首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research investigates the seismic design method and the cyclic inelastic behavior of the bottom column, also called the vertical boundary element (VBE), in steel plate shear walls (SPSWs). This study consists of two parts. This Part 1 paper discusses the anticipated pushover responses for properly designed SPSWs and the possible inelastic responses of the bottom VBE at various levels of inter‐story drift. Considering both the tension field action of the infill panel and the sway action of the boundary frame, this study develops a simplified method to compute the flexural and shear demands in the bottom VBE. Based on the superposition method, this approach considers various plastic hinge forming locations at different levels of inter‐story drift. One of the key performance‐based design objectives is to ensure that the top ends of the bottom VBEs remain elastic when the SPSWs are subjected to the maximum considered earthquake. This paper presents the comprehensive design procedures for the bottom VBE. Furthermore, this study conducted cyclic performance evaluation tests of three full‐scale two‐story SPSWs at the Taiwan National Center for Research on Earthquake Engineering in 2011 to validate the effectiveness of the proposed design methods. The experimental program, cyclic inelastic responses of the SPSWs and bottom VBEs, and numerical simulations are presented in Part 2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The steel plate shear wall (SPSW) is an effective lateral force resisting system in which unstiffened steel infill plates are connected to the horizontal and vertical boundary elements (VBEs) on all sides of the plates. The boundary elements must be designed to resist the tension field force of the infill panels. When the VBEs are made from a steel box section, the flange of each box VBE connected with the infill panels can be pulled out‐of‐plane by significant panel forces, called pull‐out action. This study investigates capacity design methods for box VBEs in SPSWs. Simplified fixed beam and portal frame models aim to estimate the pull‐out responses of the flange of the box sections with and without infill concrete, respectively. In this study, cyclic tests of three full‐scale two‐story SPSWs using box VBEs with or without the infill concrete are conducted. Inelastic pushover analyses of the finite element models are conducted. The tests and analytical results confirm that the proposed design methods, which aimed to prevent the full yield of the flange under the pull‐out action, are applicable. Furthermore, the test and analytical results suggest that the initial yielding of the flange of box VBEs under the collective effects of the pull‐out action on the flange, the gravity load, and the sway action on the SPSW represents a local yielding. A strict prohibition of the initial yielding on the flange under the aforementioned collective effects is not recommended for pursuing a cost‐effective design. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is the second part of a two‐part paper presenting the cyclic tests of four two‐story narrow steel plate shear walls (SPSWs). The first paper introduces the analytical studies and the specimen designs. This paper describes the test results. Some design implications including the capacity design for the first story column and the width‐to‐thickness ratio check for the beam web are discussed based on key observations from the tests. Test results confirm that the simplified strip model can accurately predict the inelastic responses of the specimens. Test results also confirm that the proposed capacity design method is effective in ensuring the plastic hinge formation at the bottom end of the first story column for SPSW with or without restrainers. Test results also show that the horizontal restrainers are effective in reducing the member forces in the boundary beam and column elements. Comparing the test results of the typical SPSW with those of the restrained SPSW (R‐SPSW) specimens, it is found that the R‐SPSW possesses an improved cyclic performance and reduced material weight. Analytical results predict the compressed column moments at the onset of the column plastic hinge formation well. The analytical hysteretic energy distribution in the first story column agrees very well with the observed inelastic actions developed in the four specimens. The detailed frame response analyses and the test results confirm that the assumptions made in developing the proposed column capacity design method are reasonable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The steel plate shear wall (SPSW) system is a robust option for earthquake resistance due to the strength, stiffness, ductility and energy dissipation that it provides. Although thin infill plates are efficient for resisting lateral loads, boundary frames that are proportioned based on capacity design requirements add significant structural weight that appears to be one of the factors limiting the use of the system in practice. An alternate configuration, the SPSW with coupling (SPSW‐WC), was explored recently as an option for increasing architectural flexibility while also improving overall system economy and seismic performance. The SPSW‐WC, which extensively employs flexural boundary frame contribution, has shown promise in analytical, numerical and experimental studies, but recent research on uncoupled SPSWs suggests that boundary frame contribution should not be considered for carrying seismic design shear. As a result, in the present study, boundary frame contribution in SPSWs was explored with detailed three‐dimensional finite element models, which were validated against large‐scale SPSW‐WC tests. Six‐story systems were considered, and the study matrix included single and double uncoupled SPSWs along with coupled SPSWs that had various degrees of coupling. Variations in design methodology were also explored. The modeling framework was employed to conduct static monotonic and cyclic pushover analyses and dynamic response history analysis. These analyses demonstrate the beneficial effect of coupling in SPSWs and illustrate the need to consider boundary frame contribution in design of coupled SPSWs. In addition, sharing design shear between the infill plate and the boundary frame is more generally shown to not be detrimental if this sharing is done in the design stage based on elastic analysis and the resulting boundary frame provides adequate secondary strength and stiffness following infill plate yielding. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This study consists of two parts. In this two‐part research, four two‐story narrow steel plate shear walls (SPSWs) were cyclically tested at the Taiwan National Center for Research on Earthquake Engineering in 2007. This paper, Part 1, proposes a capacity design method for the first‐story boundary column of the SPSW to ensure that the plastic hinges form at the column bottom ends when the SPSW develops the plastic mechanism. The design method was developed based on the superposition method considering the frame sway action and the panel force effects of the SPSW. Restrained steel plate shear wall (R‐SPSW) studied herein adopts pairs of the horizontal restrainers sandwiching over both sides of the infill panels and connected to the boundary columns. Analytical studies on four SPSW example designs using nonlinear finite element (FE) models and the simplified strip models confirm that the restrainers could also effectively reduce the column force demands and allow the infill panel to stretch more uniformly. In addition, the FE analytical studies verify the effectiveness of the proposed column capacity design method and the seismic design recommendations for the restrainer. This paper introduces the designs of the four narrow SPSW specimens, presenting the selections of the boundary beams and columns, the designs of the beam‐to‐column connections and the construction details of the restrainers. The experimental results, key observations and the design implications are reported in the companion paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Unstiffened steel plate shear walls (SPSWs) are used as lateral load‐resisting systems in building structures. The energy dissipation mechanism of SPSWs consists of the tension yielding of web plates and the formation of plastic hinges at the ends of horizontal boundary elements. However, vertical boundary elements (VBEs) of high‐rise SPSWs may experience high axial forces under lateral loading. This study explores the effectiveness of staggering of web plates on the reduction of VBE forces and drift response of SPSWs during an earthquake event. An analytical study has been conducted to determine the base shear reduction factor so as to match the overstrength of staggered systems with conventional SPSWs. A design methodology has been proposed for staggered SPSWs. Six‐, 9‐, and 20‐storey staggered and conventional SPSWs with varying aspect ratios are considered in this study to compare their seismic response. These study frames are modelled and analysed in OpenSEES platform. Nonlinear static and dynamic analyses are performed to compare the drift response, hinge mechanisms, and steel tonnage. Staggered SPSWs showed uniform drift distribution and reduction in interstorey drift and axial force demand on the VBEs.  相似文献   

7.
Previous research has shown that self‐centering steel plate shear walls (SC‐SPSWs) are capable of achieving enhanced seismic performance at multiple hazard levels, including recentering following design‐level earthquakes. When modeling SC‐SPSWs numerically, these studies considered an idealized tension‐only steel plate shear wall (SPSW) web plate behavior. Research has shown that web plate behavior is more complex than predicted by the idealized model, and web plates can provide more strength, stiffness, and energy dissipation than predicted by the idealized model. The idealized model of web plate behavior is used widely in SPSW numerical models where the moment‐resisting boundary frame provides supplemental hysteretic damping and stiffness; however, in SC‐SPSWs, where the post‐tensioned boundary frame is designed to remain elastic during an earthquake, accounting for the more complex web plate behavior can have a significant impact on seismic performance estimates from numerical simulation. This paper presents different methods for modeling SC‐SPSWs. Responses from these models are compared with experimental results. A simple modification of the tension‐only model, referred to as the tension‐compression strip model, is shown to provide a reasonable approximation of SC‐SPSW behavior. Results from nonlinear response history analyses of SC‐SPSWs with the tension‐only and tension‐compression web plate models are compared to assess how the approximation of web plate behavior affects SC‐SPSW seismic performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Steel plate shear walls (SPSWs) are used as lateral force‐resisting systems in new and retrofitted structures in high‐seismic regions. Various international codes recommend the design of SPSWs assuming the entire lateral load to be resisted by the infill plates. Such a design procedure results in significant overstrength leading to uneconomical and inefficient use of materials. This study is focused on the estimation of contribution of boundary elements in resisting the lateral force considering their interaction with the web plates of SPSW systems. Initially, the relative contribution of web plates and boundary frames is computed for a single‐bay single‐story frame with varying rigidity and end connections of boundary elements. Nonlinear static analyses are carried out for the analytical models in OpenSees platform to quantify this contribution. Later, this study is extended to the code‐based designed three‐story, six‐story, and nine‐story SPSWs of varying aspect ratios. Based on the results obtained, a new design procedure is proposed taking the lateral strengths of the boundary frames into account. Nonlinear time‐history analyses are conducted for 40 recorded ground motions representing the design basis earthquake and maximum considered earthquake hazard levels to compare the interstory and residual drift response and yield mechanisms of SPSWs designed as per current practice and the proposed methodology. Finally, an expression has been proposed to predict the lateral force contribution of the infill plate and the boundary frame of SPSWs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Coupled steel plate shear wall (C‐SPSW) consists of two or more steel plate shear walls interconnected by coupling beams at the floor levels. In this study, a six‐story C‐SPSW prototype building was designed. A 40% scale C‐SPSW specimen, which is representative of the bottom two‐and‐half‐story substructure of the prototype, was cyclically tested using Multi‐Axial Testing System at the National Center for Research on Earthquake Engineering in 2009. In addition to a constant vertical force representing the gravity load effects, cyclic increasing displacements and the corresponding overturning moments transmitted from the upper stories were computed online and simultaneously applied on the substructural specimen. This paper firstly introduces the designs of the prototype C‐SPSW and the test specimen. Then, the test results and the numerical simulation are discussed in detail. Test results confirm the effectiveness of the proposed column capacity design method, which aims at limiting the plastic hinge formation within the bottom quarter height of the bottom column. Test and analytical results suggest that the coupling beam rotational demands can be estimated as the design story drifts when the formation of desirable plastic mechanism of the C‐SPSW is expected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The linked column frame (LCF) system is proposed as a seismic load resisting system that uses conventional components to limit seismic damage to relatively easily replaced elements. The LCF features a primary lateral system, denoted the linked column, which is made up of dual columns connected with replaceable links, and a secondary flexible moment frame system with beams having fully restrained connections at one end and simple connections at the other. The linked columns are designed to limit seismic forces and provide energy dissipation via link yielding, while preventing damage to the moment frame under certain earthquake hazard levels. A design procedure is proposed that ensures plastic hinges develop in the links of the linked columns at a significantly lower story drift than when plastic hinges develop in the moment frame beams. The large drift difference helps enable design of this system for two distinct performance states: rapid return to occupancy, where only link damage occurs and relatively simple link replacement is possible, and collapse prevention, where both the links and the beams of the moment frame may be damaged. A series of 3‐story, 6‐story, and 9‐story prototype LCF buildings were designed using the proposed design approach. Nonlinear models were developed for the designs with the link models validated using recent experimental results. The seismic response of these systems was investigated for ground motions representing various seismic hazard levels. Results show that the LCF system not only provides collapse prevention, but also has the capability of limiting economic loss by reducing structural damage and allowing for rapid return to occupancy following earthquakes with shorter return periods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents an experimental investigation on the seismic behavior of H‐beam to circular tubular column connections stiffened by an outer ring diaphragm. An innovative three‐dimensional (3D) connection subassembly testing system was first described. Specimens representative of two‐dimensional (2D) interior columns, 3D interior and exterior columns in a steel building frame were then tested to failure under unidirectional or bidirectional cyclic loads. Various specimen parameters are used to evaluate their effects on connection behavior. Test results indicate significantly different failure modes for 2D and 3D weak panel connections, with panel shear buckling and local distortion of outer diaphragm occurring only for 3D connections. The weak beam connections unexceptionally exhibited final fracture at the junction between diaphragm and beam flange. In contrast with weak beam connections, weak panel connections demonstrated better seismic performance and ductility. As a result, a seismic design philosophy considering panel zone yielding before beam flexural yielding is proposed. Based on experiment observations, small diaphragm width and simplified fillet welding are found to be feasible especially for weak beam connections, improving architectural appearance and facilitating construction. Strength evaluations also suggest that current AIJ design provisions may be appropriate when applied to panel zones in 3D connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
A ductile Vierendeel frame can be constructed by incorporating steel panel dampers (SPDs) into a moment‐resisting frame (MRF). Thus, the stiffness, strength, and ductility of the lateral force–resisting system can be enhanced. The proposed 3‐segment SPD possesses a center inelastic core (IC) and top and bottom elastic joints. This paper discusses the mechanical properties, capacity design method, and buckling‐delaying stiffeners for the SPDs through the use of cyclic loading tests on 2 specimens. Tests confirm that SPDs' cyclic force vs deformation relationships can be accurately predicted using either the Abaqus or PISA3D model analyses. The paper also presents the capacity design method for boundary beams connected to the SPDs of a typical SPD‐MRF. The seismic performance of an example 6‐story SPD‐MRF is evaluated using nonlinear response history analysis procedures and 240 ground accelerations at 3 hazard levels. Results indicate that under 80 maximum considered earthquake ground accelerations, the mean‐plus‐one standard deviation of the shear deformation of the ICs in the SPDs is 0.055 rad, substantially less than the 0.11 rad deformational capacity observed from the SPD specimens. The experimental cumulative plastic deformation of the proposed SPD is 242 times the yield deformation and is capable of sustaining a maximum considered earthquake at least 8 times before failure. This paper introduces the method of using one equivalent beam‐column element for effective modeling of the 3‐segment SPD. The effects of the IC's relative height and stiffness on the overall SPD's elastic and postelastic stiffness, elastic deformation limits, and inelastic deformational demands are discussed.  相似文献   

13.
This paper demonstrates the applicability of response history analysis based on rigid‐plastic models for the seismic assessment and design of steel buildings. The rigid‐plastic force–deformation relationship as applied in steel moment‐resisting frames (MRF) is re‐examined and new rigid‐plastic models are developed for concentrically‐braced frames and dual structural systems consisting of MRF coupled with braced systems. This paper demonstrates that such rigid‐plastic models are able to predict global seismic demands with reasonable accuracy. It is also shown that, the direct relationship that exists between peak displacement and the plastic capacity of rigid‐plastic oscillators can be used to define the level of seismic demand for a given performance target. Copyright© 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents the results of a multi‐level pseudo‐dynamic seismic test program that was performed to assess the performance of a full‐scale three‐bay, two‐storey steel–concrete composite moment‐resisting frame built with partially encased composite columns and partial‐strength beam‐to‐column joints. The system was designed to develop a ductile response in the joint components of beam‐to‐column joints including flexural yielding of beam end plates and shear yielding of the column web panel zone. The ground motion producing the damageability limit state interstorey drift caused minor damage while the ultimate limit state ground motion level entailed column web panel yielding, connection yielding and plastic hinging at the column base connections. The earthquake level chosen to approach the collapse limit state induced more damage and was accompanied by further column web panel yielding, connection yielding and inelastic phenomena at column base connections without local buckling. During the final quasi‐static cyclic test with stepwise increasing displacement–amplitudes up to an interstorey drift angle of 4.6%, the behaviour was ductile although cracking of beam‐to‐end‐plate welds was observed. Correlations with numerical simulations taking into account the inelastic cyclic response of beam‐to‐column and column base joints are also presented in the paper together. Inelastic static pushover and time history analysis procedures are used to estimate the structural behaviour and overstrength factors of the structural system under study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three‐dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two‐phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time‐domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In the conventional seismic design of high‐rise reinforced concrete core‐wall buildings, the design demands such as design shear and bending moment in the core wall are typically determined by the response spectrum analysis procedure, and a plastic hinge is allowed to form at the wall base to limit the seismic demands. In this study, it is demonstrated by using a 40‐story core‐wall building that this conventional approach could lead to an unsafe design where the true demands—the maximum inelastic seismic demands induced by the maximum considered earthquake—could be several times greater than the design demands and be unproportionately dominated by higher vibration modes. To identify the cause of this problem, the true demands are decomposed into individual modal contributions by using the uncoupled modal response history analysis procedure. The results show that the true demands contributed by the first mode are reasonably close to the first‐mode design demands, while those contributed by other higher modes are much higher than the corresponding modal design demands. The flexural yielding in the plastic hinge at the wall base can effectively suppress the seismic demands of the first mode. For other higher modes, however, a similar yielding mechanism is either not fully mobilized or not mobilized at all, resulting in unexpectedly large contributions from higher modes. This finding suggests several possible approaches to improve the seismic design and to suppress the seismic demands of high‐rise core‐wall buildings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The reinforced concrete (RC) shear wall serves as one of the most important components sustaining lateral seismic forces. Although they allow advanced seismic performance to be achieved, RC shear walls are rather difficult to repair once the physical plastic hinge at the bottom part has been formed. To overcome this, a damage‐controllable plastic hinge with a large energy dissipation capacity is developed herein, in which the sectional forces are decoupled and sustained separately by different components. The components sustaining the axial and the shear forces all remain elastic even under a rarely occurred earthquake, while the bending components yield and dissipate seismic energy during a design‐level earthquake. This design makes the behavior of the system more predictable and thus more easily customizable to different performance demands. Moreover, the energy dissipation components can be conveniently replaced to fully restore the occupancy function of a building. To examine the seismic behavior of the newly developed component, 3 one third‐scale specimens were tested quasi‐statically, including 1 RC wall complying with the current design codes of China and 2 installed with the damage‐controllable plastic hinges. Each wall was designed to have the same strength. The experimental results demonstrated that the plastic‐hinge‐supported walls had a better energy dissipation capacity and damage controllability than the RC specimen. Both achieved drift ratios greater than 3% under a steadily increasing lateral force.  相似文献   

18.
Cyclic tests of single concrete columns with smooth (plain) bars are not representative of building columns with lap splices at floor levels and story-long starter bars. Column specimens with fixity at top and bottom resemble building columns best, but few of those tested so far had smooth bars and even then without bar lap-splicing at floor level or FRP jackets at column ends. Empirical models based on single-column tests, especially the numerous ones with cantilever-type specimens, cannot be readily extended to columns with smooth bars in real-life buildings. Physical models of the Strut-and-Tie type are developed and are validated or calibrated through comparisons with laboratory tests. Their scope includes anchorage and splicing of bars with either 180° hooks or straight ends. Once validated, they are adapted to real-life multistory rectangular RC columns with smooth bars, in order to obtain the column properties of interest: the chord rotation at yielding and the cyclic ultimate chord rotation, with or without FRP jacketing. Different expressions apply to the top and bottom end of a column in a story, but a single one is used to estimate the column’s effective stiffness. Empirical alternatives fitted to the single-element test results have slightly less scatter than physical models, but caution is needed for their application to columns of real buildings. Simulations of the 3D seismic response of a plan wise asymmetric full size building, tested pseudo-dynamically before or after retrofitting all columns with FRPs or just two of them with RC jackets, provide certain confidence in the extension of the physical models for the estimation of the stiffness and ultimate deformation of columns with smooth bars in real-life buildings.  相似文献   

19.
The outrigger system is an effective means of controlling the seismic response of core‐tube type tall buildings by mobilizing the axial stiffness of the perimeter columns. This study investigates the damped‐outrigger, incorporating the buckling‐restrained brace (BRB) as energy dissipation device (BRB‐outrigger system). The building's seismic responses are expected to be effectively reduced because of the high BRB elastic stiffness during minor earthquakes and through the stable energy dissipation mechanism of the BRB during large earthquakes. The seismic behavior of the BRB‐outrigger system was investigated by performing a spectral analysis considering the equivalent damping to incorporate the effects of BRB inelastic deformation. Nonlinear response history analyses were performed to verify the spectral analysis results. The analytical models with building heights of 64, 128, and 256 m were utilized to investigate the optimal outrigger elevation and the relationships between the outrigger truss flexural stiffness, BRB axial stiffness, and perimeter column axial stiffness to achieve the minimum roof drift and acceleration responses. The method of determining the BRB yield deformation and its effect on overall seismic performance were also investigated. The study concludes with a design recommendation for the single BRB‐outrigger system.  相似文献   

20.
This paper presents a procedure for seismic design of reinforced concrete structures, in which performance objectives are formulated in terms of maximum accepted mean annual frequency (MAF) of exceedance, for multiple limit states. The procedure is explicitly probabilistic and uses Cornell's like closed‐form equations for the MAFs. A gradient‐based constrained optimization technique is used for obtaining values of structural design variables (members' section size and reinforcement) satisfying multiple objectives in terms of risk levels. The method is practically feasible even for real‐sized structures thanks to the adoption of adaptive equivalent linear models where element‐by‐element stiffness reduction is performed (2 linear analyses per intensity level). General geometric and capacity design constraints are duly accounted for. The procedure is applied to a 15‐storey plane frame building, and validation is conducted against results in terms of drift profiles and MAF of exceedance, obtained by multiple‐stripe analysis with records selected to match conditional spectra. Results show that the method is suitable for performance‐based seismic design of RC structures with explicit targets in terms of desired risk levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号