首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In airborne gravity gradiometry, the Gravity Module Assembly is an optional gravimeter unit that is mounted on the same stabilized platform as the Full Tensor Gradiometer. Direct measurements of the gravity field are needed from this device to constrain the long wavelengths when gradient data are integrated mathematically to form high-resolution gravity fields. The Gravity Module Assembly is, however, capable of providing independent gravity data with a specification approaching that expected from a dedicated airborne gravity system. Presented here is an error analysis of data from this instrument collected alongside the Full Tensor Gradiometer during an airborne survey. By having both gradiometry and gravity datasets, comparisons of the information content in these two types of measurement are made.  相似文献   

2.
Marine gravimeters mounted on stabilized platforms are commonly used in aircraft to perform airborne gravity measurements. The role of the stabilized platform is to level the sensor mechanically, whatever the aircraft attitude. However, this compensation is generally insufficient due to the sensitivity of modern gravity sensors. Correcting the offlevel error requires that an offlevel correction calculated from positioning data be added to gravimeter measurements, which complicates not only the processing, but also the assessment of precision and resolution. This paper is a feasibility study describing the levelling of a completely strapped‐down LaCoste and Romberg gravimeter for airborne gravimetry operation, by means of GPS positioning data. It focuses on the calculation of the sensor offlevel correction needed for the complete gravity data processing. The precision of the offlevel correction that can be achieved, in terms of GPS data precision and gravity wavelengths, is theoretically studied and estimated using the gravity and GPS data acquired during the Alpine Swiss French airborne gravity survey carried out in 1998 over the French Western Alps. While a 1 cm precision of GPS‐determined baseline coordinates is sufficient to achieve a 5 mGal precision of the offlevel correction, we maintain that this precision has to reach 1 mm to ensure a 1 mGal precision of the offlevel correction at any wavelength. Without a stabilized platform, the onboard instrumentation becomes significantly lighter. Furthermore, the correction for the offlevel error is straightforward and calculated only from GPS data. Thus, the precision and the resolution of airborne gravity surveys should be estimated with a better accuracy.  相似文献   

3.
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella “level-2” IAG service (incorporating the International Gravity Bureau, International Geoid Service, International Center for Earth Tides, International Center for Global Earth models, and other future new services for, e.g., digital terrain models), would be a natural key element contributing to GGOS. Major parts of the work of the services would, however, remain complementary to the GGOS contributions, which focus on the long-wavelength components of the geopotential and its temporal variations, the consistent procedures for regional data processing in a unified vertical datum and Terrestrial Reference Frame, and the ensuring validations of long-wavelength gravity field data products.  相似文献   

4.
Gravity field and steady-state Ocean Circulation Explorer (GOCE) is the first satellite mission that observes gravity gradients from the space, to be primarily used for the determination of high precision global gravity field models. However, the GOCE gradients, having a dense data distribution, may potentially provide better predictions of the regional gravity field than those obtained using a spherical harmonic Earth Geopotential Model (EGM). This is investigated in Auvergne test area using Least Squares Collocation (LSC) with GOCE vertical gravity gradient anomalies (Tzz), removing the long wavelength part from EGM2008 and the short wavelength part by residual terrain modelling (RTM). The results show that terrain effects on the vertical gravity gradient are significant at satellite altitude, reaching a level of 0.11 E?tv?s unit (E.U.) in the mountainous areas. Removing the RTM effects from GOCE Tzz leads to significant improvements on the LSC predictions of surface gravity anomalies and quasigeoid heights. Comparison with ground truth data shows that using LSC surface free air gravity anomalies and quasi-geoid heights are recovered from GOCE Tzz with standard deviations of 11 mGal and 18 cm, which is better than those obtained by using GOCE EGMs, demonstrating that information beyond the maximal degree of the GOCE EGMs is present. Investigation of using covariance functions created separately from GOCE Tzz and terrestrial free air gravity anomalies, suggests that both covariance functions give almost identical predictions. However, using covariance function obtained from GOCE Tzz has the effect that the predicted formal average error estimates are considerably larger than the standard deviations of predicted minus observed gravity anomalies. Therefore, GOCE Tzz should be used with caution to determine the covariance functions in areas where surface gravity anomalies are not available, if error estimates are needed.  相似文献   

5.
Gravity data are often acquired over long periods of time using different instruments and various survey techniques, resulting in data sets of non-uniform accuracy. As station locations are inhomogeneously distributed, gravity values are interpolated on to a regular grid to allow further processing, such as computing horizontal or vertical gradients. Some interpolation techniques can estimate the interpolation error. Although estimation of the error due to interpolation is of importance, it is more useful to estimate the maximum gravity anomaly that may have gone undetected by a survey. This is equivalent to the determination of the maximum mass whose gravity anomaly will be undetected at any station location, given the data accuracy at each station. Assuming that the maximum density contrast present in the survey area is known or can be reasonably assumed from a knowledge of the geology, the proposed procedure is as follows: at every grid node, the maximum mass whose gravity anomaly does not disturb any of the surrounding observed gravity values by more than their accuracies is determined. A finite vertical cylinder is used as the mass model in the computations. The resulting map gives the maximum detection error and, as such, it is a worst-case scenario. Moreover, the map can be used to optimize future gravity surveys: new stations should be located at, or near, map maxima. The technique is applied to a set of gravity observations obtained from different surveys made over a period of more than 40 years in the Abitibi Greenstone Belt in eastern Canada.  相似文献   

6.
When processing the results of an airborne gravity survey flown in the Arctic at flight heights of 2000 to 3000 m, the authors encountered conditions, when the values of the free-air anomaly of gravity exceeded the values taken from the anomaly map, with a trend towards “heavier” values. The formula for calculation of the vertical gradient as a function of the latitude of the locality has been refined. The tentative calculations reported in the paper also indicate that a free-air gravity anomaly above the mountainous areas will contain additional positive systematic components, since only the effect of the vertical gradient of the normal gravity field is taken into account here, and the flight’s height during an airborne gravity survey, above a mountainous area, should be held constant, otherwise it would be necessary to take into account additional systematic biases, obtained in different flights, which are caused by the different values of the vertical gradient at different heights.  相似文献   

7.
A detailed gravity survey was carried out on the island of Vulcano, Aeolian Islands, Italy. Gravity was measured on 107 stations and the Bouguer anomalies were computed by assuming geological densities. Aim of this survey was to complete the island structural pattern relatively to the shallower structures. Separation of the gravity anomaly field was carried out by means of data filtering, and two main components were discerned. The λ>2.2 km wavelength component, filtered out of the longer wavelength components, was interpreted quantitatively along a NW profile. The best fitting model consists of an upper layer of recent pyroclastic products (p=2.1 g/cm3) lying upon a highly compacted pyroclastic series or lavas (p=2.4 g/cm3). The shorter wavelength residual gravity field (λ<2.2 km) is characterized by two anomalies, located on Vulcanello and the «Fossa di Vulcano» crater. Vulcanello anomaly could be interpreted, given the geothermal state of the area, as due to an increase of the rock density consequent to propylization processes by high temperature fluids (T>200°C). «Fossa di Vulcano» anomaly is instead attributable to the local volcanic chimney. A schematic comprehensive model of Vulcano is also presented, which accounts for the available main geological and geophysical data.  相似文献   

8.
In mountainous regions with scarce gravity data, gravimetric geoid determination is a difficult task that needs special attention to obtain reliable results satisfying the demands, e.g., of engineering applications. The present study investigates a procedure for combining a suitable global geopotential model and available terrestrial data in order to obtain a precise regional geoid model for Konya Closed Basin (KCB). The KCB is located in the central part of Turkey, where a very limited amount of terrestrial gravity data is available. Various data sources, such as the Turkish digital elevation model with 3 ?? × 3?? resolution, a recently published satellite-only global geopotential model from the Gravity Recovery and Climate Experiment satellite (GRACE) and the ground gravity observations, are combined in the least-squares sense by the modified Stokes?? formula. The new gravimetric geoid model is compared with Global Positioning System (GPS)/levelling at the control points, resulting in the Root Mean Square Error (RMS) differences of ±6.4 cm and 1.7 ppm in the absolute and relative senses, respectively. This regional geoid model appears to be more accurate than the Earth Gravitational Model 2008, which is the best global model over the target area, with the RMS differences of ±8.6 cm and 1.8 ppm in the absolute and relative senses, respectively. These results show that the accuracy of a regional gravimetric model can be augmented by the combination of a global geopotential model and local terrestrial data in mountainous areas even though the quality and resolution of the primary terrestrial data are not satisfactory to the geoid modelling procedure.  相似文献   

9.
Regional gravity field modeling with high-precision and high-resolution is one of the most important scientific objectives in geodesy,and can provide fundamental information for geophysics,geodynamics,seismology,and mineral exploration.Rectangular harmonic analysis(RHA)is proposed for regional gravity field modeling in this paper.By solving the Laplace’s equation of gravitational potential in local Cartesian coordinate system,the rectangular harmonic expansions of disturbing potential,gravity anomaly,gravity disturbance,geoid undulation and deflection of the vertical are derived,and so are the formula for signal degree variance and error degree variance of the rectangular harmonic coefficients(RHC).We also present the mathematical model and detailed algorithm for the solution of RHC using RHA from gravity observations.In order to reduce the edge effects caused by periodic continuation in RHA,we propose the strategy of extending the size of computation domain.The RHA-based modeling method is validated by conducting numerical experiments based on simulated ground and airborne gravity data that are generated from geopotential model EGM2008 and contaminated by Gauss white noise with standard deviation of 2 mGal.The accuracy of the 2.5′×2.5′geoid undulations computed from ground and airborne gravity data is 1 and 1.4cm,respectively.The standard error of the gravity disturbances that downward continued from the flight height of 4 km to the geoid is only 3.1 mGal.Numerical results confirm that RHA is able to provide a reliable and accurate regional gravity field model,which may be a new option for the representation of the fine structure of regional gravity field.  相似文献   

10.
自适应卡尔曼滤波在航空重力异常解算的应用研究   总被引:3,自引:1,他引:2       下载免费PDF全文
郑崴  张贵宾 《地球物理学报》2016,59(4):1275-1283
依据航空重力测量基本原理,构建了航空重力异常解算的卡尔曼滤波模型,将新息自适应卡尔曼滤波器(IAE,Innovation based Adaptive Estimation)应用于量测噪声未知的航空重力异常解算.针对IAE滤波器滑动窗口宽度难以准确确定的问题,通过对多个不同滑动窗口新息协方差估计的加权平均,获得改进的IAE滤波器,该IAE滤波器不仅具有量测噪声自适应估计能力,还能实现滑动采样窗口的优化选取.试验结果表明,IAE滤波器可以降低因量测噪声统计信息不明引起的解算误差,改进IAE解算的重力异常误差约为1mGal.  相似文献   

11.
重力异常是地下不同规模、不同形态和不同埋深的不均匀地质体的综合响应,重力勘探主要通过从重力异常中提取感兴趣的局部异常,以便探测深部结构,寻找隐伏矿床.为探讨重力异常分离原则并检验方法效果,本文从各方法原理入手,加上模型试验以及在安徽省泥河矿区深部隐伏铁矿的探寻实践检验,阐明:趋势分析法是整体拟合不同于最小二乘圆滑的局部拟合,由于是多项式拟合区域场,趋势分析法不适宜范围大、地质情况复杂的测区;插值切割法以计算点场值与四点圆周平均值的插值运算为切割算子,通过连续切割,得到重力异常的切割区域场和局部场,插值切割法对于小测区单个异常的分离效果较好,切割次数选择1到2次即可;匹配滤波法通过分析实测异常功率谱曲线、选择合适的滤波段、建造适宜的低通和带通滤波器进行滤波,从而提取不同波数成分的异常场,匹配滤波更适合垂向叠加的异常分离;解析延拓是根据一个面上的一组位场数据确定另一个不同高度面上位场值,应用中要把握延拓高度;垂向二阶导数法可以起到突出浅源异常,区分水平叠加异常,确定异常体的边界,消除或削弱背景场的作用.通过安徽泥河铁矿重力异常分离实验,发现三阶趋势分析、向上延拓以及插值切割法能很好地分离出矿体异常和背景场,同时发现在泥河矿区东南部和东北部还存在剩余重力异常,可为泥河铁矿扩大规模提供新的线索.  相似文献   

12.
重力场向下延拓Milne法   总被引:1,自引:1,他引:0       下载免费PDF全文
张冲  黄大年  刘杰 《地球物理学报》2017,60(11):4212-4220
重力场向下延拓能够突出局部和浅部的异常信息,分离叠加的异常特征.但是向下延拓通常具有过程不稳定、下延深度小、结果不准确等问题.针对向下延拓所存在的不足,本文利用重力场及其垂向一阶导数,基于辛普森(Simpson)求积公式,推导出重力场向下延拓米尔尼(Milne)公式.将本文向下延拓方法应用于模型数据,向下延拓模型结果及误差曲线表明,相对于向下延拓快速傅里叶变换(FFT)法和积分迭代法,向下延拓Milne法的深度更大,相对误差更小;相对模型值,向下延拓Milne法能够获得稳定且准确的结果.对加拿大乃查科(Nechako)盆地地区实测航空重力数据进行本文方法向下延拓验证,处理结果表明,相对于实测异常,本文方法向下延拓结果能够很好还原实测数据,并且在进一步向下延拓中反映原始异常的趋势,增强局部和细小异常信息.  相似文献   

13.
In this paper, according to the synthetic gravity anomaly of a horizontally infinite cylindrical geologic body, gravity gradient in horizontal direction was calculated by potential field discrete cosine transformation in frequency domain. In the calculation, the minimum curvature method was used to extend edge lines. We found that the gravity gradient field from the potential field transformation was dependable by comparison with synthetic gravity gradient, except the data in the edges. Then, the accumulative horizontal gravity gradients before Lushan MS7.0 earthquake were calculated for the accumulative gravity anomaly from September 2010 to October 2012. In the north-south direction, gravity gradient in Daofu-Kangding-Shimian and Markang-Lixian-Lushan exhibited a positive high value, and the strike of the high value zone was in line with the strike of Xianshuihe Faults and Markang Faults. In the east-west direction, high value zone was not as obvious as that in the north-south direction. Gravity gradients in the direction along and vertical to the strike of Longmenshan Faults were calculated by the definition of directional derivative. In the along-strike direction, high gravity gradient values appeared in Markang-Lixian areas along Markang Faults and Daofu-Kangding-Shimian areas along Xianshuihe Faults, and extremum appeared in Kangding-Shimian and the area nearby Lixian. In the direction vertical to the strike of Longmenshan fault zone, high gravity gradient values appeared in Lixian-Lushan-Kangding-Shimian areas, and the extremum appeared in the area nearby Kangding. The results indicate that gravity gradient in the direction along and vertical to the strike of faults can better show the relative gravity change on the two sides of faults. Lushan MS7.0 earthquake is located at the transition zone between the two high value zones of gravity gradient. The total horizontal gravity gradient shows that the location and strike of the high value zone are basically consistent with regional faults, and the extremums of total horizontal gravity gradient appeared nearby Lixian, Kangding and Shimian.  相似文献   

14.
本文通过分析陆地实测空间重力异常数据、海洋船载测量空间重力异常数据、卫星测高重力异常,布格重力异常数据、EGM2008地球重力模型数据等多种来源数据的性质和精度,并对相关数据进行对比,研究了编制1:500万中国海陆空间重力异常图的数据使用方案和技术方法.在地形较为平坦、实测数据分布均匀的陆区,使用实测数据,在地形复杂,实测数据稀少以及没有实测数据的陆区或岛屿,利用布格重力异常反推空间异常的方法合成平均空间重力数据,西藏地区的数据对比实验证明合成平均空间重力异常数据是一种有效的数据补充.利用三观测列方差分解法在南海地区对船载测量空间重力数据和美国SS系列及丹麦DNSC08GRA卫星重力数据进行了方差分解计算,结果表明不同来源的卫星测高重力数据具有很大的一致性,数据精度较以往有了很大的提高.海区空间重力数据使用原则是在船载重力测量数据校准下,全面使用卫星测高重力数据进行编图.海陆过渡区的异常处理应以EGM2008地球重力模型重力场为基准参考场,实现海陆异常平缓过渡,无缝连接.对中国海陆空间重力异常场进行了小波变换处理,对空间重力异常场进行了解读,勾画出三横四竖的一级重力梯级带及其所围限的8个一级重力异常区,并划分了二级重力异常区和梯级带,为块体构造学体系中大地构造格架的建立提供了地球物理证据.  相似文献   

15.
Regional gravity variations in Europe from superconducting gravimeters   总被引:1,自引:0,他引:1  
Recent satellite missions (CHAMP, GRACE) are now returning data on the time variation of the gravity field with harmonic coefficients computed every 4 weeks. The promise is to achieve a sub-microgal accuracy that will define continental mass variations involving large-scale hydrology. With this in mind, we examine the time varying gravity field over central Europe using a limited number of high quality ground-based superconducting gravimeter stations within the Global Geodynamics Project (GGP). Our purpose is to see whether there are coherent signals between the individual stations and to compare the regional component with that predicted from models of continental hydrology. The results are encouraging. We have found, using empirical orthogonal eigenfunctions of the gravity data that a clear annual signal is present that is consistent in phase (low amplitudes in summer) and amplitude (1–3 microgal) with that determined from a large-scale model of land water in connection with global climate modeling. More work is required to define how the gravity field is related to large-scale soil moisture and other mass variations, and we have yet to compare our results to the latest satellite-derived data.  相似文献   

16.
《Journal of Geodynamics》2010,49(3-5):305-309
A new database for absolute gravity (AG) measurements has been implemented at BGI and BKG and is operational now for storing absolute gravity data either in the form of metadata or as detailed measurement results. The database development was proposed by the IGFS (International Gravity Field Service) and is expected to have a great importance for the GGOS (Global Geodetic Observing System) initiative. This database will provide an overview about AG stations and observations and by this improve the cooperation between gravity groups and foster the combination with other geodetic observation techniques. The international community of absolute gravimeter users is asked to contribute to this database.In addition to its primary purposes, demonstration of the global site distribution and information about available observations, the database could also provide an important contribution to the Global Geodynamics Project (GGP). Precise repeated absolute gravity measurements at the superconducting gravimeter (SG) sites are necessary for the determination of SG drift parameters and can be used for checking SG instrument calibration factors. The AGrav database is capable of storing the necessary AG observations at the SG location in detail up to the “single drop level” and provides this information for the combination with SG time series. An example for a selected station is presented. It is proposed to establish an interface between the AGrav and GGP databases.  相似文献   

17.
利用重力异常匹配技术实现潜艇导航   总被引:36,自引:3,他引:33       下载免费PDF全文
潜艇的惯性导航误差是随时间积累的,利用重力异常数据进行辅助导航可以对惯性导航的漂移误差进行校正.首先利用2′×2′重力异常数据库作为基础信息,结合Kalman滤波算法对某区域进行了模拟计算,模拟过程采用了增益系数和信息更新序列的新方法进行Kalman 滤波的处理,结果表明在重力异常变化幅度较大的地区,重力异常可以进行潜艇的辅助导航.  相似文献   

18.
大同地区几次中强震前后的重力变化   总被引:5,自引:0,他引:5  
本文对华北北环重力重复测量资料进行了分析研究,探讨了排除浅层干扰因素,提取与地震相关的重力变化的途径。以大同地震为例,详细分析了地震前后重力场变化,结果表明,其变化是明显的,远远超过了各项误差。  相似文献   

19.
利用SWARM卫星高低跟踪探测格陵兰岛时变重力信号   总被引:1,自引:0,他引:1       下载免费PDF全文
王正涛  超能芳 《地球物理学报》2014,57(10):3117-3128
GRACE重力卫星任务即将结束,后续GRACE Follow-On卫星计划于2017年发射,在此期间,迫切需要一个新的卫星计划继续对全球时变重力场进行连续监测,以保证时变重力场信息时间序列的连贯性.SWARM计划包括三颗轨道高为300~500 km的近极轨卫星星座,类似于三颗CHAMP卫星,具有接替时变重力场探测的潜力.本文首先分析SWARM(模拟)、CHAMP、GRACE反演至60阶时变重力场球谐系数的误差特性及不同高斯平滑半径对高频误差的抑制效果,然后分别利用SWARM、CHAMP、GRACE的时变重力场模型恢复全球质量变化,结果表明,SWARM模拟观测数据的高频误差低于CHAMP观测数据,探测时变重力场的整体精度优于CHAMP,略低于GRACE探测精度;其次,对比2003年1月—2009年12月期间CHAMP(hl-SST)和GRACE(ll-SST)时变重力场模型反演格陵兰岛冰盖质量变化趋势,结果显示,CHAMP数据得到格陵兰岛冰盖质量变化趋势为-50.2±2.0 Gt/a,GRACE所得结果为-41.2±1.6 Gt/a,两者相差21.8%;最后,对比2000年1月—2004年12月间SWARM模拟数据和"真实"模型数据反演的格陵兰岛冰盖质量变化趋势,结果表明,两者相差19.2%.本文研究表明,利用SWARM hl-SST数据探测时变重力场可以达到20%相对精度水平,有潜力用于填补GRACE和GRACE Follow-On期间探测地球时变重力场的空白.  相似文献   

20.
Due to the successful operation of dedicated satellite gravity missions, nowadays high-accuracy global gravity field models have become available. This triggers the challenge to optimally combine this long to medium wavelength gravity field information derived from space-borne data with high-resolution terrestrial gravity data. In this paper, the least squares collocation concept is revised with the attempt to consistently unify the combination procedure in such a way that the full information contained in both data sets is merged. For example, in local or regional geoid determination the remove-restore method is usually applied only partially taking into account the accuracy of the global model coefficients used for the long-wavelength reduction. The key advantage of the extended formulation is the fact that it automatically accounts for the error covariance of all data types involved. The applicability, feasibility and performance of the proposed method is investigated in the frame of numerical closed-loop simulations. The two main fields of application, i.e., the improvement of a global gravity field model by terrestrial gravity field data, and, vice versa, the support to a regional geoid solution by the incorporation of a global gravity field model, have been analyzed and assessed. Although applied under simplified conditions, it could be shown that the method works and is practically applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号