首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper proposes a single‐sided vibro‐impact track nonlinear energy sink (SSVI track NES) as an effective way to mitigate the effects of impulsive and seismic excitation on building structures. The SSVI track NES is a passive energy dissipation device, which consists of a mass moving along a track, the shape of which provides a nonlinear restoring force to the mass. Previous studies have analyzed the track NES, which considers the track shape to be smooth and symmetric. By introducing a discontinuity into the shape of the track (e.g., through impact), energy in the primary structure can be scattered to higher frequency responses where it can be dissipated at a faster rate. First, the SSVI track NES is analytically investigated and numerically optimized base on a two degree‐of‐freedom primary structure. The results of numerical simulations show that the SSVI track NES can be more efficient than both the track NES and tuned mass damper in reducing the response of the primary structure. Based on the analytical studies, the SSVI track NES is experimentally realized and investigated when subjected to both impulse‐like and seismic excitations, confirming the numerical predictions and validating the analytical model of the device. Finally, the robustness of the SSVI track NES is investigated numerically. The results of this investigation indicate that the SSVI track NES remains effective over a broad range of input excitation energy levels, as well as during significant changes in the stiffness of the primary structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A new passive seismic response control device has been developed, fabricated, and tested by the authors and shown to be capable of producing negative stiffness via a purely mechanical mechanism, thus representing a new generation of seismic protection devices. Although the concept of negative stiffness may appear to be a reversal on the desired relationship between the force and displacement in structures (the desired relationship being that the product of restoring force and displacement is nonnegative), when implemented in parallel with a structure having positive stiffness, the combined system appears to have substantially reduced stiffness while remaining stable. Thus, there is an ‘apparent weakening and softening’ of the structure that results in reduced forces and increased displacements (where the weakening and softening is of a non‐damaging nature in that it occurs in a seismic protection device rather than within the structural framing system). Any excessive displacement response can then be limited by incorporating a damping device in parallel with the negative stiffness device. The combination of negative stiffness and passive damping provides a large degree of control over the expected performance of the structure. In this paper, a numerical study is presented on the performance of a seismically isolated highway bridge model that is subjected to various strong earthquake ground motions. The Negative Stiffness Devices (NSDs) are described along with their hysteretic behavior as obtained from a series of cyclic tests wherein the tests were conducted using a modified design of the NSDs (modified for testing within the bridge model). Using the results from the cyclic tests, numerical simulations of the seismic response of the isolated bridge model were conducted for various configurations (with/without negative stiffness devices and/or viscous dampers). The results demonstrate that the addition of negative stiffness devices reduces the base shear substantially, while the deck displacement is limited to acceptable values. This assessment was conducted as part of a NEES (Network for Earthquake Engineering Simulation) project which included shaking table tests of a quarter‐scale highway bridge model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper reports a study for the seismic performance of one large‐scaled (1/15) model of 30‐story steel‐reinforced concrete frame‐concrete core wall mixed structure. The study was implemented by both shaking table tests, in which the similarity ratio for lateral and gravitational accelerations was kept to 1:1, and numerical nonlinear dynamic analysis. The test observations presented herein include story displacement, interstory drift, natural vibration periods, and final failure mode. The numerical analysis was performed to simulate the shaking table test procedure, and the numerically obtained responses were verified by the test results. On the basis of the numerical results, the progressions of structural stiffness, base shear, and overturning moment were investigated, and the distributions of base shear and overturning moment between frame and core wall were also discussed. The test demonstrates the seismic performance of the steel‐reinforced concrete frame‐core wall mixed structure and reveals the potential overturning failure mode for high rise structures. The nonlinear analysis results indicate that the peripheral frames could take more shear forces after core wall damaged under severe earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Passive and semi‐active tuned mass damper (PTMD and SATMD) building systems are proposed to mitigate structural response due to seismic loads. The structure's upper portion self plays a role either as a tuned mass passive damper or a semi‐active resetable device is adopted as a control feature for the PTMD, creating a SATMD system. Two‐degree‐of‐freedom analytical studies are employed to design the prototype structural system, specify its element characteristics and effectiveness for seismic responses, including defining the resetable device dynamics. The optimal parameters are derived for the large mass ratio by numerical analysis. For the SATMD building system the stiffness of the resetable device design is combined with rubber bearing stiffness. From parametric studies, effective practical control schemes can be derived for the SATMD system. To verify the principal efficacy of the conceptual system, the controlled system response is compared with the response spectrum of the earthquake suites used. The control ability of the SATMD scheme is compared with that of an uncontrolled (No TMD) and an ideal PTMD building systems for multi‐level seismic intensity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper evaluates the hysteretic behavior of an innovative compressed elastomer structural damper and its applicability to seismic‐resistant design of steel moment‐resisting frames (MRFs). The damper is constructed by precompressing a high‐damping elastomeric material into steel tubes. This innovative construction results in viscous‐like damping under small strains and friction‐like damping under large strains. A rate‐dependent hysteretic model for the compressed elastomer damper, formed from a parallel combination of a modified Bouc–Wen model and a non‐linear dashpot is presented. The model is calibrated using test data obtained under sinusoidal loading at different amplitudes and frequencies. This model is incorporated in the OpenSees [17] computer program for use in seismic response analyses of steel MRF buildings with compressed elastomer dampers. A simplified design procedure was used to design seven different systems of steel MRFs combined with compressed elastomer dampers in which the properties of the MRFs and dampers were varied. The combined systems are designed to achieve performance, which is similar to or better than the performance of conventional steel MRFs designed according to current seismic codes. Based on the results of nonlinear seismic response analyses, under both the design basis earthquake and the maximum considered earthquake, target properties for a new generation of compressed elastomer dampers are defined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This study proposes two types of shape memory alloy (SMA)‐based devices, the tension‐SMA device (TSD) and the scissor‐SMA device (SSD), for the increase of stiffness. Both devices employ superelastic NiTi wires with a diameter of 1.2 mm. Performance tests to study pseudoelastic behavior of NiTi wires find that NiTi wire's pseudoelastic property is insensitive to loading frequency within the meaningful frequency range of most structures in civil engineering. The detailed design of TSD and SSD using NiTi wire is then presented accordingly. Shaking table tests of a scaled 5‐story steel frame incorporated with TSDs and SSDs, respectively, in the first story are carried out. The experimental results indicate that both SMA devices can effectively reduce building seismic response. SSDs achieve greater response reduction than TSDs due to their displacement magnification configuration. The seismic response of the building model with and without SMA devices is numerically simulated and the simulation results demonstrate that they are in good agreement with the experimental results. Finally, it is identified that by using the wavelet transform method the structures incorporated with SMA devices exhibit nonlinear behavior and the time‐dependent characteristics of natural frequency during earthquake excitation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposes the use of the nonlinear restoring force in an isolation system to improve the performance of a seismic isolator. Nonlinear magnetic springs applied to guideway sliding isolators (GSI) that protect precision machinery against seismic motion were studied. The magnetic springs use a non‐contact magnetic repulsion force to achieve a nonlinear property. A numerical simulation model of the GSI system using step‐by‐step integration in the time domain was developed. A full‐scale shaking table test was performed to verify the accuracy of the numerical model. Simulation and experimental results show that the GSI system with magnetic springs has good performance when subjected to floor vibrations during earthquakes. A parametric analysis of the magnetic springs in the GSI system under seismic motion was theoretically investigated. It was found that sufficient magnetic forces can diminish the system relative displacements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Though rocking shallow foundations could be designed to possess many desirable characteristics such as energy dissipation, isolation, and self-centering, current seismic design codes often avoid nonlinear behavior of soil and energy dissipation beneath foundations. This paper compares the effectiveness of energy dissipation in foundation soil (during rocking) with the effectiveness of structural energy dissipation devices during seismic loading. Numerical simulations were carried out to systematically study the seismic energy dissipation in structural elements and passive controlled energy dissipation devices inserted into the structure. The numerical model was validated using shaking table experimental results on model frame structures with and without energy dissipation devices. The energy dissipation in the structure, drift ratio, and the force and displacement demands on the structure are compared with energy dissipation characteristics of rocking shallow foundations as observed in centrifuge experiments, where shallow foundations were allowed to rock on dry sandy soil stratum during dynamic loading. For the structures with energy dissipating devices, about 70–90% of the seismic input energy is dissipated by energy dissipating devices, while foundation rocking dissipates about 30–90% of the total seismic input energy in foundation soil (depending on the static factor of safety). Results indicate that, if properly designed (with reliable capacity and tolerable settlements), adverse effects of foundation rocking can be minimized, while taking advantage of the favorable features of foundation rocking and hence they can be used as efficient and economical seismic energy dissipation mechanisms in buildings and bridges.  相似文献   

12.
A number of techniques are available for modelling nonlinear elements, but most available hysteretic rules do not capture the gradual stiffness changes that are typical of physical systems. In particular, there has not previously been a hysteretic rule with rounded hysteretic corners that could be used to model self‐centering elements, where multiple stiffness changes occur within one loading cycle. This paper presents a new hysteretic rule that allows the gradual stiffness transitions that occur in real systems to be modelled. In this paper, the rule is formulated for flag‐shaped hystereses, but it is shown that the same model also produces hystereses that can be used to model systems that are not self‐centering. The same technique could also be applied to round the corners of different backbone hystereses. A previous study has shown how abrupt stiffness changes can cause very large acceleration spikes, particularly in self‐centering systems. This paper shows that acceleration spikes due to stiffness changes may be reduced by designing systems to change stiffness more gradually, and that this typically has little effect on other aspects of the seismic response. When modelling structural systems, especially if they are self‐centering, sharp‐cornered hysteretic models may be used for initial analysis, but round‐cornered hysteretic models should be considered when using nonlinear rotational springs or when accelerations are of particular importance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Upgrading noncode conforming buildings to mitigate seismic induced damages is important in moderate to high seismic hazard regions. The damage, can be mitigated by using conventional (e.g. FRP wrapping) and emerging (e.g. smart structures) retrofit techniques. A model for the structure to be retrofitted should include relevant performance indicators. This paper proposes a variable stiffness smart structure device known as the Smart Spring to be integrated on building structures to mitigate seismic induced damage. The variable stiffness capability is of importance to structures that exhibit vertical (e.g. soft storey) irregularities and to meet different performance levels under seismic excitation. To demonstrate the utility of the proposed retrofitting technique, a four‐storey steel building is modelled in MATLAB and appropriate performance indicators are chosen. Various return period seismic hazards are generated from past earthquake event records to predict the structure's performance. The performance improvement because of the retrofitting of building structures using the variable stiffness device is presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a mechanical model for predicting the behavior of elastomeric seismic isolation bearings subject to combined end rotations and shear deformation. The mechanical model consists of a series of axial springs at the top, mid‐height and bottom of the bearing to vertically reproduce asymmetric bending moment distribution in the bearings. The model can take into account end rotations of the bearing, and the overall rotational stiffness includes the effect of the variation of vertical load on the bearing and the imposed shear deformation. Static bending tests under various combinations of vertical load and shear deformation were performed to identify the mechanical characteristics of bearings. The test results indicate that bearing rotational stiffness increases with increasing vertical load but decreases with increasing shear deformation. Simulation analyses were conducted to validate the new mechanical model. The results of analyses using the new model show very good agreement with experimental observations. A series of seismic response analyses were performed to demonstrate the dynamic behavior of top‐of‐column isolated structures, a configuration where the end rotations of isolation bearings are typically expected to be larger. The results suggest that the end rotations of elastomeric bearings used in practical top‐of‐column isolated structures do not reduce the stability limit of isolation system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In low‐rise steel‐concrete composite structures, moment‐resisting frames can be designed to develop a ductile response in beam‐to‐column joints and column bases by activating flexural yielding of beams and end plates, shear yielding of column web panel zones and yielding of anchors. To evaluate the performance of these components under differing earthquake intensities, a series of pseudodynamic, quasistatic cyclic and vibration tests were carried out on a two‐storey two‐bay moment resisting structure. The performance‐based seismic design and control of these structures requires that stiffness degradation, strength deterioration and slip are properly modelled. In this context, compact hysteretic models can play a key role and must therefore be striven for. Nonetheless, relevant techniques, like nonlinear system identification, are far from representing standard and reliable tools for the dynamic characterization of full‐scale structural systems. With this objective in mind, we present a restoring force surface‐based technique applied to pseudodynamic test data, in view of the nonlinear identification of multistorey frames. The technique is developed by means of a parametric approach, where a time‐variant stiffness operator is coupled to a modified Bouc–Wen model that allows both for slip and for degradation in stiffness. Strength deterioration is indirectly taken into account too. We also show how model‐based parameters can be correlated to the damage process progressively observed both in the structure and in its components. Finally, the predictive capabilities of the identified model are highlighted. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
We present a vertical vibration isolator having a piecewise‐constant restoring force, which belongs to a class of passive and nonlinear vibration isolators. In vertical vibration isolation, direct use of low‐stiffness elements leads to unacceptably large deformations due to self‐weight. To overcome the difficulty, we apply a combination of constant‐force springs, each of which sustains a constant load regardless of its stretch. By arranging the constant‐force springs, so that the isolator has a piecewise‐constant restoring force, we alleviate the problem of the excessive deformation caused by self‐weight, provide stability at the static equilibrium state along with the self‐centering capability, and realize a large stroke while keeping the mechanism simple and compact. Further, we attempt to limit the response acceleration within a tolerance regardless of the frequency spectrum and the magnitude of earthquake ground motions. We demonstrate the effectiveness of the present isolator through shaking table tests and numerical simulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Buckling is usually conceived as an unstable structural behavior leading to lateral instability of axially loaded members, if not properly supported. However, a pre‐bent strip would become an excellent seismic energy‐dissipative device if it is deformed in a guided direction and range. Geometrically large lateral deformation of the steel strips in buckling leads to inelastic behavior of the material and dissipates energy as a consequence. The purpose of this study is to propose a new type of seismic damper in the form of braces based on pre‐bent steel strips. The nonlinear elastic stiffness of monotonously loaded pre‐bent strips in both compression and tension is derived. The energy‐dissipative characteristics of the proposed damping device are investigated via component tests under cyclic loads. Experimental results indicate that the force–displacement relationship of pre‐bent strips in cyclic loads exhibits mechanical characteristics of displacement‐dependent dampers. A series of seismic performance tests has been conducted further to verify the feasibility and effectiveness of using the proposed device as seismic dampers. Encouraging test results have been obtained, suggesting feasibility of the proposed device for earthquake‐resistant design. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Semi‐active variable stiffness resettable devices can reduce seismic demands and damages in structures. Despite their advantages, variable stiffness resettable devices are under‐utilized mainly because of the shortage of fundamental research in quantifying the sensitivity of key seismic response parameters, and losses, in structures that use such systems for seismic hazard mitigation. Within this setting, the research summarized herein measures the effectiveness of semi‐active resettable energy dissipating devices in the Single‐Degree‐of‐Freedom domain aiming at quantifying the sensitivity of their seismic response to variation in control parameters and generating the required knowledge to utilize such semi‐active devices in the Multi‐Degree‐of‐Freedom domain. The performance (i.e. maximum relative displacement and peak absolute acceleration demands) of Single‐Degree‐of‐Freedom systems with an array of semi‐active control logics under various dynamic excitation regimes is studied. Two sets of 40 ground motions representing various seismic loading conditions (i.e. pulse‐like and rock‐site ground motions) are used, and an efficient control logic for mitigating these seismic demands is proposed. Numerical results show that proposed control logic enables a decrease of 40–60% for both maximum relative displacement and seismic base shear and 15–25% decrease for peak absolute acceleration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Viscous and other damping devices are often used as elements of seismic isolation systems. Despite the widespread application of nonlinear viscous systems particularly in Japan (with fewer applications in the USA and Taiwan), the application of viscous damping devices in isolation systems in the USA progressed intentionally toward the use of supplementary linear viscous devices due to the advantages offered by these devices. This paper presents experimental results on the behavior of seismically isolated structures with low damping elastomeric (LDE) and single friction pendulum (SFP) bearings with and without linear and nonlinear viscous dampers. The isolation systems are tested within a six‐story structure configured as moment frame and then again as braced frame. Emphasis is placed both on the acquisition of data related to the structural system (drifts, story shear forces, and isolator displacements) and on non‐structural systems (floor accelerations, floor spectral accelerations, and floor velocities). Moreover, the accuracy of analytical prediction of response is investigated based on the results of a total of 227 experiments, using 14 historic ground motions of far‐fault and near‐fault characteristics, on flexible moment frame and stiff braced frame structures isolated with LDE or SFP bearings and linear or nonlinear viscous dampers. It is concluded that when damping is needed to reduce displacement demands in the isolation system, linear viscous damping results in the least detrimental effect on the isolated structure. Moreover, the study concludes that the analytical prediction of peak floor accelerations and floor response spectra may contain errors that need to be considered when designing secondary systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A simplified design procedure (SDP) for preliminary seismic design of frame buildings with structural dampers is presented. The SDP uses elastic‐static analysis and is applicable to structural dampers made from viscoelastic (VE) or high‐damping elastomeric materials. The behaviour of typical VE materials and high‐damping elastomeric materials is often non‐linear, and the SDP idealizes these materials as linear VE materials. With this idealization, structures with VE or high‐damping elastomeric dampers can be designed and analysed using methods based on linear VE theory. As an example, a retrofit design for a typical non‐ductile reinforced concrete (RC) frame building using high‐damping elastomeric dampers is developed using the SDP. To validate the SDP, results from non‐linear dynamic time history analyses (NDTHA) are presented. Results from NDTHA demonstrate that the SDP estimates the seismic response with sufficient accuracy for design. It is shown that a non‐ductile RC frame building can be retrofit with high‐damping elastomeric dampers to remain essentially elastic under the design basis earthquake (DBE). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号