首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The velocity structure of the crust beneath Liaoning province and the Bohai sea in China was imaged using ambient seismic noise recorded by 73 regional broadband stations. All available three-component time series from the 12-month span between January and December 2013 were cross-correlated to yield empirical Green's functions for Rayleigh and Love waves. Phasevelocity dispersion curves for the Rayleigh waves and the Love waves were measured by applying the frequencytime analysis method. Dispersion measurements of the Rayleigh wave and the Love wave were then utilized to construct 2D phase-velocity maps for the Rayleigh wave at8–35 s periods and the Love wave at 9–32 s periods,respectively. Both Rayleigh and Love phase-velocity maps show significant lateral variations that are correlated well with known geological features and tectonics units in the study region. Next, phase dispersion curves of the Rayleigh wave and the Love wave extracted from each cell of the 2D Rayleigh wave and Love wave phase-velocity maps,respectively, were inverted simultaneously to determine the3 D shear wave velocity structures. The horizontal shear wave velocity images clearly and intuitively exhibit that the earthquake swarms in the Haicheng region and theTangshan region are mainly clustered in the transition zone between the low-and high-velocity zones in the upper crust, coinciding with fault zones, and their distribution is very closely associated with these faults. The vertical shear wave velocity image reveals that the lower crust downward to the uppermost mantle is featured by distinctly high velocities, with even a high-velocity thinner layer existing at the bottom of the lower crust near Moho in central and northern the Bohai sea along the Tanlu fault, and these phenomena could be caused by the intrusion of mantle material, indicating the Tanlu fault could be just as the uprising channel of deep materials.  相似文献   

2.
Rayleigh wave phase velocities of South China block and its adjacent areas   总被引:2,自引:0,他引:2  
Using records of continuous seismic waveforms from 609 broadband seismic stations in the South China Block and its adjacent areas in 2010–2012, empirical Green's functions of surface waves were obtained from cross-correlation functions of ambient noise data between these stations. High quality phase velocity dispersion curves of Rayleigh waves were obtained using time-frequency analysis. These interstation dispersion curves were then inverted to build Rayleigh wave phase velocity maps at periods of 6–50 s. The results of phase velocity maps indicate that phase velocities at 6–10 s periods are correlated with the geological features in the upper crust. Major basins and small-scale grabens and basins display slow velocity anomalies; while most of the orogenic belts and the fold belts display high velocity anomalies. With the gravity gradient zone along Taihang Mountain to Wuling Mountain as the boundary for the phase velocity maps at period of 20–30 s, the western area mainly displays low velocity anomalies, while the eastern side shows high velocity anomalies. Phase velocities in the eastern South China Block south to the Qinling-Dabie orogenic belt is higher than that in the eastern North China Block to the north, which is possibly due to the differences of tectonic mechanisms between the North China Craton and the South China Block. The phase velocities at periods of40–50 s are possibly related to the lateral variations of the velocity structure in the lower crust and upper mantle: The low-velocity anomalies in the eastern part of the Tibetan Plateau are caused by the thick crust; while the Sichuan Basin and the southern part of the Ordos Basin display distinct high-velocity anomalies, reflecting the stable features of the lithosphere in these blocks. The lateral variation pattern of phase velocities in the southern part of the South China Block is not consistent with the surface trace of the block boundary in the eastern Yunnan Province and its vicinities. The phase velocities in the Sichuan Basin are overall slow at short periods and gradually increase with period from the central part to the edge of the basin, indicating the features of shallower basement in the center and overall stable lithospheric mantle of the basin. The middle and upper crust of the southern Ordos Basin in the North China Block is heterogeneous, while in lower crust and the uppermost mantle the phase velocities mainly exhibit high anomalies. High-velocity anomalies are widespread at the middle of the Qinling-Dabie orogenic belt, as well as the areas in southeastern Guangxi with Caledonian granite explosion, but its detailed mechanism is still unclear.  相似文献   

3.
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation.The data we use are from the China National Seismic Network,global and regional networks and PASSCAL stations in the region.We first acquire cross-correlation seismograms between all possible station pairs.We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s.After that,Rayleigh wave group and phase velocity dispersion maps on 1° by 1° spatial grids are obtained at different periods.Finally,we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node.The inversion results show large-scale structures that correlate well with surface geology.Near the surface,velocities in major basins are anomalously slow,consistent with the thick sediments.East-west contrasts are striking in Moho depth.There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar,Tarim,Ordos,and Sichuan).These strong blocks,therefore,appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape.In northwest TP in Qiangtang,slow anomalies extend from the crust to the mantle lithosphere.Meanwhile,widespread,a prominent low-velocity zone is observed in the middle crust beneath most of the central,eastern and southeastern Tibetan plateau,consistent with a weak (and perhaps mobile) middle crust.  相似文献   

4.
Two-month continuous waveforms of 108 broadband seismic stations in Fujian Province and its adjacent areas are used to compute noise cross-correlation function (NCF). The signal quality of NCF is improved via the application of time-frequency phase weighted stacking. The Rayleigh and Love waves group velocities between 1s-20s are measured on the symmetrical component of the NCF with the multiple filter method. More than 5,000 Rayleigh wave dispersion curves and about 4,000 Love wave dispersion curves are obtained and used to invert for group velocity maps. This data set provides about 50km resolution that is demonstrated with checkerboard tests. Considering the off great circle effect in inhomogeneous medium, the ray path is traced based on the travel time field computed with a finite difference method. The inverted group velocity maps show good correlation with the geological features in the upper and middle crust. The Fuzhou basin and Zhangzhou basin showed low velocity on the short period group velocity maps. On the long period group velocity maps, the low velocity anomaly in the high heat flow region near Zhangzhou and clear velocity contrast across the Zhenghe-Dapu faults, which suggests that the Zhenghe-Dapu fault might be a deep fault.  相似文献   

5.
To investigate the relationship between velocity structure and earthquake activity on the southeastern front of the Tibetan Plateau, we make use of continuous observations of seismic ambient noise data obtained at 55 broadband stations from the regional Yunnan Seismic Network. These data are used to compute Rayleigh wave Green's Functions by cross-correlating between two stations, extracting phase velocity dispersion curves, and finally inverting to image Rayleigh wave phase velocity with periods between 5 and 34 s by ambient noise tomography. The results show significant lateral variations in crustal and uppermost mantle structures in the studied region. Phase velocity anomalies at short periods(5–12 s) are closely related to regional tectonic features such as sediment thickness and the depth of the crystalline basement. The Sichuan-Yunnan rhombic block, enclosed by the Honghe, Xiaojiang and Jianchuan faults, emerges as a large range of low-velocity anomalies at periods of 16–26 s, that inverts to high-velocity anomalies at periods of 30–34 s. The phase velocity variation in the vicinity of the Sichuan-Yunnan rhombic block suggests that the low-velocity anomaly area in the middle-lower crust may correspond to lower crustal channelized flow of the Tibetan Plateau. The spatial distribution of strong earthquakes since 1970 reveals that the Yunnan region is inhomogeneous and shows prominent characteristics of block motion. However, earthquakes mostly occur in the upper crust, with the exception of the middle-Yunnan block where earthquakes occur at the interface zone between high and low velocity as well as in the low-velocity zones, with magnitudes being generally less than 7. There are few earthquakes of magnitude 5 at the depths of 15–30 km, where gather earthquakes of magnitude 7 or higher ones which mainly occur in the interface zone between high and low velocities with others extending to the high-velocity abnormal zone.  相似文献   

6.
We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array.The study region is divided into grid with interval 0.25°×0.25°,and group velocity distribution maps between 4 s and 30 s are obtained using ambient noise tomography method.The lateral resolution is estimated to be 20-50 km for most of the study area.We construct a 3-D S wave velocity model by inverting the pure path dispersion curve at each grid using a genetic algorithm with smoothing constraint.The crustal structure observed in the model includes sedimentary basins such as North China basin,Yanqing-Huailai basin and Datong basin.A well-defined low velocity zone is observed in the Beijing-Tianjin-Tangshan region in 22-30 km depth range,which may be related to the upwelling of hot mantle material.The high velocity zone near Datong,Shuozhou and Qingshuihe within the depth range of 1-23 km reveals stable characteristics of Ordos block.The Taihangshan front fault extends to 12 km depth at least.  相似文献   

7.
Successive waveforms of the vertical component recorded by 888 broadband seismic stations in the China Seismography Network from January,2010 to June,2011 are used to investigate the temporal and spatial distribution of ambient noise intensity,and the images of ambient noise intensity at the period of 10 s in the Chinese Mainland are obtained. The temporal variation of ambient noise intensity shows some seasonal and periodic characteristics. The maximum ambient noise intensity occurred from January,2011 to March,2011. The spatial distribution images of ambient noise intensity show obvious zoning features,which doesnt correlate with surface geology,suggesting that the noise field is stronger than the site factors. The strength in southeastern coastal areas reaches its maximum and generally decreases toward to inland areas,and arrives at the minimum in the Qinghai-Tibetan Plateau. The zonal intensity distribution is probably correlated with ocean tides from the Philippine Ocean and the Pacific Ocean. It also shows that the influence from the Indian Ocean seems small. However, the ambient noise intensity increases to a certain degree in the Xinjiang area,indicating that the main source of ambient noise in the western area of the Chinese Mainland is not derived from the East and South China Sea,but rather from the deep interior of the Eurasian continent. The ambient noise intensity obtained in this study can supply reference for seismology research based on ambient noise correlation. Moreover,it can supply basic data for attenuation research based on ambient noise, and thus help achieve the object of retrieving the attenuation of Rayleigh waves from ambient noise.  相似文献   

8.
We discuss two array-based tomography methods,ambient noise tomography (ANT) and two-planewave earthquake tomography (TPWT),which are capable of taking advantage of emerging large-scale broadband seismic arrays to generate high resolution phase velocity maps,but in complementary period band:ANT at 8-40 s and TPWT at 25-100 s period.Combining these two methods generates surface wave dispersion maps from 8 to 100 s periods,which can be used to construct a 3D v S model from the surface to ~200 km depth.As an i...  相似文献   

9.
The Shanxi rift zone is one of the largest and active Cenozoic grabens in the world, studying the velocity structure of the crust and upper mantle in this region may help us to understand the mechanisms of rift processes and the seismogenic environment of active seismicity in continental rifts. In this work, using the broadband seismic data of Shanxi, Hebei, Henan, Shaanxi provinces, and the Inner Mongolia Autonomous Region from February 2009 to November 2011, we have picked out 350 high-quality phase velocity dispersion curves of fundamental mode Rayleigh waves at periods from 8 to 75 s, and Rayleigh wave phase velocity maps have been constructed from 8 to75 s period with horizontal resolution ranging from 40 to50 km by two-station surface-wave tomography. Then,using a genetic algorithm, a 3D shear-wave speed model of the crust and uppermost mantle have been derived from these maps with a spatial resolution of 0.4° 9 0.4°. Four characteristics can be outlined from the results:(1) Except in the Datong volcanic zone, in the depth range of11–30 km, the location of a transition zone between the high- and low-velocity regions is in agreement with the seismicity pattern in the study region, and the earthquakes are mostly concentrated near this transition zone;(2) In the depth range of 31–40 km, shear-wave velocities are higher to the south of the Taiyuan Basin and lower to the north,which is similar to the distribution pattern of Moho depth variations in the Shanxi region;(3) The shear-wave velocity pattern of higher velocities to the south of 38°N and lower velocities to the north is found to be consistent with that from the upper crustal levels to depth of 70 km. At the deeper depths, the spatial scale of the low-velocity anomalies zone in the north is gradually shrinking with depth increasing, the low-velocity anomalies are gradually disappearing beneath the Datong volcanic zone at the depth of 151–200 km. We proposed that the root of the Datong volcano may reach to a depth around 150 km;(4) Along the N–S vertical profile at 112.8°E, the 38°N latitude is the boundary between high and low velocities, arguing the tectonic difference between the Shanxi rift zone and its flanks, in the rift zone the seismic velocity is dominated by low-velocity anomalies while in the flanks it is high.  相似文献   

10.
The velocity distribution of layers from surface wave dispersion curve is a severely nonlinear program. Base on the Metropolis rule,we improved the simulated annealing algorithm to simultaneously inverse the velocities and thicknesses using the dispersion data and identified the Moho and the bottom of lithosphere. The application to the numerical examples with 5% noise shows the velocity RMS is 1. 56% between the non-linear results and the original models when the condition of selecting method for temperature parameters and initial temperature are satisfied. Using the pure dispersions of Rayleigh wave,the nonlinear inversion has been carried out for S-wave velocities and thicknesses of the vertical profile crossing the Indian Plate,the Qinghai-Tibetan Plateau,and the Tarim Basin. It indicated that the crustal thickness is about 70 km in the Qiangtang block,while in the hinterland of the Qinghai-Tibetan Plateau the lithosphere is relatively thin(~ 130 km)from the velocity values and their offsets.  相似文献   

11.
The focal mechanisms of 62 moderate-small earthquakes since 1980 in the " Huoshan seismic window" region are calculated with the method developed recently by Snoke, combining the use of the first motion of P, SV and SH waves with their amplitude ratios. Based on these abundant focal mechanisms, the mean tectonic stress field in the "Huoshan seismic window" region is inverted with the average stress tensor method, and the result shows that the "Huoshan seismic window" region is horizontally compressed in the near EW direction and horizontally dilated in the near NS direction, which is in accord with statistical results of focal mechanism parameters. We estimate the difference (also referred to as consistency parameter 0) between the force axis direction of the focal mechanism solution and the mean stress tensor, then further analyze the variation characteristics of 0 versus time, and the relationship with moderately strong earthquakes in the east China region. The result indicates that 0 in the " Huoshan seismic window" region is in good correspondence with moderately strong earthquakes in the East China region. When 0 is lower than the mean value, corresponding moderately strong earthquakes may occur in the East China region.  相似文献   

12.
This paper deals with the response features of AR (apparent ratio of seismic wave velocities to the changes of TR (true ratio of wave velocities) in the horizontal layered model by mathematical modeling. The results show that: (1) the response features of AR are associated with the parameters of the structure and its dynamic changes, and the relative position between the hypocenters and the monitoring networks, showing complicated patterns strongly related to the concrete paths of propagation of seismic waves from the source to the receiver in the observatories of the network; (2) the depth of the seismic source would have important influence on the response features of AR, especially the capacity to carry the anomalous information in the condition of the earth media, being in the anomalous state would be greater for those earthquakes which occur inside the anomalous layers than those underneath the anomalous layers; (3) the response features of AR are clearly related to the changes of TR (true ratio of wave velocities) instead of changes of wave velocities themselves, i.e. the response could be small as the changes in TR is small even in the case of large changes in the wave velocities. It is suggested that more attention must be paid to all these features in combination with detailed investigation of the velocity structure of the earth media in the study region and best fitting of precise hypocenter locations when one wants to obtain the reliable precursors from the changes in AR.  相似文献   

13.
This paper provides an overview of the ideas and methods of the assessment of seismic intensity based on remote sensing and describes the models used to assess the remote sensing based synthetic seismic damage index and seismic intensity. With the data of damage information extracted from the high-resolution aerial images in the earthquake-stricken areas (Jiegu town, Yushu city, Qinghai) of the 2010 Ms7. 1 Yushu earthquake, and the data obtained through post-earthquake field investigation, the seismic damage degree and seismic intensity have been estimated. The analysis of the results shows that the seismic intensity in Yushu city is estimated as IX through the RS assessment method, which is consistent with the result estimated according to the ground surveys. The results are discussed in the last part of the paper and indicate that the RS techniques are expected to be one of the main methods used to estimate the seismic intensity values in the emergency stage.  相似文献   

14.
Based on faults surveying and research data in the Tianjin offshore areas, through studying tectonic structure, Quaternary activity, deep structure, stress and strain fields and seismicity in the Tianjin offshore areas, the activity and tectonic features of the faults are determined synthetically. Using seismo-geological data, and the historical and modern seismicity data, the frequency-magnitude relationship model normalized by 500a is established and based on the relationship between the upper limit of maximum magnitude Mu and at/b, the maximum magnitudes of the sea section of the Haihe river fault and the Haiyi fault are calculated. Then Poisson probability model is adopted and the quantitative parameters, such as the maximum magnitude, occurrence probability, recurrence cycle of the faults in the south Tianjin offshore areas in the coming 50 - 200a, are calculated.  相似文献   

15.
总结了凤鸣地震考察工作,了解到震区一带的震感现象和地震影响的分布情况,并且依据《中国地震烈度表》和现场实地考察确定震中区一带地震影响烈度为Ⅳ度,圈定了本次地震的等烈度分布区域。  相似文献   

16.
The research and achievements made on seismic subsidence of loess, obtained over the past 30 years, were reviewed. Seismic Subsidence of Loess (SSL) has been verified by microstructure characteristics, dynamic triaxial experiments, and in-situ explosion tests, and has become an important subject in the field of seismic loess engineering research. While, the research is still in the stage of theoretical study of saturated soil, and there are no representative cases of seismic subsidence of loess in historical earthquakes. It is difficult to express structure characteristics using microstructure morphology. While, soil mechanics are available methods for this. Seismic subsidence judgment is absolute in some certain value ranges for several parameters. Therefore, probabilistic judgment should be developed. The seismic subsidence ratio is estimated mostly by empirical formulas or semi- empirical and semi-theoretical formulas, which are based on laboratory data. These formulas are not established on the basis of physical process and mechanics of seismic subsidence, and this leads to more variables, complicated computation, and poor practicability. To solve these problems, we need to distinguish the main factors and corresponding variables, to establish a mechanics model for seismic subsidence estimation, and to characterize its physio-mechanical process. The key of anti-seismic subsidence treatment is to reduce the seismic subsidence property of soils, and to lower the interaction between the soil body and underground structures.  相似文献   

17.
Using a time series method that combines both the persistent scatterer and small baseline approaches, we analyzed 9 scenes Envisat ASAR data over the L'Aquila earthquake, and obtained a Shocke's displacement field and its evolution processes. The results show that: (1) Envisat ASAR clearly detected the whole processes of displacement field of the L'Aquila earthquake, and distinct variations at different stages of the displacement field. (2) Preseismic creep displacement → displacement mutation when faulting → constantly slowed down after the earthquake. (3) The area of the strongest deformation and ground rupture was a low-lying oval depression region to the southeast. Surface faulting within a zone of about 22 km× 14 km, with an orientation of 135°, occurred along the NW-striking and SW-dipping Paganica-S. Demetrio normal fault. (4) In analyzing an area of about 54 km x 59 km, bounded by north-south axis to the epicenter, the displacement field has significant characteristics of a watershed: westward of the epicenter shows uplift with maximum of 130 mm in line-of-sight (LOS), and east of the epicenter was a region with 220 mm of maximum subsidence in the LOS, concentrating on the rupture zone, the majority of which formed in the course of faulting and subsequence.  相似文献   

18.
The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan station, Beijing where there are two different gravimeters (namely, L&R-804 and PET-031). Based on the original raw tidal records of two gravimeters from 2008 to 2011, we first remove various interference from raw data by the standard procedure software-Tsoft; then we model the solid earth tides, ocean tidal loading and pole tide through related parameters; after that we adopt a new segmented polynomial fitting method based on Tsoft to fit the complex drift of spring gravimeter; and finally we calculate the atmospheric loading effects by a linear regression model. After a series of processing we gain the non-tidal variation of the two gravimeters at Baijiatuan site, Beijing. Furthermore, to analyze the non-tidal variation preliminarily, we study the main component of related tidal data by power spectral density. Comparing the non-tidal variation of two different gravimeters, we find seasonal fluctuations in non-tidal results, which are in accordance with the water storage change. Therefore, we take into account the relevance of gravity changes and water storage based on the gravity data of GRACE and water data of the CMAP model from 2003 to 2011 at different sites in the Chinese mainland (Beijing, Chengdu, Shenyang and Shiquanhe) , and make a preliminary analysis on the relationship between gravity changes and water storage.  相似文献   

19.
Monitoring of subsurface fluid (underground fluid) is an important part of efforts for earthquake prediction in China. The nationwide network, which monitors groundwater level, water temperature, and radon and mercury in groundwater, has been constructed in the last decades. Large amounts of abnormal fluid changes before and after major earthquakes have been recorded, providing precious data for research in earthquake sciences. Many studies have been done in earthquake fluid hydrogeology in order to probe the nature of the earthquake. Much progress in earthquake fluid hydrogeology has been made in the last decades. The paper provides a review of the advances in research on earthquake fluid hydrogeology over the last 40 years in China. It deals with the following five aspects: (1) an introduction to the development history of monitoring networks construction; (2) cases of different subsurface fluid changes recorded before some major earthquakes which occurred in the last decades; (3) characteristics of subsurface fluid changes following major earthquakes; (4) mechanism of subsurface fluid changes before and following earthquakes; (5) application of earthquake fluids in the hydrogeology field.  相似文献   

20.
The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the layered half-space is calculated by the direct stiffness method, and dynamic Green's functions of moving distributed loads acting on inclined lines in a layered half-space are calculated to simulate the scattering wave field. The presented method yields very accurate results since the three-dimensional dynamic stiffness matrix is exact and the moving distributed loads can act directly on the valley boundary without singularity. Numerical results and analyses are performed for amplification of obliquely incident plane SH waves around an alluvial valley in a uniform half-space and in single layer over half-space. The results show that the three-dimensional responses are distinctly different from the two-dimensional responses, and the displacement amplitudes around alluvial valleys in a uniform haft-space are obviously different from those in a layered half-space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号