首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用GFZ Release 05卫星重力GRACE观测数据,计算2010年2月27日智利MW8.8逆冲型地震的同震重力和重力梯度变化,分析其分布特征,可知:由GRACE探测到的同震重力变化在断层俯冲区域可达-9.5μGal,断层隆升区域可达+3.5μGal,结果与利用SNREI地球模型的位错理论计算的同震重力变化较一致,说明利用GFZ Release05 DDK5滤波数据,更能精确的反映同震重力场变化;GRACE检测的智利地震同震径向重力梯度变化Trr最大可达-600μE,位于发震断层东侧俯冲区域;通过对同震重力梯度分布特征分析,初步判断发生同震物质迁移的区域范围在断层俯冲区域为(67°—72°W,33°—38°S),在断层隆升区域为(73°—77°W,35°—39°S)。  相似文献   

2.
本文在考虑全球陆面数据同化系统陆地水储量变化影响后,利用2002年4月—2015年4月GRACE卫星RL05月重力场模型获取了2011年日本MW9.0地震震中及其周边区域的重力场信息;然后给出了日本及其周边2003—2015年的年度累积重力变化和差分重力变化,并且利用经验正态函数方法深入分析了该地震过程中同震重力变化对区域重力场的贡献. 结果显示:日本MW9.0地震前研究区域出现了幅值高达2×10-8 m/s2的异常重力变化,其同震效应的时间和空间特征均出现在第一模态,且同震重力变化和震后区域重力场变化特征显著,这充分表明该地震对区域重力场的影响显著.   相似文献   

3.
GRACE卫星重力在地震研究中的应用进展   总被引:1,自引:0,他引:1  
地球重力场恢复与气候实验卫星(GRACE)在运行期间提供了大量的地球时变重力场观测数据,在大地测量、地球环境变化等领域有非常广泛的应用.在固体地球科学研究中,GRACE重力场数据被广泛应用于天然地震研究,由于地震过程中存在大范围的质量迁移,大型地震引起的重力变化可以被GRACE卫星探测到.同时GRACE记录的地震同震及震后长期的重力场变化对反演地震震源参数也起到了帮助作用.本文从GRACE卫星重力场在地震研究中的应用出发,在回顾了GRACE卫星重力在地震应用的主要进展的基础上,总结了以地震研究为应用目标的数据处理方法与流程,为地震同震及震后卫星重力数据处理提供了技术思路.本文结合前人在2004年M_W9.3苏门答腊地震、2010年M_W8.8智利地震、2011年M_W9.0日本东北地震的研究成果,针对地震重力变化的同震观测、震后观测、间接观测等领域,总结了GRACE卫星重力的主要应用进展,提出了其中涉及的GRACE数据处理与地震综合解释的主要研究问题.在总结技术研究进展的基础上,本文以2004年M_W9.3苏门答腊地震为研究对象,对GRACE卫星重力数据序列进行处理,得到该地震的同震重力变化特性,并以此为基础进行了地震同震重力变化的特征分析.在回顾和总结的基础上,本文结合GRACE-Follow on计划的优势,提出未来GRACE卫星应用于地震研究的发展展望.  相似文献   

4.
2011年3月11日日本东海发生MW9.0地震,造成日本岛整体东移、下沉并伴随巨大的质量重新分布。对于海底地震的震中区域,空间观测的GRACE卫星重力数据很好地弥补了GPS、InSAR等形变资料的缺失。利用GRACE卫星月重力场数据计算了地面0.5°×0.5°网格点上的重力变化时间序列,采用最小二乘拟合、经验正交函数(EOF)2种方法,提取了同震重力变化,结果显示震中两侧区域的重力变化呈两极分布,其中弧后区域重力下降,最大降幅约6μgal,海沟区域重力增加,最大增幅约3μgal。EOF方法避免了最小二乘拟合方法所需的地震发生时刻等先验信息,但卫星重力信号是由多种地球物理过程引起的重力变化的叠加,EOF结果的可靠性及其反映的真实物理来源往往随着事件的规模、观测时间的长短等而改变。文中第2,3,4主成分主要反映了非构造因素的影响,通过第1主成分空间一致性提取的同震重力变化与位错理论模型计算结果较为接近,因此较真实地反映了地震引起的重力变化特征。  相似文献   

5.
正本文回顾了重力卫星在地震研究中的作用,并对未来下一代重力卫星资料在地震孕育、发生方面的应用研究做出展望。一般而言,地震循环分为震间、震前、同震和震后等物理过程。重力卫星GRACE能够检测到全球俯冲带特大地震(如2006年苏门答腊M_W9.3、2008年智利M_W8.8和2011年日本东北M_W9.0)的同震破裂和震后地幔黏弹性松弛引起的大尺度地球质量迁移。对于一次M9地震,经过350 km空间平滑后,同震重力最大减小超过10μgal,且能够被位错理论  相似文献   

6.
2010年2月27日智利马乌莱M8.8地震后,我们认为监测到的GRACE卫星相对轨道的微小变化量足以用于描述震后重力场变化。地震后在震中以东500km空间区域内观测到-5μGal的重力异常。同震模型认为,长波长尺度的重力负异常主要是地壳扩张和大陆地表沉陷的结果。有限断层同震模型认为,近海地区重力变化取决于地表抬升和内部形变,由于这两种因素对重力场影响相反,因而由此计算的重力异常相当微小。我们的研究目标是利用大尺度重力观测数据来解释大地震期间的地球内部变化,研究方法是将极难获得的地震形变长波长观测值与大地测量数据和地震数据相结合进行分析研究。  相似文献   

7.
严畅达  徐亚 《地球物理学报》2019,62(6):2115-2127
利用GRACE卫星重力可对地震引起的大范围重力变化进行观测,并从重力数据中发现主要的变化特征.发生于2010年的MW8.8智利地震震级较高,可观测到震中附近广泛的同震和震后长期重力变化.本文基于GRACERL05Level-2时变重力场数据,对2010年智利地震的同震和震后长期变化进行了计算.对同震变化的计算发现,智利地震引起的同震变化极值达-5μGal,而本文为减小水文信号的干扰而采用的3年平均的方法可以获得良好的效果.在对震后重力变化的计算中发现,智利地震震后在2011-2016年间的重力变化存在先增大后逐渐衰减的过程.对震后变化的拟合表明,智利地震震中附近有约1μGal的震后重力变化,震后变化的特征时间约1.1年.同时,在智利地震中未出现较明显的两个震后变化阶段(短期、长期).  相似文献   

8.
利用GRACE观测数据研究苏门答腊区域的黏滞性结构   总被引:1,自引:0,他引:1  
本文尝试利用卫星重力观测资料和震后黏弹性松弛理论研究苏门答腊地区的区域流变结构,为更好地认识区域地球动力学环境提供依据.利用GRACE卫星重力资料,计算了2004年苏门答腊Mw9.3地震的同震及震后的重力变化.计算中使用平滑半径为500km的高斯滤波器.结果显示苏门答腊Mw9.3地震破裂东侧以陆地为主的上盘同震下沉量很大,造成约9x10^-8mS^-2的重力下降阶变,而西侧处于海水下的下盘重力同震上升较小约2x10^-8mS^-2,但其震后上升较快.流变结构对岩石的变形有很大的影响,是地球动力学数值模拟取得可靠科学结果的基础.本文尝试了利用卫星重力变化时间序列来反演苏门答腊地区的黏滞性结构;即基于GRACE时变重力场,利用自重力、黏弹性、平面分层模型模拟了该地震的同震和震后变形,并将获得的空间固定点的重力变化与GRACE重力场及点位时间序列进行比较,估计该地区的黏滞性系数在1.0x10^18PaS的量级,且断层两侧的流变参数存在差异.最后结合苏门答腊区域的构造特点讨论了黏滞性系数的影响因素.  相似文献   

9.
基于USGS公布滑动分布模型,本文利用用地壳分层模型,考虑到自重及黏弹特性,采用数值模拟的方法,对尼泊尔M_W7.9大地震同震及黏弹松弛效应引起的震后形变场及重力变化进行模拟计算,并与发震断层地表投影面附近区域实测同震GPS水平形变数据对比,结果显示:(1)同震形变场及重力变化均显示该次地震主要表现为逆冲型,且主要形变及重力变化主要发生在发震断层地表投影区域,离断层越远区域,形变量及重力变化值越小;(2)震后形变量及重力变化均增大,且影响范围逐渐增大,其中,垂直形变变化趋势与重力变化相反,表明地表高程变化与重力变化具密切的联系;(3)模拟同震结果与实测同震水平形变结果比较符合,少数台站点差异较大,但运动趋势与实测结果基本一致,一定程度上验证了模拟同震及震后形变量及重力变化的可靠性.  相似文献   

10.
高精度GRACE卫星时变重力场反演一直是卫星重力测量中的难题.为了恢复高精度的时变地球重力场模型,本文联合GRACE卫星的星载GPS和KBR星间测速观测数据,在对GRACE卫星进行精密定轨的同时,解算出60阶月平均地球重力场模型.通过对GRACE卫星的定轨精度、星载GPS相位和KBR星间测速数据的拟合残差以及时变地球重力场模型解算精度等分析,表明:(1)与美国宇航局喷气推进实验室(JPL)发布的约化动力学精密轨道相比,本文确定GRACE卫星轨道三维位置误差小于5 cm.(2)星载GPS相位数据拟合残差为5~8 mm,KBR星间测速数据拟合残差为0.18~0.30μm·s~(-1).(3)解算的月平均重力场模型与美国德克萨斯大学空间研究中心(CSR)、德国地学研究中心(GFZ)和JPL发布的RL05模型精度接近,时变信号在全球范围内具有很好的空间分布一致性.通过计算亚马逊流域和长江流域的水储量变化,本文与上述三个机构的计算结果无明显差异,且相关系数均达0.9以上.可见,本文建立的卫星轨道与重力场同解算法具有反演高精度GRACE时变重力场能力,为我国卫星重力场反演提供了重要的技术支持.  相似文献   

11.
基于位错理论,考虑重力和黏弹性的影响,在分层介质模型下计算鲁甸地震引起的同震、震后形变和重力变化.结果表明形变和重力的显著变化主要发生于断层在地表投影附近区域.同震形变场显示发震断层有明显的走滑性质.考虑黏弹松弛效应,随着时间的推移,震后形变和重力有了明显改变,同震效应为正的区域得到加强,为负区域进一步减弱.震后松弛效应的影响范围相比同震明显增加.在靠近断层的GPS观测台站处,计算了由黏弹松弛效应引起的震后形变和重力时间序列.震后松弛效应引起的重力变化在50年之后均达到同震水平,除了NJ13的纬向、垂直位移,NJ16的垂直位移,NJ15的径向位移,其余台站的所有震后形变都超过1mm.观测台站的震后重力和垂直位移时间序列在震后100年趋于稳定,纬向位移和经向位移在震后50年趋于稳定.  相似文献   

12.
本文提出一个新算法,用来高精度计算三维不均匀地球模型中地震位错引起的地表以及空间固定点同震重力变化.具体地说,我们首先把实际三维不均匀地球分解成球对称地球模型和对应的横向不均匀增量,分别进行计算,二者对应的计算结果分别称为球对称解和三维响应.由于球对称解可直接利用球对称地球模型位错理论计算得到,本文的目标是计算三维响应即地球的横向不均匀结构对同震重力变化的影响.然后,我们把三维响应再分为震源的响应和地球横向不均匀结构的响应,它们可分别借助对震源函数的扰动以及对平衡方程式的变分求解.本文推导出六个特殊点源位错引起的地表以及空间固定点同震重力变化计算公式(一个垂直走滑位错,两个相互垂直的倾滑位错,三个开裂位错),对这些公式进行适当组合就可以计算任意位置任意类型位错产生的同震重力变化,对应的计算公式同步给出.接着,依据36阶P波速度模型,我们利用岩石试验经验关系式推导出三维S波速度模型,密度模型,位场模型以及重力模型.最后,利用上述三维模型,本文计算出三种典型类型的点源位错产生的同震重力变化,结果显示三维响应与位错类型,震源深度都有关系,其最大响应占球对称解的0.5%左右,且在所有影响因素中S波速度模型影响最大.数值结果同时表明,三维响应中震源的响应与地球横向不均匀构造的响应处于同一量级.本文给出的地表和空间固定点同震重力变化计算公式可分别高精度解析地表重力和卫星重力观测数据(GRACE、GOCE等),提高大地测量数据理论解析水平.  相似文献   

13.
利用卫星重力测量手段监测全球质量变化取得了巨大成功,本文基于牛顿万有引力定律在三维空间直角坐标系中导出利用重力卫星观测数据监测全球质量变化的三维点质量模型法,该方法可直接利用重力卫星的轨道和星间观测数据或时变重力场模型计算全球质量变化,由于利用卫星观测数据计算地表质量变化的向下延拓过程以及观测数据噪声的影响,需要采用合适的空间约束方程或正则化技术对解算结果进行约束或平滑处理.利用合成全球质量变化模型模拟一个月的GRACE双星轨道和星间距离变率数据计算全球质量变化,对三维点质量模型法进行分析验证,采用零阶Tikhonov正则化技术处理病态问题.结果表明,三维点质量模型法可有效用于重力卫星观测数据监测全球质量变化,为利用重力卫星观测数据监测全球质量变化提供一种可选的途径.  相似文献   

14.
自2002年以来,GRACE卫星探测计划可提供高精度的时变地球重力场,用以探测地球系统的物质分布.自1998年中国大陆重力监测网建立以来,利用FG5绝对重力仪和LCR-G型相对重力仪每2年对该网进行重复测量获取重力场时变信息.基于此,本文利用GRACE和地面重力测量获得了中国大陆重力场的长期年变率,利用位错理论根据USGS发布的断层模型计算了2008年汶川Ms8.0级地震的同震重力变化并进行了300 km高斯滤波.GRACE卫星重力和地面重力结果均表明华北地区地下水流失严重,在绝对重力基准站上,GRACE卫星重力与绝对重力变化率较为一致,汶川区域的地面重力变化结果可视为大地震前兆信息.  相似文献   

15.
利用GRACE卫星数据研究汶川地震前后重力场的变化   总被引:2,自引:0,他引:2  
介绍了利用GRACE卫星数据计算和分析重力场变化的方法.以EIGEN-GRACE02S重力场模型为背景,对高斯平滑处理前后中国大陆月重力场的变化作了比较,认为取平均半径为666 km作高斯平滑,能够得到合理的重力变化结果.以3个月时间尺度计算了2008年汶川地震前后中国大陆的重力场变化,将结果与2006年和2007年相同时间尺度的变化结果进行比较,发现三者相符合,并且同震重力的负变化可用地壳膨胀模型理论来解释.  相似文献   

16.
利用经过去相关滤波处理的GRACE时变重力场模型获得了青藏高原东缘2003—2012年的卫星年重力变化图像,并针对该区域近年发生的三次特大地震,结合震前及震后月重力场变化图像,分析与强震有关的卫星重力场变化特征。从区域年重力变化图像可以看出,三次大震均发生在年重力变化较低的时段内,震前小幅值变化可能是地震发生的中短期前兆;从汶川地震和玉树地震发生前后的月重力场变化图像可以发现,发震前后断层附近的重力变化模式发生变化,这可能印证了震后位场变化恢复理论;从汶川地震前后的龙门山断层附近点上的周重力变化趋势可以明显发现,汶川地震发生(第20周)后近9周的时间,断层东西侧呈现了相反的重力变化特征,这可能是对震后壳幔物质调整过程的反映。  相似文献   

17.
本研究提出一种计算同震垂线偏差变化的方法,给出关于四种独立震源的格林函数,并将其应用于重力卫星GRACE观测数据的解析研究. 方法:针对球形地球模型,依据目前为止作者提出的球形地球位错理论的基本研究思路,计算四种独立震源产生的位错Love数并组成相应的格林函数.  相似文献   

18.
利用GRACE卫星重力场模型和地表流动重力观测资料,计算2008年汶川MS 8.0地震发生前6年的重力变化,对卫星和流动重力段差结果与卫星重力反映的重力场动态变化特征进行研究,结果表明:①GRACE卫星重力段差受滤波半径影响显著,与地表流动重力观测结果相比,在重力变化数值上差异较大,在变化率上较为一致;②在汶川地震孕育阶段,川滇地区重力等值线呈“增大—减速增大—减小”的特征,震前2年形成近似垂直于龙门山断裂带的重力变化梯度带。  相似文献   

19.
利用GRACE空间重力测量监测长江流域水储量的季节性变化   总被引:13,自引:0,他引:13  
2002年3月成功发射的美德合作重力卫星计划GRACE(Gravity Recovery And Climate Experiment)已经开始提供阶次数达到120、时间分辨率为约1个月的地球重力场模型时变序列. GRACE的星座由两颗相距约220 km, 高度保持300~500 km, 而倾角保持约90°的近极轨卫星组成. 由于采用星载GPS和非保守力加速度计等高精度定轨技术以及高精度的星-星跟踪数据反演地球重力场, 在几百公里和更大空间尺度上, GRACE重力场的精度大大超过此前的卫星重力观测. 根据GRACE时变重力场反演的地球系统质量重新分布对固体地球物理、海洋物理、气候学以及大地测量等应用有重要的意义. 在长期时间尺度上, GRACE的结果可用于研究北极冰的变化, 并进而研究极冰融化对全球气候变化, 特别是对海平面长期变化的影响. 在季节性时间尺度上, 利用GRACE重力场的精度足以揭示平均小于1 cm的地表水变化或小于1 mbar的海底压强变化. 除了巨大的社会和经济效益外, 这些变化对了解地球系统的物质循环(主要是水循环)和能量循环有非常重要的意义. 利用2002年4月至2003年12月之间共15个月的GRACE时变重力场揭示了全球水储量的明显季节性变化, 并重点分析了中国长江流域水储量的变化. 结果表明长江流域水储量周年变化幅度可达到3.4 cm等效水高, 其最大值出现在春季和初秋. 根据GRACE时变重力场反演的水储量变化与两个目前最好的全球水文模型的符合相当好, 其差别小于1 cm等效水高. 研究表明现代空间重力测量技术在监测一些大流域的水储量变化(如长江流域)、全球水循环和气候变化上有巨大的应用潜力.  相似文献   

20.
陈伟  刘泰  佘雅文  付广裕 《地震》2021,41(4):121-135
基于黏弹性球体位错理论, 联合陆地和海底同震GPS数据以及日本本岛330个陆地GPS站点5~10年的震后数据, 反演了日本MW9.0地震的断层滑动模型, 提升了断层滑动分布在细节上的合理性。 首先, 基于日本本岛330个陆地GPS站点震前2年和震后10年的连续观测数据, 获取了日本MW9.0地震震后5~10年的年平均位移, 该时段的位移几乎完全由地幔黏弹性松弛效应引起; 接着, 利用黏弹性球体位错理论对震后5~10年的位移进行反复拟合, 确定了日本MW9.0地震震源及周边地区的地幔黏滞性系数最优解(9.0×1018 Pa·s)。 然后, 联合同震和震后位移数据, 引入黏弹性位错格林函数, 反演了2011年日本MW9.0地震的断层滑动分布。 结果表明, 该地震同震破裂的最大值达到了62.72 m, 同震滑动的总地震矩为4.48×1022 Nm, 相应的矩震级为MW9.03。 由于黏弹性松弛效应引起的震后位移中包含了同震破裂的信息, 基于黏弹性球体地震位错理论, 联合同震和震后位移数据反演断层同震破裂, 有效提高了日本MW9.0地震断层滑动分布的可靠性。 最后, 本文提出的反演方法为同震观测结果缺乏的大地震震后科考提供了理论支撑: 在大地震发生之后, 即使在同震期间没有足够的观测数据, 也可以在震后通过对震源区的加密观测积累的震后数据, 使用本文提出的反演方法优化同震断层滑动模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号