首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
The Adriatic Sea general circulation model coupled to a third generation wave model SWAN and a sediment transport model was implemented in the Adriatic Sea to study the dynamics of the sediment transport and resuspension in the northern Adriatic Sea (NAS) during the Bora event in January 2001. The bottom boundary layer (BBL) was resolved by the coupled model with high vertical resolution, and the mechanism of the wave–current interaction in the BBL was also represented in the model. The study found that, during the Bora event of 13–17 January 2001, large waves with significant wave height 2 m and period of 5 s were generated by strong winds in the northwestern shelf of the Adriatic where the direction of wave propagation was orthogonal to the current. The combined motion of the wave and current in the BBL increased the bottom stress over the western Adriatic shelf, resulting in stronger sediment resuspension there. Combining stronger bottom resuspension and strong upward vertical flux of resuspended sediments due to turbulent mixing, the model predicted that sediment concentration near the Po River was much higher than that predicted by the model run without wave forcing. The study also shows that wave–current interaction in the BBL reduced the western Adriatic Coastal Currents (WACCs) in the shallower north. It is concluded that wave forcing significantly changed the sediment distributions and increased the total horizontal fluxes over the western shelf. These results signified wave effect on sediment flux and distribution in the NAS, and suggested that waves cannot be neglected in the study of dynamics of sediment transport and resuspension in the shallow coastal seas. By including the tidal forcing in the coupled model, we also examined the effect of tides on the sediment transport dynamics in the NAS.  相似文献   

2.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

3.
Observations of the flow field over an elongated hollow (bathymetric depression) in the lower Chesapeake Bay showed tidally asymmetric distributions. Current speed increased over the landward side of the hole during flood tides and decreased in the deepest part of the hollow during ebb tides. A simple conceptual analysis indicated that the presence of a horizontal density gradient can generate the asymmetric spatial variations of flow structure depending on the sign of the horizontal density gradient. When water density decreases downstream, the velocity increases over the downstream edge of the hollow. Conversely when water density increases downstream, the flow decreases over the hollow more than a case without a horizontal density gradient. The conceptual analysis is confirmed by numerical experiments of simplified hollows in steady open channel flows and of an idealized tidal estuary. These hollows also alter the local current field of tidally averaged estuarine exchange flows. The residual depth-averaged currents over a hollow show a two-cell circulation when Coriolis forcing is neglected and an asymmetric two-cell circulation, with a stronger cyclonic eddy, when Coriolis forcing is included.  相似文献   

4.
First, we investigated some aspects of tsunami–tide interactions based on idealized numerical experiments. Theoretically, by changing total ocean depth, tidal elevations influence the speed and magnitude of tsunami waves in shallow regions with dominating tidal signals. We tested this assumption by employing a simple 1-D model that describes propagation of tidal waves in a channel with gradually increasing depth and the interaction of the tidal waves with tsunamis generated at the channel's open boundary. Important conclusions from these studies are that computed elevations by simulating the tsunami and the tide together differ significantly from linear superposing of the sea surface heights obtained when simulating the tide and the tsunami separately, and that maximum tsunami–tide interaction depends on tidal amplitude and phase. The major cause of this tsunami–tide interaction is tidally induced ocean depth that changes the conditions of tsunami propagation, amplification, and dissipation. Interactions occur by means of momentum advection, bottom friction, and variable water flux due to changing total depth and velocity. We found the major cause of tsunami–tide interactions to be changing depth. Secondly, we investigate tsunami–tide interactions in Cook Inlet, Alaska, employing a high-resolution 2-D numerical model. Cook Inlet has high tides and a history of strong tsunamis and is a potential candidate for tsunami impacts in the future. In agreement with previous findings, we find that the impacts of tsunamis depend on basin bathymetries and coastline configurations, and they can, in particular, depend on tsunami–tide interactions. In regions with strong tides and tsunamis, these interactions can result in either intensification or damping of cumulative tsunami and tide impacts, depending on mean basin depth, which is regulated by tides. Thus, it is not possible to predict the effect of tsunami–tide interaction in regions with strong tides without making preliminary investigations of the area. One approach to reduce uncertainties in tsunami impact in regions with high tides is to simulate tsunamis together with tidal forcing.  相似文献   

5.
A numerical simulation of circulation in the Columbia River estuary and plume during the summer of 2004 is used to explore the mixing involved as river water is transformed into shelf water. The model is forced with realistic river flow, tides, wind stress, surface heat flux, and ocean boundary conditions. Simulated currents and water properties on the shelf near the mouth are compared with records from three moorings (all in 72 m of water) and five CTD sections. The model is found to have reasonable skill; statistically significant correlations between observed and modeled surface currents, temperature, and salinity are all 0.42–0.72 for the mooring records. Equations for the tidally averaged, volume-integrated mechanical energy budget (kinetic and potential) are derived, with attention to the effects of: (i) Reynolds averaging, (ii) a time varying volume due to the free surface, and (iii) dissipation very close to the bottom. It is found that convergence of tidal pressure work is the most important forcing term in the estuary. In the far field plume (which has a volume 15 times greater than that of the estuary), the net forcing is weaker than that in the estuary, and may be due to either tidal currents or wind stress depending on the time period considered. These forcings lead to irreversible mixing of the stratification (buoyancy flux) that turns river water into shelf water. This occurs in both the plume and estuary, but appears to be more efficient (17% vs. 5%), and somewhat greater (4.2 MW vs. 3.3 MW), in plume vs. estuary. This demonstrates the importance of both wind and tidal forcing to watermass transformation, and the need to consider the estuary and plume as part of a single system.  相似文献   

6.
The morphologic changes in estuaries and coastal lagoons are very complex and constitute a challenging task in coastal research. The bathymetric changes result from the combined action of tides, waves, rivers discharge and wind stress in the area of interest. Additionally, an accurate knowledge of the sediment transport is essential to achieve a good morphological characterization. This work establishes the influence of the wave climate on the morphodynamics of the Ria de Aveiro lagoon inlet by analysing the numerical results of the morphodynamic modelling system MORSYS2D. The numerical simulations considered a realistic coupled forcing of tidal currents and waves. The computed sediment fluxes and bathymetric changes are analysed and compared with the erosion and accretion trends obtained from the numerical simulations forced only by tidal currents, in order to establish the wave climate influence. The final bathymetry and the corresponding changes are compared with bathymetric data collected through surveys. It is concluded that: (a) the morphodynamics of the study area is dominated by the wave regime in the lagoon inlet and nearshore areas, while in the inner areas is tidally dominated; and (b) the inclusion of the wave regime forcing constitutes an improvement in order to accurately reproduce the local morphodynamics.  相似文献   

7.
Groundwater flow and chemical transport in subterranean estuaries are poorly understood despite their potentially important implications for chemical fluxes from aquifers to coastal waters. Here, a numerical study of the dynamics in a subterranean estuary subject to tidal forcing is presented. Simulations show that salt transport associated with tidally driven seawater recirculation leads to the formation of an upper saline plume in the intertidal region. Computed transit times and flow velocities indicate that this plume represents a more active zone for mixing and reaction than the dispersion zone of the lower, classical salt wedge. Proper conceptualisation of this surficial mixing zone extends our understanding of processes within the subterranean estuary. Numerical tracer simulations reveal that tidal forcing may reduce the threat of a land-derived contaminant discharging to the marine environment by modifying the subsurface transport pathway and local geochemical conditions. Mixing and stratification in the subterranean estuary are strongly affected by both inland and tidal forcing. Based on the estuarine analogy we present a systematic classification of subterranean estuaries.  相似文献   

8.
Despite vigorous tidal and wind mixing, observations in an estuarine tidal inlet in the Wadden Sea show that during part of the tidal cycle, vertical stratification and internal waves may still develop. Acoustic Doppler current profiler (ADCP) and conductivity, temperature, depth observations, collected over the past 6 years at 13 h anchor stations (ASs), reveal that these occur especially during slack tide, when there is little wind and large freshwater discharge from nearby Lake IJssel. Measurements with a moored ADCP show that in the same tidal phase, strong cross-channel circulation develops, which may suddenly reverse circulation sense due to passing density fronts. In the vertically stratified phase that follows after the front passage, propagating mode-one solitary internal waves are observed. These are resonantly generated during decelerating tidal ebb currents when the (shear) flow passes a transcritical regime (Froude number equal to 1). A combination of photographs (including one from the International Space Station), bathymetric data, and ASs data leads to the discovery of yet another source of internal waves in this area, produced during slackening tide by propagating lee waves that develop over a deep trench. We suggest that both the cross-channel circulation as well as the (solitary) internal waves may locally be of importance for the (re)distribution and transport of sediments and nutrients and may influence tidally averaged transports.  相似文献   

9.
《Continental Shelf Research》2006,26(12-13):1469-1480
The generation of internal waves in the partially mixed estuaries is examined. The numerical experiments consider the barotropic tidal currents interacting with isolated obstacles in an open channel. The bottom boundary layer and longitudinal salinity gradient are included. Internal lee (arrested) waves are excited when the accelerating barotropic tidal current approaches the first-mode internal wave speed. The arrested waves are amplified, and are subsequently released when the decelerating tidal current falls below the first-mode internal wave speed. The power input from the barotropic tidal energy into internal wave energy is calculated. It is on the order of 10−2 W/m2, and is comparable to the estimated interior dissipation rate. This suggests that the tidally generated internal waves could be a significant energy source for mixing in the halocline.  相似文献   

10.
Cai  Shuqun  Wu  Yuqi  Xu  Jiexin  Chen  Zhiwu  Xie  Jieshuo  He  Yinghui 《中国科学:地球科学(英文版)》2021,64(10):1674-1686
Numerous internal solitary waves(ISWs) have been observed in the southern Andaman Sea. In this study, the two-dimensional Massachusetts Institute of Technology general circulation model is applied to investigate the dynamics of ISWs and explore the effects of the bottom topography and tidal forcing on the generation and propagation of ISWs in the southern Andaman Sea. The results show that the large-amplitude depression ISWs are mainly generated via the oscillating tidal flow over the sill of the Great Channel, and the generation of ISWs is subject to the lee wave regime. The Dreadnought Bank cannot generate ISWs itself; however, it can enhance the amplitudes of eastward-propagating ISWs generated from sill A, owing to constructive interference of internal tide generation between the sill of the Great Channel and the Dreadnought Bank. The eastward-propagating ISWs generated by the eastern shallow sill near the continental shelf can propagate to the shelf, where they evolve into elevation waves because of the shallow water. Sensitivity runs show that both the semidiurnal and diurnal tides over the sill of the Great Channel can generate ISWs in this area. However, the ISWs generated by diurnal tides are much weaker than those generated by semidiurnal tides. Mixed tidal forcing has no significant effect on the generation of ISWs.  相似文献   

11.
12.
An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak along-channel density gradient. It is also examined under what conditions the fast, two-dimensional analytical flow model yields results that agree with those obtained with the more complex three-dimensional numerical model. The analytical model reproduces and explains the main velocity and sediment characteristics in large parts of the parameter space considered (average tidal velocity amplitude, 0.1–1 m s − 1 and maximum water depth, 10–60 m). Its skills are lower for along-channel residual flows if nonlinearities are moderate to high (strong tides in deep estuaries) and for transverse flows and residual sediment concentrations if the Ekman number is small (weak tides in deep estuaries). An important new aspect of the analytical model is the incorporation of tidal variations in the across-channel density gradient, causing a double circulation pattern in the transverse flow during slack tides. The gradient also leads to a new tidally rectified residual flow component via net advection of along-channel tidal momentum by the density-induced transverse tidal flow. The component features landward currents in the channel and seaward currents over the slopes and is particularly effective in deeper water. It acts jointly with components induced by horizontal density differences, Coriolis-induced tidal rectification and Stokes discharge, resulting in different along-channel residual flow regimes. The residual across-channel density gradient is crucial for the residual transverse circulation and for the residual sediment concentration. The clockwise density-induced circulation traps sediment in the fresher water over the left slope (looking up-estuary in the northern hemisphere). Model results are largely consistent with available field data of well-mixed estuaries.  相似文献   

13.
A new depth-averaged exploratory model has been developed to investigate the hydrodynamics and the tidally averaged sediment transport in a semi-enclosed tidal basin. This model comprises the two-dimensional (2DH) dynamics in a tidal basin that consists of a channel of arbitrary length, flanked by tidal flats, in which the water motion is being driven by an asymmetric tidal forcing at the seaward side. The equations are discretized in space by means of the finite element method and solved in the frequency domain. In this study, the lateral variations of the tidal asymmetry and the tidally averaged sediment transport are analyzed, as well as their sensitivity to changes in basin geometry and external overtides. The Coriolis force is taken into account. It is found that the length of the tidal basin and, to a lesser extent, the tidal flat area and the convergence length determine the behaviour of the tidally averaged velocity and the overtides and consequently control the strength and the direction of the tidally averaged sediment transport. Furthermore, the externally prescribed overtides can have a major influence on tidal asymmetry in the basin, depending on their amplitude and phase. Finally, for sufficiently wide tidal basins, the Coriolis force generates significant lateral dynamics.  相似文献   

14.
Surface elevation and current records contain non-tidal variance, often dismissed as noise. The processes responsible for the non-tidal component may also modulate the tidal signal, altering its strength and frequency structure. Because of their manner of generation and propagation, internal tides are inherently irregular. The non-stationary character of these and other tidal processes provides an integral and useful property of tidal records, because it provides an opportunity to obtain insights into tidal dynamics and the interaction of tidal and non-tidal processes. It is, moreover, productive to use multiple approaches in analyzing coastal and estuarine tidal processes so that both the time-varying and average frequency content are determined. Only by confronting the causes of non-stationary behaviour in this way can some of the remaining challenges in tidal analysis and prediction be overcome, e.g. shelf and estuarine currents, river tides, internal tides, tide-surge interactions and tidally influenced ecological processes. Several examples illustrate the utility of non-stationary tidal analysis methods.Responsible Editor: Jens Kappenberg  相似文献   

15.
Residual, or tidally averaged, circulation in fjords is generally assumed to be density driven and two layered. This circulation consists of a thin surface layer of outflow and a thick bottom layer of sluggish inflow. However, development of different vertical structures in residual circulation in fjords can arise from wind, remote, and tidal forcing that may modify the two-layer circulation. Particularly, theoretical results of tidal residual flows in homogeneous semienclosed basins indicate that their vertical structure is determined by the dynamical depth of the system. This dynamical depth can be considered as the ratio between the water column depth and the depth of frictional influence in an oscillatory flow (inverse of Stokes number). When the frictional depth occupies the entire water column, the tidal residual flow is one layered as in shallow basins. But when the frictional depth is only a small portion of the water column (>6 times smaller), the tidal residual is three layered. In relatively deep fjords (say deeper than 100 m), where frictional depths typically occupy a small portion of the water column, the tidal residual flow is expected to be three layered. Ample observational evidence presented here shows a three-layered exchange flow structure in fjords. On the basis of observational and theoretical evidence, it is proposed that the water exchange structure in deep fjords (more than six frictional layers deep, or inverse Stokes number >6) is tidally driven and is three layered. The tidally driven three-layer structure of residual flows could be regarded in some cases as the fundamental structure. However, this structure will only be observed sporadically as it will be masked by wind forcing, remote forcing from the ocean, and freshwater pulses.  相似文献   

16.
MASNUM wave-tide-circulation coupled numerical model (MASNUM coupled model, hereinafter) is de-veloped based on the Princeton Ocean Model (POM). Both POM and MASNUM coupled model are ap-plied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. The upwelling mechanisms are analyzed from the viewpoint of tide, and a new mechanism is proposed. The study suggests that the tidally inducing mechanism of the upwelling in-cludes two dynamic aspects: the barotropic and the baroclinic process. On the one hand, the residual currents induced by barotropic tides converge near the seabed, and upwelling is generated to maintain mass conservation. The climbing of the residual currents along the sea bottom slope also contributes to the upwelling. On the other hand, tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances. Strong tidal mixing leads to conspicuous front in the coastal waters. The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front, and the upwelling branch appears near the frontal zone. Numerical experiments are de-signed to determine the importance of tide in inducing the upwelling. The results indicate that tide is a key and dominant inducement of the upwelling. Experiments also show that coupling calculation of the four main tidal constituents (M2, S2, K1, and O1), rather than dealing with the single M2 constituent, im-proves the modeling precision of the barotropic tide-induced upwelling.  相似文献   

17.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

18.
The Camamu Bay (CMB) is located on the narrowest shelf along the South American coastline and close to the formation of two major Western Boundary Currents (WBC), the Brazil/North Brazil Current (BC/NBC). These WBC flow close to the shelf break/slope region and are expected to interact with the shelf currents due to the narrowness of the shelf. The shelf circulation is investigated in terms of current variability based on an original data set covering the 2002-2003 austral summer and the 2003 austral autumn. The Results show that the currents at the shelf are mainly wind driven, experiencing a complete reversal between seasons due to a similar change in the wind field. Currents at the inner-shelf have a polarized nature, with the alongshore velocity mostly driven by forcings at the sub-inertial frequency band and the cross-shore velocity mainly supra-inertially forced, with the tidal currents playing an important role at this direction. The contribution of the forcing mechanisms at the mid-shelf changes between seasons. During the summer, forcings in the two frequency bands are important to drive the currents with a similar contribution of the tidal currents. On the other hand, during the autumn season, the alongshore velocity is mostly driven by sub-inertial forcings and tidally driven currents still remain important in both directions. Moreover, during the autumn when the stratification is weaker, the response of the shelf currents to the wind forcing presents a barotropic signature. The meso-scale processes related to the WBC flowing at the shelf/slope region also affect the circulation within the shelf, which contribute to cause significant current reversals during the autumn season. Currents at the shelf-estuary connection are clearly supra-inertially forced with the tidal currents playing a key role in the generation of the along-channel velocities. The sub-inertial forcings at this location act mainly to drive the weak ebb currents which were highly correlated with both local and remote wind forcing during the summer season.  相似文献   

19.
Abstract

The subject is reviewed from the viewpoints of theory, internal tide and wave structure and their implications.

A wider theoretical context suggests scope for further investigation of natural or nearly-trapped forms above the inertial frequency.

Although internal tides in many locations are observed to have first-mode vertical structure, higher modes are seen offshore from shallow shelf-break forcing and for particular Froude numbers, and may be expected locally near generation. Bottom intensification is often observed where the sea floor matches the characteristic slope. Solitons form from internal tides of large amplitude or at large changes of depth.

Internal tides and solitons are observed also at many sills and in straits, and to intensify in canyons.

Non-linear effects of the waves, especially solitons, include the conveyance of water, nutrients, ‘‘mixing potential'’ etc. away from their source to other locations, and the generation of mean currents. The waves transfer energy and possibly heat between the ocean and shelf, may be a source of medium frequency waves on the shelf (periods of minutes) and can contribute to interior mixing and overturning, bottom stirring and sediment movement.  相似文献   

20.
Field observations of tidally driven stratified flow in the sill area of Knight Inlet (British Columbia) revealed a very complicated structure, which includes solitary waves, upstream bifurcation, hydraulic jump and mixing processes. Recent observations suggest that the flow instabilities on the plunging pycnocline at the lee side of the sill may contribute to solitary wave generation through a subharmonic interaction. The present study reports on a series of numerical experiments of stratified tidal flow in Knight Inlet performed with the help of a fine resolution fully non-linear non-hydrostatic numerical model. The model reproduces all important stages of the baroclinic tidal dynamics observed in Knight Inlet. Results demonstrate that solitary waves are generated apart from the area of hydrodynamic instability. Accelerating tidal flux forms a baroclinic hydraulic jump just above the top of the sill, whereas the bifurcations and zones of shear instabilities are formed downstream of the sill. The first baroclinic mode having the largest velocity escapes from the generation area and propagates upstream, disintegrating further into a packet of solitary waves reviling the classical “non-subharmonic” mechanism of generation. The remaining part of the disturbance (slow baroclinic modes) is arrested by tidal flow and carried away to the lee side of the obstacle, where shear instability, billows and mixing processes are developed. Some sensitivity runs were performed for different value of tidal velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号