediment interception efficiency among the check dams in the watershed were analyzed according to field observations at 17 check dams. The results show that the average erosion intensity under the “7–26” extreme rainstorm was approximately 2.03 × 104 t/km2, which was 5 times that in the second largest erosive rainfall in 2017 (4.15 × 103 t/km2) and 11–384 times that for storms in 2018 (0.53 × 102 t/km2 - 1.81 × 103 t/km2). Under the “7–26” extreme rainstorm, the amount of soil erosion in the Chabagou watershed above the Caoping hydrological station was 4.20 × 106 t. The sediment interception efficiency of the check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48 and 39.49%, respectively. The total actual sediment amount trapped by the check dams was 1.11 × 106 t, accounting for 26.36% of the total amount of soil erosion. In contrast, 3.09 × 106 t of sediment were input to the downstream channel, and the sediment deposition in the channel was 2.23 × 106 t, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60 × 105 t. The Sediment Delivery Ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment interception efficiency of the check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment interception efficiency and flood safety in the watershed.  相似文献   

12.
Gully erosion is a major environmental problem, posing significant threats to sustainable development. However, insights on techniques to prevent and control gullying are scattered and incomplete, especially regarding failure rates and effectiveness. This review aims to address these issues and contribute to more successful gully prevention and control strategies by synthesizing the data from earlier studies. Preventing gully formation can be done through land use change, applying soil and water conservation techniques or by targeted measures in concentrated flow zones. The latter include measures that increase topsoil resistance and vegetation barriers. Vegetation barriers made of plant residues have the advantage of being immediately effective in protecting against erosion, but have a short life expectancy as compared to barriers made of living vegetation. Once deeply incised, the development of gullies may be controlled by diverting runoff away from the channel, but this comes at the risk of relocating the problem. Additional measures such as headcut filling, channel reshaping and headcut armouring can also be applied. To control gully channels, multiple studies report on the use of check dams and/or vegetation. Reasons for failures of these techniques depend on runoff and sediment characteristics and cross-sectional stability and micro-environment of the gully. In turn, these are controlled by external forcing factors that can be grouped into (i) geomorphology and topography, (ii) climate and (iii) the bio-physical environment. The impact of gully prevention and control techniques is addressed, especially regarding their effect on headcut retreat and network development, the trapping of sediment by check dams and reduction of catchment sediment yield. Overall, vegetation establishment in gully channels and catchments plays a key role in gully prevention and control. Once stabilized, gullies may turn into rehabilitated sites of lush vegetation or cropland, making the return on investment to prevent and control gullies high. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
Factors controlling sediment yield in China's Loess Plateau   总被引:2,自引:0,他引:2  
The Loess Plateau in China, an area with some of the highest sediment yield in the world, contributes predominant proportion of the sediments found in the Yellow River. We examined sediment yield and its control variables in the plateau based on a multi‐year dataset from 180 gauging stations in areas varying in size from 102 to 104 km2. Various morphometric, hydrologic, climatic and land cover variables were estimated in order to understand and predict the variations in sediment yield. The results show a spatial pattern of sediment yield exhibiting an obvious zonal distribution and a coupling between precipitation and vegetation cover that fits the Langbein–Schumm law. A critical threshold of precipitation and vegetation cover was observed among the relationships of sediment yield and precipitation/vegetation cover. A multiple regression equation with three control variables, i.e. vegetation cover, percentage of cultivated loess and annual runoff, explains 65% of the total variation in sediment yield. For the loess dominated basins, where the cultivated loess accounts for more than 60% of the total area, annual runoff was the dominant variable, explaining 76% of the observed variation in sediment yield. The established equation could be a valuable tool for predicting total sediment yield in the Loess Plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In the past few years, the amount of sediment entering the Yellow River decreased significantly in areas with high and coarse sediment yield of the Loess Plateau. Some researchers considered that it was owing to the soil and water conservation project, while others believed that it was caused by the low precipitation. The observation data showed -2 that the ultimate sod erosion modulus m 1960s could reach 150,000 t km . However some experts preferred to believe that the ultimate soil erosion modulus in 1960s was wrong due to some uncertain mistakes. This paper quantitatively analyzed the spatial-temporal evolution pattern of sediment yield in areas with high and coarse sediment yield of the Loess Plateau over the past 50 years, by simulating the precipitation-runoff and soil erosion in 12 sample years with the digital watershed model. Some preliminary conclusions have been drawn as following: since the 1960s and 1970s, the rainstorm center had moved southward and the intensity of rainfall center became weaker and spread into dispersed rainfall distribution in areas with high and coarse sediment yield; the decrease of the amount of sediment entering the Yellow River was caused by the changes of rainfall type in recent years; the rainstorm of 1967 was concentrated in the re~ion nearby "Shenmu-Fugu" in Shaanxi Province, and the annual maximum transport modulus (150,000 t km-2 ) measured in Bullpen Ditch of the left bank tributary between "Shenmu" and "Fugu" in 1967 is reasonable.  相似文献   

15.
《国际泥沙研究》2022,37(5):687-700
Globally, between 1950 and 2011 nearly 80,000 debris flow fatalities occurred in densely populated regions in mountainous terrain. Mitigation of these hazards includes the construction of check dams, which limit coarse sediment transport and in the European Alps number in the 100,000s. Check dam functionality depends on periodic, costly maintenance, but maintenance is not always possible and check dams often fail. As such, there is a need to quantify the long-term (10–100 years) geomorphic response of rivers to check dam failures. Here, for the first time, a landscape evolution model (CAESAR-Lisflood) driven by a weather generator is used to replicate check dam failures due to the lack of maintenance, check dam age, and flood occurrence. The model is applied to the Guerbe River, Switzerland, a pre-Alpine catchment containing 73 check dams that undergo simulated failure. Also presented is a novel method to calibrate CAESAR-Lisflood's hydrological component on this ungauged catchment. Using 100-year scenarios of check dam failure, the model indicates that check dam failures can produce 8 m of channel erosion and a 322% increase in sediment yield. The model suggests that after check dam failure, channel erosion is the remobilization of deposits accumulated behind check dams, and, after a single check dam failure channel equilibrium occurs in five years, but after many check dam failures channel equilibrium may not occur until 15 years. Overall, these findings support the continued maintenance of check dams.  相似文献   

16.
Modeling of state of vegetation and soil erosion over large areas   总被引:14,自引:7,他引:7  
A vegetation-erosion model was developed to assess the extent of soil erosion and development trend of vegetation in the context of existing and contemplated vegetation-based soil erosion controls under different climatic, topographical and soil conditions. The model recognizes four vegetation-mediated soil erosion states: (i) an expanding vegetation coverage coupled with reduced erosion (C), (ii) a deteriorating vegetation coverage coupled with increased erosion (A), (iii) two transitional states between A and C, one with increasing erosion and vegetation coverage (B) and the other with decreasing erosion and vegetation coverage (D). With the model, the vegetation-erosion state of any particular area can be quantitatively described, by way of a vegetation-erosion chart, for varying climate, soil and topographic conditions, as demonstrated for the Xishan region, the East River basin, the Wangjiagou and Anjiagou watersheds (Loess Plateau), and the Xiaojiang watersheds (hot and dry valleys in the upper Yangtze River basin) in China. This paper presents the principles and results of area-specific investigations that track the fractions of the areas covered by vegetation and experiencing soil erosion (with soil loss determined in t/km^2yr). This is done within the context of local soil erosion control initiatives via re-vegetation efforts, or the lack thereof, over the course of 30 years. The effectiveness of reforestation and erosion-control measures vary under different climatic, topographical and soil conditions. The vegetation may be quickly restored in the hot and wet East River basin but is very difficult on the dry and cold Loess Plateau. In the hot and dry valleys the vegetation can be restored if erosion is controlled and intensive reforestations for small watersheds are performed.  相似文献   

17.
Multi‐proxy indices retrieved from sediments in Lake Chaonaqiu, an alpine lake on the western Loess Plateau (LP) of China, were used to reconstruct a precipitation history over the last ~300 years. The results correlate well with records from tree rings and historical documents in neighboring regions. We show that the lake oscillated between two states, i.e. wetter climatic conditions, which favored denser vegetation cover, and promoted weaker catchment soil erosion; and drier climatic conditions, which lead to less vegetation coverage, correlate with stronger surface soil erosion. Several intensive soil erosion events were identified in the sediment cores, and most of these occurred during decadal/multi‐decadal dry periods, and correlate well with flood events documented in historical literature. The results of this study show that soil erosion by flood events is particularly intense during dry periods, and further highlights the role of vegetation cover in the conservation of water and soil in small lake basins on the Chinese LP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Drainage network extension in semi‐arid rangelands has contributed to a large increase in the amount of fine sediment delivered to the coastal lagoon of the Great Barrier Reef, but gully erosion rates and dynamics are poorly understood. This study monitored annual erosion, deposition and vegetation cover in six gullies for 13 years, in granite‐derived soils of the tropical Burdekin River basin. We also monitored a further 11 gullies in three nearby catchments for 4 years to investigate the effects of grazing intensity. Under livestock grazing, the long‐term fine sediment yield from the planform area of gullies was 6.1 t ha‐1 yr‐1. This was 7.3 times the catchment sediment yield, indicating that gullies were erosion hotspots within the catchment. It was estimated that gully erosion supplied between 29 and 44% of catchment sediment yield from 4.5% of catchment area, of which 85% was derived from gully wall erosion. Under long‐term livestock exclusion gully sediment yields were 77% lower than those of grazed gullies due to smaller gully extent, and lower erosion rates especially on gully walls. Gully wall erosion will continue to be a major landscape sediment source that is sensitive to grazing pressure, long after gully length and depth have stabilised. Wall erosion was generally lower at higher levels of wall vegetation cover, suggesting that yield could be reduced by increasing cover. Annual variations in gully head erosion and net sediment yield were strongly dependent on annual rainfall and runoff, suggesting that sediment yield would also be reduced if surface runoff could be reduced. Deposition occurred in the downstream valley segments of most gullies. This study concludes that reducing livestock grazing pressure within and around gullies in hillslope drainage lines is a primary method of gully erosion control, which could deliver substantial reductions in sediment yield. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
FORMATION AND EROSION PROCESSES OF THE LOESS PLATEAU   总被引:2,自引:0,他引:2  
IPROCESSANDZONINGOFLOESSACCUMULATIONLoessisatypicalkindofaeoliansediment,theprocessesofitsgeomorphicformationcanbesummarizedasfollows.l.lWell-distributedDustFalloutfromHighAltitudeThedustisdefinedasthefineparticles(<0.1mm)whichcanbeliftedandcarriedupasdustcloudsintheaiLIftheoriginallandsurfaceofaregionisanevenhighlandsurroundedbyriversandgullies,thefallingdustremainedonthesurfaceofthisevenhighland,butthedustfallingonslopesoftheriverandgullieswastransportedoutoftheregion.Onthet…  相似文献   

20.
Data from 10 small farm dams in SE Australia show that shoreline erosion due to farm livestock access to the dams can account for a significant proportion (up to 85%) of sediment contained in the dam. The volumes of sediment resulting from such shoreline erosion may be of the same order as the volumes produced by gully erosion in the dams' catchments, prompting caution in using farm dams to which livestock have access to determine small catchment erosion rates. Other issues, related to the trap efficiency, also mean that erosion estimates based on farm dam sedimentation should be treated with caution. © 1998 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号