首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
内蒙古大青山地区的临河-集宁断裂带是华北板块北缘的一条重要断裂带。它主要由韧性剪切带、韧脆性剪切带和推覆构造等构成。推覆构造自南向北可分为叠瓦逆冲推覆构造带、紧闭褶皱-逆冲断层变形带、宽缓褶皱一断层转折褶皱带、滑脱褶皱一断层传播褶皱带等4个变形带。断裂带从韧性到脆性表示了其出露深度不同。并有由南到北活动强度逐渐减弱的趋势。该区主要分布有以金为主的多金属矿床和以煤、大理岩为主的非金属矿床。区内金多金属矿床多与韧性剪切带有关,断裂构造为金属矿床的形成提供了空间,也是成矿物质的通道。研究指出了该地区的找矿前景与方向。  相似文献   

2.
1906年新疆玛纳斯大震区的多层次逆冲构造与深部结构   总被引:10,自引:0,他引:10       下载免费PDF全文
通过对天山北麓 190 6年玛纳斯 7 7级地震区的浅层地震探测资料、石油地震反射剖面、二维电性结构剖面、深地震反射剖面的研究 ,发现玛纳斯地震区多层次活动构造系统的根带 ,它通过脆 -韧转换带与天山活动构造块体内上地壳中的低速、高导层连为一体。低速、高导层可能是天山地壳内正在活动的韧性剪切带 ,而齐古逆断裂 -褶皱带下的脆 -韧转换带是连接深部活动韧性剪切带与地壳浅部脆性破裂的枢纽 ,也是现今孕育和发生大地震的重要构造部位。 190 6年玛纳斯地震发生在脆韧转换带的底部 ,地震区的活动逆断裂和褶皱只是部分记录了深部韧性剪切带活动的信息  相似文献   

3.
Shear zones in outcrops and core drillings on active faults commonly reveal two scales of localization, with centimeter to tens of meters thick deformation zones embedding much narrower zones of mm-scale to cm-scale. The narrow zones are often attributed to some form of fast instability such as earthquakes or slow slip events. Surprisingly, the double localisation phenomenon seem to be independent of the mode of failure, as it is observed in brittle cataclastic fault zones as well as ductile mylonitic shear zones. In both, a very thin layer of chemically altered, ultra fine grained ultracataclasite or ultramylonite is noted. We present an extension to the classical solid mechanical theory where both length scales emerge as part of the same evolutionary process of shearing the host rock. We highlight the important role of any type of solid-fluid phase transitions that govern the second degree localisation process in the core of the shear zone. In both brittle and ductile shear zones, chemistry stops the localisation process caused by a multiphysics feedback loop leading to an unstable slip. The microstructural evolutionary processes govern the time-scale of the transition between slow background shear and fast, intermittent instabilities in the fault zone core. The fast cataclastic fragmentation processes are limiting the rates of forming the ultracataclasites in the brittle domain, while the slow dynamic recrystallisation prolongs the transition to ultramylonites into a slow slip instability in the ductile realm.  相似文献   

4.
Tectonically deformed coal(TDC)develops because of the superimposed deformation and metamorphism of a coal seam by tectonic movements.The migration and accumulation of trace elements in TDC is largely in response to stress-strain conditions.To develop a law governing the migration and aggregation of sensitive elements and investigate the geological controls on TDC,coal samples from different deformation sequences were collected from the Haizi mine,in the Huaibei coalfield in Anhui Province,China,and the concentrations of 49 elements were determined by XRF and ICP-MS,and then microscopically analyzed.The results show that the distribution and morphology of minerals in coal is related to the deformation degree of TDC.The evolutionary process runs from orderly distribution of minerals in a weak brittle deformed coal to disordered distributions in ductile deformed coal.According to the elemental distribution characteristics in TDC,four types of element migration can be identified:stable,aggregate,declining,and undulate types,which are closely related to the deformation degree of TDC.Present data indicate that the overall distribution of rare earth elements(REE)does not change with metamorphism and deformation,but it shows obvious dynamic differentiation phenomena along with the deformation of TDC.Tectonic action after coal-formation,brittle or ductile deformation,and the metamorphic mechanism and its accompanying dynamic thermal effects are the main factors that influence the redistribution of elements in TDC.We conclude that tectonic movements provide the motivation and basis for the redistribution of elements and the paths and modes of element migration are controlled by brittle and ductile deformation metamorphic processes.The dynamic thermal effect has the most significant effect on coal metamorphism and tectonic-stress-accelerated element migration and accumulation.These factors then induce the tectonic-dynamic differentiation phenomenon of element migration.  相似文献   

5.
Fabric development in brittle-to-ductile shear zones   总被引:3,自引:0,他引:3  
Brittle-to-ductile shear zones from two separate geological settings are shown to have nucleated on zones of predominantly brittle deformation. The shear zones are not simply foliated cataclasites, since they contain abundant evidence of dynamic recrystallization of constituent minerals. A small quartz diorite lens in the Borrego Springs shear zone, southern California, contains centimeter-scale cataclasite zones that exhibit a gradual transition into foliated rock. Alteration of magnesiohornblende to actinolite, feldspar to white mica plus quartz, and biotite to chlorite, produced elongate minerals that define the foliation. During the later stages of deformation, intracrystalline slip and dynamic recrystallization of quartz and feldspar were important deformation mechanisms.The widespread occurrence of mineralized dilatant cracks predated the development of meter-to-decimeter-scale ductile shear zones in the Striped Rock granite, southern Virginia. Again, important deformation mechanisms in the final stages of deformation were intracrystalline slip and dynamic recrystallization of quartz.In both field areas the role of fluids has been important from the onset of brittle deformation. Fluids may have enhanced early fracturing in addition to causing the alteration and hydrolytic weakening of host rock minerals and the introduction of new mineral species. Each of these processes is thought to have contributed to the later localization of crystal plastic deformation in the rocks.  相似文献   

6.
Based on the geothermal and gravitation methods, this paper investigated the rheological and thermal structure of the lithosphere under the northern margin of South China Sea. The result shows that the temperature of the upper crust is 150–300°C lower than that of the lower crust, and the viscous coefficient of the upper crust is 2–3 orders of magnitude larger than that of the lower crust. It reveals that the upper crust is characterized by brittle deformation while the lower crust by ductile deformation. A channel of lower-viscosity should be formed between the upper and lower crust when the lithosphere is scattered and spreads out toward ocean from northwest to southeast along the northern margin of South China Sea. And, a brittle deformation takes place in the upper part of the lithosphere while a ductile deformation takes place in the lower part of the lithosphere due to different viscous coefficients and temperature. The layered deformation leads the faulted blocks to rotate along the faulting and the marginal grabens to appear in the northern margin of South China Sea in Cenozoic tectonic expansion.  相似文献   

7.
Brittle deformation of oceanic lithosphere due to thermal stress is explored with a numerical model, with an emphasis on the spacing of fracture zones. Brittle deformation is represented by localized plastic strain within a material having an elasto-visco-plastic rheology with strain softening. We show that crustal thickness, creep strength, and the rule governing plastic flow control the formation of cracks. The spacing of primary crack decreases with crustal thickness as long as it is smaller than a threshold value. Creep strength shifts the threshold such that crust with strong creep strength develops primary cracks regardless of crustal thicknesses, while only a thin crust can have primary cracks if its creep strength is low. For a thin crust, the spacing of primary cracks is inversely proportional to the creep strength, suggesting that creep strength might independently contribute to the degree of brittle deformation. Through finite versus zero dilatation in plastic strain, associated and non-associated flow rule results in nearly vertical and V-shaped cracks, respectively. Changes in the tectonic environment of a ridge system can be reflected in variation in crustal thickness, and thus related to brittle deformation. The fracture zone-free Reykjanes ridge is known to have a uniformly thick crust. The Australian-Antarctic Discordance has multiple fracture zones and thin crust. These syntheses are consistent with enhanced brittle deformation of oceanic lithosphere when the crust is thin and vice versa.  相似文献   

8.
地壳岩石变形行为的转变及其温压条件   总被引:10,自引:4,他引:6       下载免费PDF全文
周永胜  何昌荣 《地震地质》2000,22(2):167-178
岩石脆延性转化 (brittle ductiletransition)和脆塑性转化 (brittle plastictransition)是不同的概念。脆延性转化指从岩石的局部变形破坏到宏观均匀流动变形的转化 ,它与宏观结构和力学行为的变化相关。脆塑性转化指脆性向晶体塑性变形的转化 ,它与力学行为和微观机制的变化相关。通过地壳中最主要的石英、长石的实验室和野外变形温压条件对比发现 ,达到相同的变形特征 ,在实验室和野外所需温压条件不同。建立变形机制图使解决这一矛盾成为可能。但受实验资料的限制 ,目前几种主要岩石的变形机制图还无法建立。因此 ,通过对实验与自然环境下变形特征及微观机制对比 ,找出两者温压条件的差别 ,就成为将实验研究结果外推解决实际地质问题的有效途径  相似文献   

9.
中国大陆及邻区岩石圈三维流变结构   总被引:15,自引:3,他引:12       下载免费PDF全文
依据地震波速得到的上地幔温度和气象台站记录的地表温度为约束,结合地表热流和热导率观测数据,利用有限元方法计算了中国大陆及邻区岩石圈三维热结构.基于此温度结果和GPS观测得到的应变率数据,以滑动摩擦、脆性破裂和蠕变三种强度机制为约束,计算得到了中国大陆及邻区岩石圈三维流变结构.结果显示:弱强度和低等效黏滞性系数的下地壳在中国大陆及邻区普遍存在,并且下地壳的流变强度和等效黏滞性系数比上地壳和岩石圈地幔一般要低1~2个数量级;中国大陆范围内青藏高原存在着厚度最大、强度最低的下地壳;青藏高原的岩石圈强度和等效黏滞性系数比华北、华南和印度板块的都要低;岩石圈流变结构的横向分布特征与重力梯度带和地形过渡带比较一致.  相似文献   

10.
The lower crust is generally considered to be an aseismic, weak zone where fluid distribution might be governed by textural equilibrium geometries. Saline fluids below the transition from brittle to ductile rheology have been advanced as a joint explanation for deep crustal conductivity and seismic reflectivity, the depth of onset of both phenomena being apparently bounded by isotherms in the 300–450 °C temperature range. Some petrologists, meanwhile, contest that the deep crust should be devoid of extensive fluid networks. This review exposes some geophysical exceptions to the statistical norm suggested by global geophysical data compilations and presents counter-arguments that the lower crust in places may be both dry and strong, that fluids if at all present at such depths may not necessarily be connected and that fluid mobility in the lower crust may be more limited and heterogeneous than commonly assumed.Laboratory data on crustal rocks implies that the transition from brittle to ductile rheology actually occurs over a much broader range of temperatures than 300–450 °C, and the apparent association of deep crustal conductive horizons with a temperature field of 300–450 °C may be interpretable in terms of formation temperatures of graphite, rather than fluids and brittle-ductile transition rheology.High vP/vS ratios from a 6 km thick, seismically layered zone below the Weardale granite, NE England can be explained by underplated mafic material. They are unlikely to be explained by fluids in an area where deep crustal conductance has been shown to be relatively low, unless conventional assumptions regarding deep crustal fluid distribution are inadequate or false.Perusal of the literature reveals that lower crustal seismicity is less seldom than generally appreciated. Interpretation of earthquakes nucleating at lower crustal depths is ambiguous, but in some tectonic regimes may indicate preservation of brittle rheology to the Moho and a lower crust that is predominantly mafic and dry.A better understanding of lower crustal deformation mechanisms and history may provide better insight into deep crustal conductivity mechanisms. Recent rock mechanical experiments suggest that permeability (and thus fluid connectivity) may be decreased by ductile shearing, whereas ductile shearing may aid graphitisation at lower crustal temperatures. If the lower crust in some regions is strong, this may explain the apparent preservation of both extant- and palaeostress orientations in interpretations involving electrical anisotropy.  相似文献   

11.
The Louzidian ductile shear zone at the south of Chifeng strikes NE-SW and dips SE at low-medium- angles. This ductile shear zone is mainly composed of granitic mylonite, which grades structurally upward into a chloritized zone, a microbreccia zone, a brittle fault and a gouge zone. All these zones share similar planar attitudes, but contain different linear attitudes and kinematic indicators. Finite strain measurements were performed on feldspar porphyroclasts using the Fry method. These meas- urements yield Fulin indexes of 1.25―3.30, Lode's parameters of -0.535―-0.112 and strain parameters of 0.41―0.75 for the protomylonite, respectively. These data are plotted within the apparent constric- tional field in Fulin and Hossack diagrams. In contrast, for the mylonite, corresponding parameters are 0.99―1.43, -0.176―-0.004 and 0.63―0.82, respectively, and located in the apparent constrictional field close to the plane strain. The mean kinematic vorticity numbers of the protomylonite and mylonite by using three methods of polar Mohr circle, porphyroclast hyperbolic and oblique foliation, are in the range of 0.67―0.95, suggesting that the ductile shearing is accommodated by general shearing that is dominated by simple shear. Combination of the finite strain and kinematic vorticity indicates that shear type was lengthening shear and resulted in L-tectonite at the initial stage of deformation and the shear type gradually changed into lengthening-thinning shear and produced L-S-tectonite with the uplifting of the shear zone and accumulating of strain. These kinds of shear types only produce a/ab strain facies, so the lineation in the ductile shear zone could not deflect 90° in the progressively deformation.  相似文献   

12.
CharacteristicsoffaultrocksandpaleoearthquakesourcealongtheKoktokayErtaifaultzone,Xinjiang,ChinaLANBINSHI1)(史兰斌)CHUANYON...  相似文献   

13.
大陆岩石圈塑性流动网络的延性弱面效应   总被引:1,自引:1,他引:0       下载免费PDF全文
王绳祖 《地震地质》2004,26(3):405-415
岩石圈下层的网状塑性流动 ,作为包含塑性流动网络的黏塑性流动 ,控制着大陆板块内部的构造变形和动力学过程。塑性流动网络由两组网带共轭相交而成 ,而塑性流动网带是黏塑性流动过程中因剪切局部化、黏性摩擦生热和网带介质的弱化而形成的延性弱面 (弱带 )。研究表明 ,类似于断裂和节理等脆性弱面 ,延性弱面对介质强度的影响也具有条件性 ,即当应力方向改变时 ,只有在滑移角θ不超出一定限值的条件 (θ1≤θ≤θ2 )下才可能沿原有弱面滑移 ,显示其弱化效应 ;延性弱面可以用弱化度R表示其屈服限的相对降低程度 ,弱化度与滑移角下限值之间的关系为R =sin2θ1;根据亚洲中东部地区“塑性流动 -地震”网络的最大共轭角推算 ,网带的弱化度R近似于 0 81。基于延性弱面效应的认识 ,文中就网带由剪切滑移向压性褶皱的转化、网带的继承与弃置以及应力方向的允许偏角等问题进行了探讨  相似文献   

14.
Upper mantle peridotite bodies at the earth's surface contain relict structures and microstructures which provide direct information on the role and the mechanisms of shear localisation in the upper mantle. Deformation which occurred at high temperatures (T>950±50°C) is relatively homogeneous within domains ranging in scale from a few kilometres to a few tens of kilometres. Below 950±50°C strain is localised into centimetre to several hundred metre wide shear zones which commonly contain hydrated mylonitic peridotites. The microstructures developed in the peridotites suggest there is a correlation between the occurrence of shear localisation and the occurrence of strain softening and brittle deformation processes. The most important strain softening processes are inferred to be structural and reaction induced softening. Structural softening processes include dynamic recrystallisation and strain-induced transitions from dislocation creep to some form of grain-size-sensitive (GSS) creep. Reaction induced softening is related to the formation of fine grained polyphase reaction products which deform by GSS creep and the formation of weak sheet silicates such as phlogopite, chlorite, talc and antigorite. From experimental studies these softening processes and brittle deformation processes are inferred to occur mainly at temperatures less than about 910±160°C. This temperature range is inferred to be a significant rheological transition in the upper mantle. Below 910±160°C deformation during orogenesis may be accommodated by an anastomosing network of hydrated mylonitic shear zones with a distinct, perhaps weak, rheology. At higher temperatures strain is accommodated in much wider deformation zones.On the scale of the lithosphere the degree of localisation may be different to that determined at the scale of the periodotite massif. An anastomosing network of hundred metre wide mylonitic shear zones forming 0.05–0.3 by volume fraction of the mantle lithosphere atT<950°C could accommodate inhomogeneous or homogeneous bulk deformation depending on the spatial distribution and ordering of the mylonite zones. The higher temperature deformation at deeper levels in the mantle could be markedly inhomogeneous being concentrated in shear zones with widths in the range of 2–20 km, alternatively these zones may widen significantly during deformation, resulting in a decrease in the degree of localisation with increasing bulk strain.  相似文献   

15.
王绳祖  张流 《地震地质》2002,24(1):69-80
文中所述华北地区位于中东亚塑性流动网络系统的东部 (偏北 ) ,在岩石圈下层内含右向和左向塑性流动网带多条 ,受其控制 ,在其上方多震层内形成地震带 ,并导致上层构造应力场在总趋势上与下层基本保持一致。发震断裂以不同交角沿网带展布 ,组成地震构造带 ,其中少数地震构造带的视成熟度较高 ,多数尚属未成熟的准地震构造带  相似文献   

16.
The combination of field surveys with analysis of microstructure of tectonite and Electron Backscatter Diffraction (EBSD) on quartz fabric indicated that three periods of ductile shear events developed in the Paishanlou gold deposits and the E-W and NE-striking ductile shear zones were formed during each event. The E-W-striking ductile shear zone, accompanied by compressional and dextral shear slip, was shear-cut by the NE-striking shear zones, accompanied by compressional-sinistral shear slip and sinistral-normal shear slip, successively. An E-W-striking ductile shear zone developed at a deeper tectonic level and at middle- to high-temperatures, accompanied by abundant microstructures, including microlayering between a polycrystal quartz belt and mica, and quartz deformation was depended on cylinder (10-10) 〈a〉 or 〈c〉 glide. The development of an E-W-striking shear zone can be seen as a tectonic pattern in the region of the Paishanlou gold deposits of the collision between the Mongolian tectonic belt and the North Archean Craton from Suolun to the Linxi suture zone during the Indosinian. The NE-striking ductile shear zone developed approximately 160 Ma during the early Yianshanian at middle to shallow tectonic levels and at middle- to low-temperatures, accompanied by typical microstructures, including polycrystal quartz aggregation and quartz subgrain rotation recrystallization, etc., and quartz deformation was depended on prismatic (1011) 〈a〉 glide. The last ductile shear event around the NE-striking shear zone developed at low temperatures and shallow tectonic levels, yielding to a pre-existing NE-striking shear zone, accompanied by abundant microstructures, including low-temperature quartz grain boundary migration and bulging recrystallization. The last ductile shear movement may be related to lithosphere thinning and the destruction of the North China Craton from approximately 130-120 Ma, and this shear event resulted directly in the mineralization in the Paishanlou region.  相似文献   

17.
3-D rheological structure is mainly the spatial distribution of lithospheric strength or viscos-ity, its strength and viscosity are indispensable parameters in quantitative study of the lithosphere deformation. Plate tectonics theory initially divided the…  相似文献   

18.
13C nuclear magnetic resonance (NMR) is widely used for research of solid fossil energy (i.e., coal, kerogen)for three reasons. First, the spectrum and data are directly obtained from the samples; second, the samples are not destroyed during analysis, and third, multi-structure information on carbon, hydrogen and oxygen functional groups can be collected quantita- tively and semi-quantitatively. During the past 20 years, the NMR method has been used to study many aspects of coal structure [1…  相似文献   

19.
柳畅  石耀霖  郑亮  朱伯靖 《地球物理学报》2012,55(12):3942-3957
华北盆地为我国板内地震多发区域,历史以来相继发生多次破坏性大地震.前人地震勘探与震源定位结果揭示了华北地震的空间分布特征:横向上,华北地震基本发生在地壳的薄弱地带(Moho面上隆),或者地壳厚度的急剧变化带;纵向上,华北地震在地壳一定深度范围内呈现成层分布特征;主震一般在上地壳底部9~15 km深度范围,余震多发生在大约深5~25 km的上地壳与中地壳范围内,在中地壳下层与下地壳中仅有少量或者鲜见有余震发生.为研究解释华北盆地地震空间分布的以上特征,本文建立了华北盆地岩石圈三维黏弹性有限元模型.震源机制和GPS反映华北盆地处于NNE最大主压应力方向挤压,因此对模型边界施以恒定的位移速率边界条件;数值模拟华北岩石圈各层位在数百年以上长期匀速构造挤压作用下的应力积累特征,分析了华北地震空间分布与构造应力积累速率的关系,探讨了地壳结构与地壳分层流变性质对地壳应力积累的影响.计算结果表明,Moho面的隆起与地壳各层位岩石介质的黏滞系数是华北盆地地震孕育的重要因素.华北盆地在构造挤压的持续作用下,Moho面隆起处产生明显应力集中现象.该区域应力在长时期的积累过程中,在脆性的上地壳与中地壳上层,应力表现近于线性增长趋势,上地壳底部较其它深度有最大的应力增长率,其主震可以在应力积累至岩石破裂强度时发生;在脆、韧性转换的中地壳下层,应力增长速率次之,华北地震的大部分余震可能在该层位为主震所触发;而在柔性的下地壳应力增长近于指数形式,稳定状态之后其应力增长速率近于零,而鲜有地震发生.地壳各层位的应力增长率差异与地震成层分布的现象揭示了华北地壳的分层流变性质:脆性(上地壳)-较弱脆性(中地壳上层)-较弱韧性(中地壳下层)-较强韧性(下地壳)-韧性(岩石圈上地幔)的分层流变结构.  相似文献   

20.
Theoretical considerations of lithosphere deformation across transform plate boundaries predict an expression in terms of 3istributed deformation. The magnitude of rotation is expected to diminish away from the fault zone in a way which depends on the length of the fault, the amount of displacement, and the ductility of the lithosphere. Palaeomagnetic studies across the North Anatolian transform fault zone, which separates the Eurasian Plate and Anatolian Block in northern Turkey, show that clockwise rotations predicted from the sense of dextral motion are indeed present and have attained finite rotations of up to 270° during the 5 Ma history of Neotectonic deformation. Such rotations are, however, confined to narrow ( 10 km wide) zones between system-bounding faults and appear to have resulted from rotation in ball-bearing fashion of equidimensional blocks a few kilometres in size. Outside of this zone only anticlockwise rotations are observed; these are unrelated to deformation across the fault zone and record regional anticlockwise rotation of Turkey which is complementing clockwise rotation of Greece and accompanying Neogene opening of the Aegean Sea. The observed behaviour of continental lithosphere satisfies no plausible value of power law behaviour. We therefore conclude that relative motion across this transform boundary occurs as a discrete zone of intense deformation within a brittle layer comprising the seismogenic upper crust. This is presumed to be detached from a continuum deformation response to shearing in the lower crust and mantle beneath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号