首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Unmanned aerial vehicles (UAVs) and structure-from-motion photogrammetry enable detailed quantification of geomorphic change. However, rigorous precision-based change detection can be compromised by survey accuracy problems producing systematic topographic error (e.g. ‘doming’), with error magnitudes greatly exceeding precision estimates. Here, we assess survey sensitivity to systematic error, directly correcting topographic data so that error magnitudes align more closely with precision estimates. By simulating conventional grid-style photogrammetric aerial surveys, we quantify the underlying relationships between survey accuracy, camera model parameters, camera inclination, tie point matching precision and topographic relief, and demonstrate a relative insensitivity to image overlap. We show that a current doming-mitigation strategy of using a gently inclined (<15°) camera can reduce accuracy by promoting a previously unconsidered correlation between decentring camera lens distortion parameters and the radial terms known to be responsible for systematic topographic error. This issue is particularly relevant for the wide-angle cameras often integrated into current-generation, accessible UAV systems, frequently used in geomorphic research. Such systems usually perform on-board image pre-processing, including applying generic lens distortion corrections, that subsequently alter parameter interrelationships in photogrammetric processing (e.g. partially correcting radial distortion, which increases the relative importance of decentring distortion in output images). Surveys from two proglacial forefields (Arolla region, Switzerland) showed that results from lower-relief topography with a 10°-inclined camera developed vertical systematic doming errors > 0·3 m, representing accuracy issues an order of magnitude greater than precision-based error estimates. For higher-relief topography, and for nadir-imaging surveys of the lower-relief topography, systematic error was < 0·09 m. Modelling and subtracting the systematic error directly from the topographic data successfully reduced error magnitudes to values consistent with twice the estimated precision. Thus, topographic correction can provide a more robust approach to uncertainty-based detection of event-scale geomorphic change than designing surveys with small off-nadir camera inclinations and, furthermore, can substantially reduce ground control requirements. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

2.
移动摄影测量技术SfM(Structure from Motion)的发展使活动构造研究中快速获得野外中小区域内高精度DEM数据更便捷,DEM数据精度是目前活动构造与测量领域较关注的问题。本文通过对比非RTK模式无人机摄影测量并结合地面控制点(GCPs)生成的SfM DEM数据与基于RTK移动摄影测量技术获取的RTK-SfM DEM数据差异,重点分析搭载RTK模块的移动摄影测量技术获取的DEM数据在垂向上的精度。数据采集、处理与对比结果表明:在添加地面控制点后的非RTK模式无人机摄影测量生成的DEM数据中,除测量区域边缘照片较少而产生畸变外,大部分地区畸变率较小;基于移动RTK技术摄影测量获取的高程数据畸变率更小,且与非RTK模式无人机摄影结合地面控制点生成的高程数据存在约0.85 m的系统高程误差,减去该误差后,点云对比结果表明二者95%以上的点垂向误差均<0.05 m;搭载RTK模块的移动摄影测量技术获取的DEM数据在垂向上具有更高的精度,且节省了时间与人工成本。  相似文献   

3.
The declining costs of small Unmanned Aerial Systems (sUAS), in combination with Structure‐from‐Motion (SfM) photogrammetry have triggered renewed interest in image‐based topography reconstruction. However, the potential uptake of sUAS‐based topography is limited by the need for ground control acquired with expensive survey equipment. Direct georeferencing (DG) is a workflow that obviates ground control and uses only the camera positions to georeference the SfM results. However, the absence of ground control poses significant challenges in terms of the data quality of the final geospatial outputs. Notably, it is generally accepted that ground control is required to georeference, refine the camera calibration parameters, and remove any artefacts of optical distortion from the topographic model. Here, we present an examination of DG carried out with low‐cost consumer‐grade sUAS. We begin with a study of surface deformations resulting from systematic perturbations of the radial lens distortion parameters. We then test a number of flight patterns and develop a novel error quantification method to assess the outcomes. Our perturbation analysis shows that there exists families of predictable equifinal solutions of K1K2 which minimize doming in the output model. The equifinal solutions can be expressed as K2 = f (K1) and they have been observed for both the DJI Inspire 1 and Phantom 3 sUAS platforms. This equifinality relationship can be used as an external reliability check of the self‐calibration and allow a DG workflow to produce topography exempt of non‐affine deformations and with random errors of 0.1% of the flying height, linear offsets below 10 m and off‐vertical tilts below 1°. Whilst not yet of survey‐grade quality, these results demonstrate that low‐cost sUAS are capable of producing reliable topography products without recourse to expensive survey equipment and we argue that direct georeferencing and low‐cost sUAS could transform survey practices in both academic and commercial disciplines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The production of topographic datasets is of increasing interest and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) requires a significant investment in personnel time, hardware and/or software. However, image‐based methods such as digital photogrammetry have been decreasing in costs. Developed for the purpose of rapid, inexpensive and easy three‐dimensional surveys of buildings or small objects, the ‘structure from motion’ photogrammetric approach (SfM) is an image‐based method which could deliver a methodological leap if transferred to geomorphic applications, requires little training and is extremely inexpensive. Using an online SfM program, we created high‐resolution digital elevation models of a river environment from ordinary photographs produced from a workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three‐dimensional space. The basic product of the SfM process is a point cloud of identifiable features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected in the field or from measurements of camera positions at the time of image acquisition. The georeferenced point cloud can then be used to create a variety of digital elevation products. We examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand‐held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low‐altitude platforms can produce point clouds with point densities comparable with airborne LiDAR, with horizontal and vertical precision in the centimeter range, and with very low capital and labor costs and low expertise levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The availability of high‐resolution, multi‐temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three‐dimensional topographic point measurements acquired from structure‐from‐motion (SfM) photogrammetry have been shown to be highly accurate and cost‐effective compared to laser‐based alternatives in some environments. Use of consumer‐grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM‐ and LiDAR‐derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. Greater information capacity of source imagery was found to increase pixel matching quality, which produced eight times greater point density and six times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100 000 m3) on an unvegetated fluvial surface; change detection determined from repeat LiDAR and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post‐processing techniques increased point density by 5–25% and decreased processing time by 10–30%. Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

6.
In the last decade advances in surveying technology have opened up the possibility of representing topography and monitoring surface changes over experimental plots (<10 m2) in high resolution (~103 points m‐1). Yet the representativeness of these small plots is limited. With ‘Structure‐from‐Motion’ (SfM) and ‘Multi‐View Stereo’ (MVS) techniques now becoming part of the geomorphologist's toolkit, there is potential to expand further the scale at which we characterise topography and monitor geomorphic change morphometrically. Moving beyond previous plot‐scale work using Terrestrial Laser Scanning (TLS) surveys, this paper validates robustly a number of SfM‐MVS surveys against total station and extensive TLS data at three nested scales: plots (<30 m2) within a small catchment (4710 m2) within an eroding marl badland landscape (~1 km2). SfM surveys from a number of platforms are evaluated based on: (i) topography; (ii) sub‐grid roughness; and (iii) change‐detection capabilities at an annual scale. Oblique ground‐based images can provide a high‐quality surface equivalent to TLS at the plot scale, but become unreliable over larger areas of complex terrain. Degradation of surface quality with range is observed clearly for SfM models derived from aerial imagery. Recently modelled ‘doming’ effects from the use of vertical imagery are proven empirically as a piloted gyrocopter survey at 50m altitude with convergent off‐nadir imagery provided higher quality data than an Unmanned Aerial Vehicle (UAV) flying at the same height and collecting vertical imagery. For soil erosion monitoring, SfM can provide data comparable with TLS only from small survey ranges (~5 m) and is best limited to survey ranges ~10–20 m. Synthesis of these results with existing validation studies shows a clear degradation of root‐mean squared error (RMSE) with survey range, with a median ratio between RMSE and survey range of 1:639, and highlights the effect of the validation method (e.g. point‐cloud or raster‐based) on the estimated quality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Structure‐from‐Motion (SfM) photogrammetry is now used widely to study a range of earth surface processes and landforms, and is fast becoming a core tool in fluvial geomorphology. SfM photogrammetry allows extraction of topographic information and orthophotos from aerial imagery. However, one field where it is not yet widely used is that of river restoration. The characterisation of physical habitat conditions pre‐ and post‐restoration is critical for assessing project success, and SfM can be used easily and effectively for this purpose. In this paper we outline a workflow model for the application of SfM photogrammetry to collect topographic data, develop surface models and assess geomorphic change resulting from river restoration actions. We illustrate the application of the model to a river restoration project in the NW of England, to show how SfM techniques have been used to assess whether the project is achieving its geomorphic objectives. We outline the details of each stage of the workflow, which extend from preliminary decision‐making related to the establishment of a ground control network, through fish‐eye lens camera testing and calibration, to final image analysis for the creation of facies maps, the extraction of point clouds, and the development of digital elevation models (DEMs) and channel roughness maps. The workflow enabled us to confidently identify geomorphic changes occurring in the river channel over time, as well as assess spatial variation in erosion and aggradation. Critical to the assessment of change was the high number of ground control points and the application of a minimum level of detection threshold used to assess uncertainties in the topographic models. We suggest that these two things are especially important for river restoration applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
With the development of photogrammetry technology and the popularity of unmanned aerial vehicles (UAVs)technology in recent years, using UAV photogrammetry technology to rapidly acquire high precision and high resolution topographic and geomorphic data on the fault zone has gradually become an important technical means. This paper first summarizes the basic principle and workflow of a new digital photogrammetry technology, SfM (Structure from Motion), which is simple, efficient and low cost. Using this technology, we conducted aerial image acquisition and data processing for a typical fault landform on the northern of Caka Basin in Qinghai. The digital elevation model (DEM)with 6.1cm/pix resolution is generated and the density of point cloud is as high as 273 points/m2. The coverage area is 0.463km2. Further, the terrain and slope data parallel to the fault direction are extracted by topographic analysis method, and combined with the contour map and the slope diagram generated by the DEM, a fine interpretation and quantitative study of complex multilevel geomorphic surfaces is carried out. Finally, based on the results of sophisticated interpretation of geomorphology, we got the vertical displacements of the T1 terrace to the T3 terrace as (1.01±0.06)m, (1.37±0.13)m and (3.10±0.11)m, and the minimum vertical displacements of the T4 terrace and the T5 terrace as (3.77±0.14)m and (5.46±0.26)m, respectively, through the topographic profile data extracted by DEM. Such vertical displacement parameters are difficult to obtain directly by traditional remote sensing images, which shows the great application prospect of UAV photogrammetry technology in the quantitative study of active tectonics.  相似文献   

9.
Drainage channels are an integral part of agricultural landscapes, and their impact on catchment hydrology is strongly recognized. In cultivated and urbanized floodplains, channels have always played a key role in flood protection, land reclamation, and irrigation. Bank erosion is a critical issue in channels. Neglecting this process, especially during flood events, can result in underestimation of the risk in flood‐prone areas. The main aim of this work is to consider a low‐cost methodology for the analysis of bank erosion in agricultural drainage networks, and in particular for the estimation of the volumes of eroded and deposited material. A case study located in the Veneto floodplain was selected. The research is based on high‐resolution topographic data obtained by an emerging low‐cost photogrammetric method (structure‐from‐motion or SfM), and results are compared to terrestrial laser scanning (TLS) data. For the SfM analysis, extensive photosets were obtained using two standalone reflex digital cameras and an iPhone5® built‐in camera. Three digital elevation models (DEMs) were extracted at the resolution of 0.1 m using SfM and were compared with the ones derived by TLS. Using the different DEMs, the eroded areas were then identified using a feature extraction technique based on the topographic parameter Roughness Index (RI). DEMs derived from SfM were effective for both detecting erosion areas and estimating quantitatively the deposition and erosion volumes. Our results underlined how smartphones with high‐resolution built‐in cameras can be competitive instruments for obtaining suitable data for topography analysis and Earth surface monitoring. This methodology could be potentially very useful for farmers and/or technicians for post‐event field surveys to support flood risk management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
It is well established that digital elevation models (DEMs) derived from unmanned aerial vehicle (UAV) images and processed by structure from motion may contain important systematic vertical errors arising from limitations in camera geometry modelling. Even when significant, such ‘dome’-shaped errors can often remain unnoticed unless specific checks are conducted. Previous methods used to reduce these errors have involved: the addition of convergent images to supplement traditional vertical datasets, the usage of a higher number of ground control points, precise direct georeferencing techniques (RTK/PPK) or more refined camera pre-calibration. This study confirms that specific UAV flight designs can significantly reduce dome errors, particularly those that have a higher number of tie points connecting distant images, and hence contribute to a strengthened photogrammetric network. A total of 22 flight designs were tested, including vertical, convergent, point of interest (POI), multiscale and mixed imagery. Flights were carried out over a 300 × 70 m2 flat test field area, where 143 ground points were accurately established. Three different UAVs and two commercial software packages were trialled, totalling 396 different tests. POI flight designs generated the smallest systematic errors. In contrast, vertical flight designs suffered from larger dome errors; unfortunately, a configuration that is ubiquitous and most often used. By using the POI flight design, the accuracy of DEMs will improve without the need to use more ground control or expensive RTK/PPK systems. Over flat terrain, the improvement is especially important in self-calibration projects without (or with just a few) ground control points. Some improvement will also be observed on those projects using camera pre-calibration or with stronger ground control. © 2020 John Wiley & Sons, Ltd.  相似文献   

11.
For an erosion event (October 2016) occurred at the Sparacia experimental area (Southern Italy), both terrestrial and low‐altitude aerial surveys were carried out by consumer grade camera and quadcopter (low‐cost unmanned aerial vehicle [UAV]) to measure rill erosion on two plots with steepness of 22% and 26%. Applying the structure from motion (SfM) technique, the three‐dimensional digital terrain models (3D‐DTMs) and the quasi three‐dimensional models (2.5D‐digital elevation model [DEM]) were obtained by the two surveys. Furthermore, 3D‐DTM and DEM were built using the available aerial photographs (166) and adding 40 terrestrial photographs. For the first time, the convergence index was applied to high‐resolution rill data for extracting the rill network, and a subsequent separation into contributing and non‐contributing rills was carried out. The comparison among the three surveys (terrestrial, UAV, and UAV + terrestrial) was developed using two morphometric parameters of the rill network (drainage density and drainage frequency). Moreover, using as reference the weight of sediment stored on the tanks located downstream of the plots, the reliability of soil loss measurement by 3D models was tested. For both contributing and non‐contributing rills, the morphometric parameters were higher for the terrestrial than for UAV and UAV + terrestrial surveys. For both plots, SfM always provided reliable soil loss measurements, which were affected by errors ranging from ?8% to 13%. Although the applied technique used a low‐cost UAV and a consumer grade camera, the obtained results demonstrated that a reliable estimate of rill erosion can be obtained in an area of interest.  相似文献   

12.
To quantify landscape change resulting from processes of erosion and deposition and to establish spatially distributed sediment budgets, ‘models of change’ can be established from a time series of digital elevation models (DEMs). However, resolution effects and measurement errors in DEMs may propagate to these models. This study aimed to evaluate and to modify remotely‐sensed DEMs for an improved quantification of initial sediment mass changes in an artificially‐created catchment. DEMs were constructed from photogrammetry‐based, airborne (ALS) and ground‐based laser scanning (TLS) data. Regions of differing morphological characteristics and vegetation cover were delineated. Three‐dimensional (3D) models of volume change were established and mass change was derived from these models. DEMs were modified region‐by‐region for rill, interrill and alluvial areas, based on logical and hydro‐geomorphological principles. Additional DEMs were constructed by combining multi‐source, modified data. Models were evaluated by comparison with d‐GPS reference data and by considering sediment budget plausibility. Comprehensive evaluation showed that DEM usability depends on a relation between the technique used to obtain elevation data, surface morphology and vegetation cover characteristics. Photogrammetry‐based DEMs were suited to quantification of change in interrill areas but strongly underestimated surface lowering in erosion rills. TLS DEMs were best suited to rill areas, while ALS DEMs performed best in vegetation‐covered alluvial areas. Agreement with reference data and budget plausibility were improved by modifications to photogrammetry‐ and TLS‐based DEMs. Results suggest that artefacts in DEMs can be reduced and hydro‐geomorphic surface structures can be better represented by applying region‐specific modifications. Photogrammetry‐based DEMs can be improved by combining higher and lower resolution data in defined structural units and applying modifications based on principles given by characteristic hydro‐geomorphic evolution. Results of the critical comparative evaluation of remotely‐sensed elevation data can help to better interpret DEM‐based quantifications of earth‐surface processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Landslides represent hazardous phenomena, often with significant implications. Monitoring landslides with time-series surface observations can indicate surface failure. Unmanned aerial vehicles (UAVs) employing compact digital cameras, in conjunction with structure-from-motion (SfM) and multi-view stereo (MVS) image processing approaches, have become commonplace in the geoscience research community. These methods offer relatively low-cost, flexible solutions for many geomorphological monitoring applications. However, conventionally ground control points (GCPs) are required for registration purposes, the provision of which is often expensive, difficult or even impracticable in hazardous and inaccessible terrain. In an attempt to overcome the reliance on GCPs, this paper reports research that has developed a morphology-based strategy to co-register multi-temporal UAV-derived products. It applies the attribute of curvature in combination with the scale-invariant feature transform algorithm, to generate time-invariant curvature features, which serve as pseudo-GCPs. Openness, a surface morphological digital elevation model derivative, is applied to identify relatively stable ground regions from which pseudo-GCPs are selected. A sensitivity threshold quantifies the minimum detectable change alongside unresolved biases and misalignment errors. The approach is evaluated at two study sites in the UK, first at Sandford with artificially induced surface change, and second at an active landslide at Hollin Hill, with multi-epoch SfM-MVS products derived from a consumer-grade UAV. Elevation changes and annual displacement rates at dm-level are estimated, with optimal results achieved over winter periods. The morphology-based co-registration strategy resulted in relative error ratios (i.e. mean error divided by average flying height) in the range 1:800–2500, comparable with those reported by similar studies conducted with UAVs augmented with real time kinematic (RTK)-Global Navigation Satellite Systems. Analysis demonstrates the potential of the morphology-based strategy for a semi-automatic, and practical co-registration approach to quantify surface motion. This can ultimately complement geotechnical and geophysical investigations and support the understanding of landslide behaviour, model prediction and construction of measures for mitigating risks. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
Soil microtopography is a property of critical importance in many earth surface processes but is often difficult to quantify. Advances in computer vision technologies have made image‐based three‐dimensional (3D) reconstruction or Structure‐from‐Motion (SfM) available to many scientists as a low cost alternative to laser‐based systems such as terrestrial laser scanning (TLS). While the performance of SfM at acquiring soil surface microtopography has been extensively compared to that of TLS on bare surfaces, little is known about the impact of vegetation on reconstruction performance. This article evaluates the performance of SfM and TLS technologies at reconstructing soil microtopography on 6 m × 2 m erosion plots with vegetation cover ranging from 0% to 77%. Results show that soil surface occlusion by vegetation was more pronounced with TLS compared to SfM, a consequence of the single viewpoint laser scanning strategy adopted in this study. On the bare soil surface, elevation values estimated with SfM were within 5 mm of those from TLS although long distance deformations were observed with the former technology. As vegetation cover increased, agreement between SfM and TLS slightly degraded but was significantly affected beyond 53% of ground cover. Detailed semivariogram analysis on meter‐square‐scale surface patches showed that TLS and SfM surfaces were very similar even on highly vegetated plots but with fine scale details and the dynamic elevation range smoothed out with SfM. Errors in the TLS data were mainly caused by the distance measurement function of the instrument especially at the fringe of occlusion regions where the laser beam intersected foreground and background features simultaneously. From this study, we conclude that a realistic approach to digitizing soil surface microtopography in field conditions can be implemented by combining strengths of the image‐based method (simplicity and effectiveness at reconstructing soil surface under sparse vegetation) with the high accuracy of TLS‐like technologies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a?1 (1896–2010) to 0.86 m a?1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a?1 (1978–2015). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Structure‐from‐motion (SfM) photogrammetry is revolutionising the collection of detailed topographic data, but insight into geomorphological processes is currently restricted by our limited understanding of SfM survey uncertainties. Here, we present an approach that, for the first time, specifically accounts for the spatially variable precision inherent to photo‐based surveys, and enables confidence‐bounded quantification of 3D topographic change. The method uses novel 3D precision maps that describe the 3D photogrammetric and georeferencing uncertainty, and determines change through an adapted state‐of‐the‐art fully 3D point‐cloud comparison (M3C2), which is particularly valuable for complex topography. We introduce this method by: (1) using simulated UAV surveys, processed in photogrammetric software, to illustrate the spatial variability of precision and the relative influences of photogrammetric (e.g. image network geometry, tie point quality) and georeferencing (e.g. control measurement) considerations; (2) we then present a new Monte Carlo procedure for deriving this information using standard SfM software and integrate it into confidence‐bounded change detection; before (3) demonstrating geomorphological application in which we use benchmark TLS data for validation and then estimate sediment budgets through differencing annual SfM surveys of an eroding badland. We show how 3D precision maps enable more probable erosion patterns to be identified than existing analyses, and how a similar overall survey precision could have been achieved with direct survey georeferencing for camera position data with precision half as good as the GCPs'. Where precision is limited by weak georeferencing (e.g. camera positions with multi‐metre precision, such as from a consumer UAV), then overall survey precision can scale as n½ of the control precision (n = number of images). Our method also provides variance–covariance information for all parameters. Thus, we now open the door for SfM practitioners to use the comprehensive analyses that have underpinned rigorous photogrammetric approaches over the last half‐century. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Digital elevation models (DEMs) derived from ground‐based topographic surveys have become ubiquitous in the field of fluvial geomorphology. Their wide application in spatially explicit analysis includes hydraulic modeling, habitat modeling, and morphological sediment budgeting. However, there is a lack of understanding regarding the repeatability and precision of DEMs derived from ground‐based surveys conducted by different, and inherently subjective, observers. This is of particular concern when we consider the proportion of studies and monitoring programs that are implemented across multiple sites and over time by different observers. We used a case study from the Columbia Habitat Monitoring Program (CHaMP), where seven field crews sampled the same six sites, to quantify the magnitude and effect of observer variability on DEMs interpolated from total station surveys. We quantified the degree to which DEM‐derived metrics and measured geomorphic change were repeatable. Across all six sites, we found an average elevation standard deviation of 0.05 m among surveys, and a mean total range of 0.16 m. A variance partition between site, crew, and unexplained errors for several topographically derived metrics showed that crew variability never accounted for > 1.5% of the total variability. We calculated minor geomorphic changes at one site following a relatively dry flow year between 2012 and 2011. Calculated changes were minimal (unthresholded net changes ±1–3 cm) with six crews detecting an indeterminate sediment budget and one crew detecting a minor net erosional sediment budget. While crew variability does influence the quality of topographic surveys, this study highlights that when consistent surveying methods are employed, the data sets are still sufficient to support derivation of topographic metrics and conduct basic geomorphic change detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The resolution and accuracy of digital elevation models (DEMs) can affect the hydraulic simulation results for predicting the effects of glacial lake outburst floods (GLOFs). However, for the Tibetan Plateau, high‐quality DEM data are often not available, leaving researchers with near‐global, freely available DEMs, such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) and the Shuttle Radar Topography Mission data (SRTM) for hydraulic modelling. This study explores the suitability of these two freely available DEMs for hydraulic modelling of GLOFs. Our study focused on the flood plain of a potentially dangerous glacial lake in southeastern Tibet, to evaluate the elevation accuracy of ASTER GDEM and SRTM, and their suitability for hydraulic modelling of GLOFs. The elevation accuracies of ASTER GDEM and SRTM were first validated against field global position system (GPS) survey points, and then evaluated with reference to the relatively high precision of 1:50 000 scale DEM (DEM5) constructed from aerial photography. Moreover, the DEM5, ASTER GDEM and SRTM were used as basic topographic data to simulate peak discharge propagation, as well as flood inundation extent and depth in the Hydrologic Engineering Center's River Analysis System one‐dimensional hydraulic model. Results of the three DEM predictions were compared to evaluate the suitability of ASTER GDEM and SRTM for GLOF hydraulic modelling. Comparisons of ASTER GDEM and SRTM each with DEM5 in the flood plain area show root‐mean‐square errors between the former two as ± 15·4 m and between the latter two as ± 13·5 m. Although SRTM overestimates and ASTER GDEM underestimates valley floor elevations, both DEMs can be used to extract the elevations of required geometric data, i.e. stream centre lines, bank lines and cross sections, for flood modelling. However, small errors still exist in the cross sections that may influence the propagation of peak discharge. The flood inundation extent and mean water depths derived from ASTER GDEM predictions are only 2·2% larger and 2·3‐m deeper than that of the DEM5 predictions, whereas the SRTM yields a flood zone extent 6·8% larger than the DEM5 prediction and a mean water depth 2·4‐m shallower than the DEM5 prediction. The modelling shows that, in the absence of high‐precision DEM data, ASTER GDEM or SRTM DEM can be relied on for simulating extreme GLOFs in southeast Tibet. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Accurate and reliable methods for quantifying grain size are important for river science, management and in various other sedimentological settings. Remote sensing offers methods of quantifying grain size, typically providing; (a) coarse outputs (c. 1 m) at the catchment scale where individual grains are at subpixel level, or; (b) fine resolution outputs (c. 1 mm) at the patch scale. Recently, approaches using unmanned aerial vehicles (UAVs) have started to fill the gap between these scales, providing hyperspatial resolution data (< 10 cm) over reaches a few hundred metres in length, where individual grains are at suprapixel level. This ‘mesoscale’ is critical to habitat assessments. Most existing UAV‐based approaches use two‐dimensional (2D) textural variables to predict grain size. Validation of results is largely absent however, despite significant differences in platform stability and image quality obtained by manned aircraft versus UAVs. Here, we provide the first quantitative assessment of the accuracy and precision of grain size estimates produced from a 2D image texture approach. Furthermore, we present a new method which predicts subaerial gravel size using three‐dimensional (3D) topographic data derived from UAV imagery. Data is collected from a small gravel‐bed river in Cumbria, UK. Results indicate that our new topographic method gives more accurate measures of grain size (mean residual error ‐0.0001 m). Better results for the image texture method may be precluded by our choice of texture measure, the scale of analysis or the effects of image blur resulting from an inadequate camera gimbal. We suggest that at our scale of assessment, grain size is more strongly related to 3D variation in elevation than to the 2D textural patterns expressed within the imagery. With on‐going improvements, our novel method has potential as the first grain size quantification approach where a trade‐off between coverage and resolution is not necessary or inherent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Stream network morphometrics have been used frequently in environmental applications and are embedded in several hydrological models. This is because channel network geometry partly controls the runoff response of a basin. Network indices are often measured from channels that are mapped from digital elevation models (DEMs) using automated procedures. Simulations were used in this paper to study the influence of elevation error on the reliability of estimates of several common morphometrics, including stream order, the bifurcation, length, area and slope ratios, stream magnitude, network diameter, the flood magnitude and timing parameters of the geomorphological instantaneous unit hydrograph (GIUH) and the network width function. DEMs of three UK basins, ranging from high to low relief, were used for the analyses. The findings showed that moderate elevation error (RMSE of 1·8 m) can result in significant uncertainty in DEM‐mapped network morphometrics and that this uncertainty can be expressed in complex ways. For example, estimates of the bifurcation, length and area ratios and the flood magnitude and timing parameters of the GIUH each displayed multimodal frequency distributions, i.e. two or more estimated values were highly likely. Furthermore, these preferential estimates were wide ranging relative to the ranges typically observed for these indices. The wide‐ranging estimates of the two GIUH parameters represented significant uncertainty in the shape of the unit hydrograph. Stream magnitude, network diameter and the network width function were found to be highly sensitive to elevation error because of the difficulty in mapping low‐magnitude links. Uncertainties in the width function were found to increase with distance from outlet, implying that hydrological models that use network width contain greater uncertainty in the shape of the falling limb of the hydrograph. In light of these findings, care should be exercised when interpreting the results of analyses based on DEM‐mapped stream networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号