首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gravity and bathymetric results from the 1983 Canadian Expedition to Study the Alpha Ridge (CESAR) have outlined positive free-air anomalies centred on the continental break off Ellesmere Island characteristic of normal Atlantic-type passive margins. These data confirm implications derived from depth-to-magnetic basement calculations that the ridge may not be structurally connected to the continent. Across the Alpha Ridge magnetic and gravity anomalies mimic the bathymetry. The magnetic anomalies apparently are not caused, to any great extent, by internal structures or magnetic reversals, but rather seem to result simply from variations in depths to a homogenous magnetic structure. The gravity anomalies across a 500 km wide section of the Alpha Ridge can be almost completely accounted for by topography, shallow sedimentary fill and a simple two-tier crustal model. This implies an extraordinary lateral density homogeneity unknown in continental structures of comparable size. Gravity models show the crustal thickness to increase gradually from 20 km at the Marvin Spur to 38 km at the ridge crest. A comparison of this model with a gravity model of the continental-type Lomonosov Ridge, which has a thickness of about 25 km, indicates that, at the same thickness of 25 km, the average crustal density of the Alpha Ridge is 0.08 Mg/m3 greater. These gravity constraints, the unusually homogenous seismic velocity structure revealed by the CESAR studies, the homogeneous magnetic structure, and the extraordinary high intensity satellite magnetic anomaly associated with the Alpha Ridge, indicate that the ridge may be composed of a large pile of mafic rock, possibly unique on this planet.  相似文献   

2.
This paper presents a case study of mapping basement structures in the northwestern offshore of Abu Dhabi using high‐resolution aeromagnetic data. Lineament analysis was carried out on the derivatives of the reduced‐to‐the‐pole magnetic data, along with supporting information from published geologic data. The lineament analysis suggests three well‐defined basement trends in the north–south, northeast–southwest, and northwest–southeast directions. The reduced‐to‐the‐pole magnetic data reveal high positive magnetic anomalies hypothesized to be related to intra‐basement bodies in the deep seated Arabian Shield. Depth to basement was estimated using spectral analysis and Source Parameter Imaging techniques. The spectral analysis suggests that the intruded basement blocks are at the same average depth level (around 8.5 km). The estimated Source Parameter Imaging depths from gridded reduced‐to‐the‐pole data are ranged between 4 km and 12 km with a large depth variation within small distances. These estimated depths prevent a reliable interpretation of the nature of the basement relief. However, low‐pass filtering of the horizontal local wavenumber data across two profiles shows that the basement terrain is characterized by a basin‐like structure trending in the northeast–southwest direction with a maximum depth of 10 km. Two‐dimensional forward magnetic modelling across the two profiles suggests that the high positive magnetic anomalies over the basin could be produced by intrusion of mafic igneous rocks with high susceptibility values (0.008 to 0.016 SI.  相似文献   

3.
Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc–continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc–continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust–mantle interface.  相似文献   

4.
The central Taupo Volcanic Zone (TVZ) is a region of intense Quaternary rhyolitic volcanism and geothermal activity in the North Island of New Zealand from which about 14,000 km3 of pyroclastics and lavas have been erupted during the last 1.6 Ma. Analysis of aeromagnetic surveys over the TVZ showed the presence of long-wavelength (10 to 25 km) magnetic anomalies which roughly follow the trend of the currently active eastern TVZ, from the north of Lake Taupo to the east of Lake Rotorua. An interpretation of the long-wavelength magnetic anomalies using 3-D magnetic modelling suggests that these anomalies are caused by the magnetic effects of < 3 km thick sequence of volcanic rocks and deeper magnetised bodies within the non-magnetic upper crust (4–7 km depth) beneath the young (age < 0.7 Ma), currently active eastern TVZ. The deep magnetised bodies are interpreted as solidified rhyolitic sub-volcanic plutons that have cooled down to below their Curie temperature.Although the existence of plutonic bodies beneath the TVZ has been postulated prior to this study, this magnetic interpretation result appears to be the first geophysical model of such bodies.  相似文献   

5.
华北克拉通中东部基底构造单元的重磁特征   总被引:10,自引:2,他引:8  
系统收集并重新处理了华北克拉通中东部的重磁资料,利用处理结果,结合近年来华北克拉通前寒武纪结晶基底构造研究的进展,重新将华北克拉通中东部划分为2个一级重磁异常单元和7个二级重磁异常单元;重点描述了7条分划性断裂的重磁特征,特别指出中国东部重力梯度带正是华北克拉通中部带的集中表现,而郯庐断裂带和兰考~聊城~盐山~台安-大洼断裂带是燕山期陆内不同刚性块体调整的重要边界,所以也是重磁特征的变异带.据此,对华北克拉通断裂与构造单元的重磁异常特征赋予了新的地质意义.研究表明,华北克拉通现今的地球物理特征能够反映结晶基底构造,其原因是华北克拉通现今构造格局是中新生代构造继承结晶基底构造的结果.  相似文献   

6.
Rb-Sr whole-rock analyses yield a Cambro-Ordovician (495 ± 11 m.y.) sedimentation age for the supposed Precambrian Greenland Group and a late Precambrian age, 680 ± 21 m.y., for parts of the Constant Gneiss, the first confirmation of Precambrian rocks in New Zealand. A Precambrian age for the Greenland Group is thus unlikely and the large area of Upper Cambrian-Lower Ordovician rocks now established can be considered as a lateral equivalent of the fossiliferous Lower Palaeozoic succession of northwest Nelson to the east. The Greenland Group, especially in the Paparoa Range has been affected subsequently by a thermal metamorphic overprint about 360 m.y. ago during the Tuhuan Orogeny. Although the Constant Gneiss must form the local basement to the Greenland Group in north Westland, the former does not appear to be the source of the sediments and the true provenance must lie elsewhere.  相似文献   

7.
Palaeomagnetic data from Late Precambrian dykes from the northern part of Varanger peninsula, north Norway, suggest a two-axis magnetization structure. The dominant component is considered to be syn- to late-tectonic and probably acquired at around 640 m.y. B.P. Superposed on this magnetization is a minor component which is compatible with the relative Lower-Middle Palaeozoic field; i.e. it was most likely imposed during the climax of the Caledonian orogenic movements in north Norway. The estimated relative Late Precambrian palaeopole cannot easily be reconciled with the European Late Precambrian polar path. This disagreement can be accounted for by assuming a post-magnetization dextral megashear, of the order of 500–1000 km, along the Trollfjord-Komagelv fracture zone. This type of displacement is in line with geological evidence and the palaeomagnetic reconstruction supports the long-held view of there having been continuity between the depositional environments of the Varanger Peninsula Barents Sea Group, the Eleonore Bay Group of east Greenland and the Hecla Hoek Formation of east Spitsbergen. The character and age of the horizontal displacement, post-640 to pre-500 m.y. B.P., is seen in conjunction with the opening up of the lapetus Ocean and reactivation of ancient deep-seated fractures during both the spreading and the contraction phases of ocean development.  相似文献   

8.
Seismic refraction measurements were made in two areas of the Baltic Sea in June 1967. The refraction data were obtained in the course of the transmission measurements program of Operation MILOC BALTIC 67. Three profile pairs were obtained, two in the area south of Öland Island, Sweden, the third to the east, north of the peninsula of Hel, Poland. The water depths vary from 60 to 90 meters between the areas. The receiving positions for the two profiles south of Oland Island are only 46 km apart but the structures differ markedly. The northern section, only 500 m thick, shows a rather thin sedimentary cover above 350 m of 3.7 km/sec material that in turn overlies 5.6 - 5.9 km/sec velocity material. The southern section, almost 2 km thick, has an equivalent amount of low velocity material, and a layer about 1 km thick having velocity 4.8 km/sec that overlies 6.0 km/sec velocity material. The eastern profile shows high velocity material, 5.6 km/sec, at 2.5 km depth. Correlation of the layers determined by seismic refraction with nearby geology suggests that the structural change south of Öland Island may represent the boundary of the Sarmatian Shield in this region.  相似文献   

9.
The GLATIS project (Greenland Lithosphere Analysed Teleseismically on the Ice Sheet) with collaborators has operated a total of 16 temporary broadband seismographs for periods from 3 months to 2 years distributed over much of Greenland from late 1999 to the present. The very first results are presented in this paper, where receiver-function analysis has been used to map the depth to Moho in a large region where crustal thicknesses were previously completely unknown. The results suggest that the Proterozoic part of central Greenland consists of two distinct blocks with different depths to Moho. North of the Archean core in southern Greenland is a zone of very thick Proterozoic crust with an average depth to Moho close to 48 km. Further to the north the Proterozoic crust thins to 37–42 km. We suggest that the boundary between thick and thin crust forms the boundary between the geologically defined Nagssugtoqidian and Rinkian mobile belts, which thus can be viewed as two blocks, based on the large difference in depth to Moho (over 6 km). Depth to Moho on the Archean crust is around 40 km. Four of the stations are placed in the interior of Greenland on the ice sheet, where we find the data quality excellent, but receiver-function analyses are complicated by strong converted phases generated at the base of the ice sheet, which in some places is more than 3 km thick.  相似文献   

10.
A 3-D crustal geoelectric model of the Ukrainian Shield (USh) is constructed from magnetic variation data. High electrical conductivity anomalies with resistivities of 1–100 Ω m are located at depths of up to 30 km from the basement surface. A high conductivity layer with ρ = 25 Ω m and with its upper boundary at a depth of 70 km is supposed to exist in the upper mantle of the southwestern USh.  相似文献   

11.
The North Anatolian Fault (NAF) is not observed on the surface beyond 40 km southeast of Karliova town toward the western shoreline of Lake Van. Various amplitudes of gravity and aeromagnetic anomalies are observed around the lake and surrounding region. In the gravity anomaly map, contour intensity is observed from the north of Mus city center toward Lake Van. There is a possibility that the NAF extends from here to the lake. Because there is no gravity data within the lake, the extension of the NAF is unknown and uncertain in the lake and to the east. Meanwhile, it is observed from the aeromagnetic anomalies that there are several positive and negative amplitude anomalies aligned around a slightly curved line in the east–west direction. The same curvature becomes much clearer in the analytic signal transformation map. The volcanic mountains of Nemrut and Suphan, and magnetic anomalies to the east of the Lake Van are all lined up and extended with this slightly curved line, provoking thoughts that a fault zone that was not previously mapped may exist. The epicenter of the major earthquake event that occurred on October 23, 2011 is located on this fault zone. The fault plane solution of this earthquake indicates a thrust fault in the east–west direction, consistent with the results of this study. Volcanic mountains in this zone are accepted as still being active because of gas seepages from their calderas, and magnetic anomalies are caused by buried causative bodies, probably magmatic intrusions. Because of its magmatic nature, this zone could be a good prospect for geothermal energy exploration. In this study, the basement of the Van Basin was also modelled three-dimensionally (3D) in order to investigate its hydrocarbon potential, because the first oil production in Anatolia was recorded around the Kurzot village in this basin. According to the 3D modelling results, the basin is composed of three different depressions aligned in the N–S direction and many prospective structures were observed between and around these depressions where the depocenter depths may reach down to 10 km.  相似文献   

12.
To evaluate the change in magnetic remanence with altitude through a slowly-cooled Precambrian basement terrain three vertical sections have been sampled in West Greenland. The study employs the principle that higher structural levels passed through their blocking temperatures earlier than lower levels and therefore record earlier pole positions, and it utilises dolerites and diorites intruded late in, or after, the tectonic history to minimise anisotropy effects. In the amphibolite facies terrain at Qa´qatoqaq (1400 m) highly-stable magnetite-held remanences move on demagnetisation progressively along small circles interpreted to record younger to older apparent polar wander (a.p.w.) motions during cooling through the blocking temperature ranges. Although the raw data show no systematic variation with altitude, when account is taken of the blocking temperature spectra as defined by thermal demagnetisation there is a systematic change in palaeofield direction in the same sense as that recorded by the demagnetisation trends. Granulite facies terrain at Igdlu´nguit qula?t (600 m) again shows systematic variation with altitude when the sites are divided into those with a remanence dominated by hemo-ilmenite and those dominated by magnetite. A third section at Praestefjeldet (250 m) yields a palaeofield reversal and a high blocking temperature component.The age evidence is evaluated to suggest that the a.p.w. path defined by 5 mean palaeopoles between 318°E, 1°N and 247°E, 38°N represents up to 50 Ma of palaeofield motion recorded by the uplift and cooling of this basement terrain at crustal depths of the order of 10 km. The calculated rate of a.p.w. motion is 1–2°/Ma and the rate of crustal uplift 10–20 m/Ma, these rates are respectively up to an order higher, and at least an order lower, than Phanerozoic rates. The collective data from Greenland agree closely with post-“Hudsonian” poles from the Laurentian Shield and represent part of a very widespread uplift event following this mobile episode. They show that altitude sections can yield a systematic record of the magnitude and direction of Precambrian a.p.w. motions provided that the blocking temperature spectra are taken into account.  相似文献   

13.
Widespread seagrass dieback in central Torres Strait, Australia has been anecdotally linked to the delivery of vast quantities of terrigenous sediments from New Guinea. The composition and distribution, and sedimentological and geochemical properties, of seabed and suspended sediments in north and central Torres Strait have been determined to investigate this issue. In northern Torres Strait, next to Saibai Island, seabed sediments comprise poorly sorted, muddy, mixed calcareous–siliciclastic sand. Seabed sediments in this region are dominated by aluminosilicate (terrigenous) phases. In central Torres Strait, next to Turnagain Island, seabed and suspended sediments comprise moderately sorted coarse to medium carbonate sand. Seabed sediments in this region are dominated by carbonate and magnesium (marine) phases. Mean Cu/Al ratios for seabed sediments next to Saibai Island are 0.01, and are similar to those found in New Guinea south coastal sediments by previous workers. Mean Cu/Al ratios for seabed sediments next to Turnagain Island are 0.02, indicating an enrichment of Cu in central Torres Strait. This enrichment comes from an exogenous biogenic source, principally from foraminifers and molluscs. We could not uniquely trace terrigenous sediments from New Guinea to Turnagain Island in central Torres Strait. If sediments are a factor in the widespread seagrass dieback in central Torres Strait, then our data suggest these are marine-derived sediments sourced from resuspension and advection from the immediate shelf areas and not terrigenous sediments dispersed from New Guinea rivers. This finding is consistent with outputs from recently developed regional hydrodynamic and sediment transport models.  相似文献   

14.
The present estimates of ice drift in the Arctic include utilization of satellite imagery data (special sensor microwave/imager) and a reconstruction of air pressure for the period 1899-1998. A significant part of the sea ice in the Arctic Ocean has its origin in the Kara Sea and melts in the Greenland and the Barents Sea (BS). Consequently there may be a particular risk of pollutants in the Kara Sea entering the food webs of the Greenland and BS. The ice export from the Kara Sea between 1988 and 1994 was about 208,000 km2 (154 km3) per year. The import of ice into the BS was during the same period 161,000 km2 (183 km3) per year while the ice drift through the Fram Strait into the Greenland Sea was 583,000 km2 (1859 km3) per year. Ice which formed adjacent to the Ob and Yenisey rivers in early January, drifted into the BS within two years (with a probability of about 50%.  相似文献   

15.
For the purpose of studying the Earth’s crust by means of tomography, we investigated cross-correlation functions emerging from long-term observations of propagating ambient seismic noise at pairs of broadband stations in Israel and Jordan. The data was provided by the eight permanent broadband stations of the Israel Seismic Network evenly distributed over Israel and the 30 stations of the DESERT2000 experiment distributed across the Arava Fault (South of the Dead Sea basin). To eliminate the influence of earthquakes and explosions, we have applied the methodology of Bensen et al. (Geophys J Int 169:1239–1260, 2007), including bandpass filtering and amplitude normalization in time and frequency domain. The cross-correlation functions estimated from continuous recordings of a few months were used to extract Rayleigh waves group velocity dispersion curves using automatic version of the frequency–time analysis procedure. Subsequently, these curves have been converted into the Rayleigh wave group velocity maps in the period range 5–20 s and S waves velocity maps in the depth range 5–15 km. In these maps, four velocity anomalies are prominent. Two of them are outlined by the previous reflection-refraction profiles and body wave tomography studies, i.e. a low velocity anomaly corresponds to the area of the extremely deep (down to 14 km) sedimentary infill in the Southern Dead Sea Basin and a high velocity anomaly in the Southern Jordan corresponds to the area of the Precambrian crystalline rocks of the Nubian Shield on the flanks of the Red Sea. The two other anomalies have not been reported before - the high velocity zone close to the Beersheba city and the low velocity anomaly in the region of Samaria-Carmel mountains - Southern Galilee. They have relatively low resolution and hence need further investigations for approving and contouring. The highest contrast between the average Rayleigh wave group velocity (2.7 km/s) and the anomalies is 10–13 %, comparable, however, to the level of noise in the data. The results have been verified by modeling the revealed anomalies which showed that all the four zones mentioned above could be detected by the tomography study.  相似文献   

16.
A clockwise rotation of Sumatra of about 20° about an axis located in or near the Sunda Strait has been inferred on the basis of the following data:(1) The portion of the Indonesian volcanic arc between the Sunda Strait and the island of Timor lies along a small circle whose center is located about 32°N, 119°E. The volcanic chain of Sumatra makes an angle of 20° with this portion of the arc.(2) The Benioff zone of Indonesia has a maximum depth of 600 km to the east of the Sunda Strait, but the maximum depth decreases to 200 km northwestward along the island of Sumatra.(3) The age of the present phase of volcanic activity in Indonesia is proportional to the maximum depth of the Benioff zone; rhyolitic tuffs of the Sunda Strait range in age from Late Miocene to Pleistocene, while ignimbrites of north Sumatra are about 70,000 years old.It is suggested that the increase in sea-floor spreading rate since 10 m.y. B.P. pushed north Sumatra and Malaya northeastward for about 500 km along the system of presently inactive faults, causing a clockwise rotation of both Sumatra and Malaya about an axis located in or near the Sunda Strait. Only when this rotation ceased did the underthrusting of north Sumatra begin, producing a shallow and short Benioff zone, and delayed volcanic activity.  相似文献   

17.
We review the development of autonomous underwater vehicle (AUV) use under sea ice to map the three-dimensional (3-D) structure of the ice underside. The author, after extensive experience in under-ice profiling from submarines using single-beam sonar, carried out the first under-ice sidescan sonar profiling from an AUV in 2002 in the Greenland Sea. This was followed in August 2004 by the first full multibeam sonar experiment, using Kongsberg EM2000 sonar aboard the Autosub-II vehicle off NE Greenland. Two experiments using a small Gavia vehicle deployed through holes in the ice followed in 2007 and 2008, in the Beaufort Sea and off Ellesmere Island. Examples of the 3-D imagery are shown, and the two approaches of using a large vehicle deployed from a ship and a small through-ice vehicle are compared and found to be complementary. The imagery has shown that although first-year (FY) ridges have the familiar shape of a triangular prism made of small ice blocks, multi-year (MY) ridges are found to be broken up by lead formation into a chain of individual large ice blocks rather than a coherent linear feature. New work and future plans are described.  相似文献   

18.
Deception Island is a volcanic island with a flooded caldera that has a complex geological setting in Bransfield Strait, Antarctica. We use P-wave arrivals recorded on land and seafloor seismometers from airgun shots within the caldera and around the island to invert for the P-wave velocity structure along two orthogonal profiles. The results show that there is a sharp increase in velocity to the north of the caldera which coincides with a regional normal fault that defines the northwestern boundary of the Bransfield Strait backarc basin. There is a low-velocity region beneath the caldera extending from the seafloor to > 4 km depth with a maximum negative anomaly of 1 km/s. Refracted arrivals are consistent with a 1.2-km-thick layer of low-velocity sediments and pyroclastites infilling the caldera. Synthetic inversions show that this layer accounts for only a small portion of the velocity anomaly, implying that there is a significant region of low velocities at greater depths. Further synthetic inversions and melt fraction calculations are consistent with, but do not require, the presence of an extensive magma chamber beneath the caldera that extends downwards from ≤ 2 km depth.  相似文献   

19.
Known mineral occurrences in northern Vancouver Island are typically hosted in volcanic units of the Bonanza Group. At a local scale, the mineralization is associated with advanced argillic bedrock alteration and is often intimately related to porphyry intrusions. On a larger scale, faults are thought to exert the most significant control on the distribution of mineralized host rocks. Poor exposures and a complex glacial history limit the use of traditional methods of geological mapping and mineral exploration in this region and to date geophysical methods have been under-utilized. Here we present findings from four standard geophysical (gravity, magnetics, electromagnetics and seismic refraction) methods, recently deployed here to elucidate the subsurface geology, as well as to identify new targets for base metal exploration. Results at two different sites show that the integrated interpretation of geophysical data, constrained by physical rock property measurements, yields detailed images of the subsurface at a fraction of the cost of drilling. At one site, east of Rupert Inlet, the final subsurface model shows that the Bonanza Group is not nearly as extensive as previously presumed. An extension of the Holberg Fault is identified some 50 km east of the visibly mapped outcrop and an extensive zone of alteration around the fault is recognized. Furthermore, a number of the methods provide support for the existence of a porphyry dike at this site. At the second site, north of Rupert Inlet, magnetic and electromagnetic data prove effective at mapping alteration and locating shear zones beneath a relatively thin drift cover. Together, these results help outline a strategy for exploration in drift-covered terrains and show that a redirection of exploration effort is warranted in the case of northern Vancouver Island.  相似文献   

20.
We discuss the model representation of volume transports through one of the most climate-relevant ocean passages, the Fram Strait. We compare results from a coupled ocean–sea ice model with different resolutions (∼1/12° and ∼1/4°) and measurements from a mooring array along 79° N. The 1/4° model delivers a realistic mean climate state and realistic net volume transports. However, this model fails to reproduce the observed intense barotropic recirculation that reaches far north in Fram Strait. This recirculation is captured in the higher resolution version of the model. Other differences exist in the circulation over the East Greenland Shelf and in the temperature of Atlantic waters in the Fram Strait region as well as in surface heat fluxes. We find that a combination of high-resolution model results and long-term measurements can improve the interpretation of measured and simulated processes and reduce the uncertainties in exchange rates between Arctic and the North Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号