首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Extremely high precipitation occurs in the Southern Alps of New Zealand, associated with both orographic enhancement and synoptic‐scale weather processes. In this study, we test the hypothesis that atmospheric rivers (ARs) are a key driver of floods in the Southern Alps of New Zealand. Vertically integrated water vapour and horizontal water vapour transport, and atmospheric circulation, are investigated concurrently with major floods on the Waitaki River (a major South Island river). Analysis of the largest eight winter maximum floods between 1979 and 2012 indicates that all are associated with ARs. Geopotential height fields reveal that these ARs are located in slow eastward moving extratropical cyclones, with high pressure to the northeast of New Zealand. The confirmation of ARs as a contributor to Waitaki flooding indicates the need for their further exploration to better understand South Island hydrometeorological extremes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Stable water isotope ratios are measured as a tracer of environmental processes in materials such as leaves, soils, and lakes. Water in these archives may experience evaporation, which increases the abundance of heavy isotopologues proportionally to the gradients in humidity and isotope ratio between the evaporating water and the surrounding atmosphere. The isotope ratio of the atmosphere has been difficult to measure until recently, and measurements remain scarce. As a result, several assumptions have been adopted to estimate isotope ratios of atmospheric water vapour. Perhaps the most commonly employed assumption in terrestrial environments is that water vapour is in isotopic equilibrium with precipitation. We evaluate this assumption using an eight‐member ensemble of general circulation model (GCM) simulations that include explicit calculation of isotope ratios in precipitation and vapour. We find that across the model ensemble, water vapour is typically less depleted in heavy isotopologues than expected if it were in equilibrium with annual precipitation. Atmospheric vapour likely possesses higher‐than‐expected isotope ratios because precipitation isotope ratios are determined by atmospheric conditions that favour condensation, which do not reflect atmospheric mixing and advection processes outside of precipitation events. The effect of this deviation on theoretical estimates of isotope ratios of evaporating waters scales with relative humidity. As a result, the equilibrium assumption gives relatively accurate estimates of the isotope ratios of evaporating waters in low latitudes but performs increasingly poorly at increasing latitudes. Future studies of evaporative water pools should include measurements of atmospheric isotope ratios or constrain potential bias with isotope‐enabled GCM simulations.  相似文献   

3.
High-frequency stable isotope data are useful for validating atmospheric moisture circulation models and provide improved understanding of the mechanisms controlling isotopic compositions in tropical rainfall. Here, we present a near-continuous 6-month record of O- and H-isotope compositions in both water vapour and daily rainfall from Northeast Australia measured by laser spectroscopy. The data set spans both wet and dry seasons to help address a significant data and knowledge gap in the southern hemisphere tropics. We interpret the isotopic records for water vapour and rainfall in the context of contemporaneous meteorological observations. Surface air moisture provided near-continuous tracking of the links between isotopic variations and meteorological events on local to regional spatial scales. Power spectrum analysis of the isotopic variation showed a range of significant periodicities, from hourly to monthly scales, and cross-wavelet analysis identified significant regions of common power for hourly averaged water vapour isotopic composition and relative humidity, wind direction, and solar radiation. Relative humidity had the greatest subdiurnal influence on isotopic composition. On longer timescales (weeks to months), isotope variability was strongly correlated with both wind direction and relative humidity. The high-frequency records showed diurnal isotopic variations in O- and H-isotope compositions due to local dew formation and, for deuterium excess, as a result of evapotranspiration. Several significant negative isotope anomalies on a daily scale were associated with the activity of regional mesoscale convective systems and the occurrence of two tropical cyclones. Calculated air parcel back trajectories identified the predominant moisture transport paths from the Southwest Pacific Ocean, whereas moisture transport from northerly directions occurred mainly during the wet season monsoonal airflow. Water vapour isotope compositions reflected the same meteorological events as recorded in rainfall isotopes but provided much more detailed and continuous information on atmospheric moisture cycling than the intermittent isotopic record provided by rainfall. Improved global coverage of stable isotope data for atmospheric water vapour is likely to improve simulations of future changes to climate drivers of the hydrological cycle.  相似文献   

4.
This study examined the weekly water vapour isotopic composition (δ18Ov) in Thailand. The water vapour was cryogenically collected from eight sites across the country. Two observational samples were collected over one 24-h period each week (a daytime and a night-time sample), from September 2013 to September 2014. The primary aim was to investigate the environmental factors influencing water vapour isotopes. The results revealed differences in water vapour isotopic values between day and night samples. Three periods of depleted δ18Ov were associated with large-scale convective systems in September, December, and May. The statistical relationship between the climate variables and water vapour isotopes indicated that the amount of precipitation and relative humidity were the primary controls on both diurnal and seasonal isotopic variability. The temperature did not affect the δ18Ov, mainly because the atmospheric processes are a function of vertical convection rather than temperature in tropical regions. The water vapour deuterium excess (d-excess) showed greater variability in 2013 than in 2014. The d-excess variation reflected the differences in convection occurring in the day and night. In addition, the vapour phase data were combined with the local meteoric water line to identify the local water vapour line and the interaction between the isotopic composition of water vapour and liquid water. The water vapour isotopic patterns paralleled the precipitation isotopes on rainy days because of equilibrium isotopic exchange. Water vapour and precipitation were isotopically similar under low humidity but showed greater differences from each other under wetter conditions. The study results provide insight into water vapour isotopic characteristics in tropical regions and constrain the role of large-scale atmospheric processes relative to isotopic variability of water vapour in Thailand and nearby countries.  相似文献   

5.
The development of ocean waves under explosive cyclones (ECs) is investigated in the Northwestern Pacific Ocean using a hindcast wave simulation around Japan during the period 1994 through 2014. A composite analysis of the ocean wave fields under ECs is used to investigate how the spatial patterns of the spectral wave parameters develop over time. Using dual criteria of a drop in sea level pressure below 980 hPa at the center of a cyclone and a decrease of at least 12 hPa over a 12-h period, ECs are identified in atmospheric reanalysis data. Two areas under an EC were identified with narrow directional spectra: the cold side of a warm front and the right-hand side of an EC (relative to the propagating direction). Because ECs are associated with atmospheric fronts, ocean waves develop very differently under ECs than they do under tropical cyclones. Moreover, ECs evolve very rapidly such that the development of the ocean wave field lags behind the peak wind speed by hours. In a case study of an EC that occurred in January 2013, the wave spectrum indicates that a warm front played a critical role in generating distinct ocean wave systems in the warm and cold zones along the warm front. Both the warm and cold zones have narrow directional and frequency spectra. In contrast, the ocean wave field in the third quadrant (rear left area relative to the propagation direction) of the EC is composed of swell and wind sea systems propagating in different directions.  相似文献   

6.
The basic peculiarities of the hydrological regime of one of the largest mouth areas of the world, i.e., the common mouth of the rivers of Ganges and Brahmaputra, are discussed. The main features of natural conditions (including climatic) of the mouth of these rivers and the delta drainage system are characterized. The hydrological regime of the Ganges and Brahmaputra rivers, the largest rivers of South Asia, is studied in greater detail; the quantitative assessments of the water and sediment runoff of these rivers are specified. Provision is made for revealing the basic peculiarities of river flow distribution among numerous delta branches, annual floods during southwest monsoons, tidal phenomena in the maritime zone of the delta, and disastrous storm surges and inundations in the period of tropical cyclones. Flood control measures taken in Bangladesh to protect the population and lands are described.  相似文献   

7.
The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linkage appears to have an interdecadal change from weak connection to strong connection. During the period of 1948–1977, the NAO was insignificantly correlated to the WNPTCF. However, during the period of 1980–2009, they were significantly correlated with stronger(weaker) NAO corresponding to more(fewer) tropical cyclones in the western North Pacific. The possible reason for such a different relationship between the NAO and the WNPTCF during the former and latter periods is further analyzed from the perspective of large-scale atmospheric circulations. When the NAO was stronger than normal in the latter period, an anomalous cyclonic circulation prevailed in the lower troposphere of the western North Pacific and the monsoon trough was intensified, concurrent with the eastward-shifting western Pacific subtropical high as well as anomalous low-level convergence and high-level divergence over the western North Pacific. These conditions favor the genesis and development of tropical cyclones, and thus more tropical cyclones appeared over the western North Pacific. In contrast, in the former period, the impact of the NAO on the aforementioned atmospheric circulations became insignificant, thereby weakening its linkage to the WNPTCF. Further study shows that the change of the wave activity flux associated with the NAO during the former and latter periods may account for such an interdecadal shift of the NAO–WNPTCF relationship.  相似文献   

8.
Hydrological simulations at multi-temporal time scales by a widely used land surface model (LSM) are investigated under contrasting vegetation and meteorological conditions. Our investigation focuses particularly on the effects of two different representations of root water uptake and root profile on simulated evapotranspiration (ET) and soil moisture by the Integrated BIosphere Simulator (IBIS). For this purpose, multi-year eddy covariance measurements, collected at four flux-tower sites across North America, were used to gauge IBIS simulations with: (a) its standard version (IBIS2.1), in which static root water uptake (RWU) and root profile schemes are incorporated; and (b) a modified version in which dynamic RWU and root profile schemes replaces the static schemes used in the standard version. Overall, our results suggest that the modified version of the model performs more realistically than the standard version, particularly when high atmospheric demand for evaporation is combined with high atmospheric vapour pressure deficit and low soil water availability. The overall correlation between simulated and measured monthly ET rates at the simulated sites reached 0.87 and 0.91 for the standard and the modified versions, respectively. Our results also show that the incorporation of the dynamic RWU in IBIS yields improved simulations of ET under very dry conditions, when soil moisture falls down to very low levels. This suggests that adequate representations of vegetation responses to drought are needed in LSMs as many state of the art climate models projections of future climate indicate more frequent and/or more intense drought events occurring in some regions of the globe. Our analysis also highlighted the urgent need for adequate methodologies to correct field measurements that exhibit energy imbalances in order to provide rigorous assessments of land surface model simulations of heat and mass exchanges between the land surface and the atmosphere.  相似文献   

9.
海南井水位对热带气旋响应特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2001——2010年, 海南省地下流体观测台网记录到多次热带气旋引起的井水位抖动现象.本文以2003年7月21日强热带气旋ldquo;天鹅rdquo;和2005年9月27日台风ldquo;达维rdquo;为例, 系统地研究了这两次热带气旋引起的水位抖动变化的特征.结果表明, 经过高通滤波, 水位抖动变化图像更加明显;通过频谱分析,得知热带气旋引起的水位抖动周期为100——101 min;井水位抖动的起始时间、 幅度最大值的时间与热带气旋通过海南岛陆的时间一致, 且与热带气旋的结构特点、发展和运动过程密切相关,与井孔自身的井-含水层系统对微动态信息响应的能力也有关系.分析认为,气压振荡式升降变化和摩擦是热带气旋引起水位抖动的原因.   相似文献   

10.
Deciduous forest covers vast areas of permafrost under severe dry climate in eastern Siberia. Understanding the water cycle in this forest ecosystem is quite important for climate projection. In this study, diurnal variations in isotopic compositions of atmospheric water vapour were observed in eastern Siberia with isotope analyses of precipitation, sap water of larch trees, soil water, and water in surface organic layer during the late summer periods of 2006, 2007, and 2008. In these years, the soil moisture content was considerably high due to unusually large amounts of summer rainfall and winter snowfall. The observed sap water δ18O ranged from ?17.9‰ to ?13.3‰, which was close to that of summer precipitation and soil water in the shallow layer, and represents that of transpired water vapour. On sunny days, as the air temperature and mixing ratio rose from predawn to morning, the atmospheric water vapour δ18O increased by 1‰ to 5‰ and then decreased by about 2‰ from morning to afternoon with the mixing ratio. On cloudy days, by contrast, the afternoon decrease in δ18O and the mixing ratio was not observed. These results show that water vapour that transpired from plants, with higher δ18O than the atmospheric water vapour, contributes to the increase in δ18O in the morning, whereas water vapour in the free atmosphere, with lower δ18O, contributes to the decrease in the afternoon on sunny days. The observed results reveal the significance of transpired water vapour, with relatively high δ18O, in the water cycle on a short diurnal time scale and confirm the importance of the recycling of precipitation through transpiration in continental forest environments such as the eastern Siberian taiga. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
Long-period variations in the cyclonic activity at middle and subpolar latitudes of the North Atlantic are studied on the basis of the data from the MSLP archive of the surface pressure (Climatic Research Unit, UK) for 1874–1995. It has been found that in the cold half year (the period of the most intense formation and development of extra-tropical cyclones) in the studied region, oscillations of the surface pressure with periods close to the main periods of solar activity (~80 and ~11 years) are observed. The obtained results make it possible to assume that solar activity and related variations in the galactic cosmic rays are one of the factors influencing the intensity of cyclonic processes at midlatitudes on the time scales of ~10 to ~100 years.  相似文献   

14.
Solar proton events and evolution of cyclones in the North Atlantic   总被引:1,自引:1,他引:0  
The influence of solar proton events (SPEs) with particle energies > 90 MeV on the evolution of extratropical cyclones in the North Atlantic is studied. A substantial intensification of the regeneration (secondary deepening) of cyclones near the southeastern Greenland coast after the SPE onset is detected. It is shown that the observed deepening of cyclones is caused by intensified advection of cold when the zone of the Arctic front in the region of the Greenland coast is approached. The results allow us to assume that SPEs with the above particle energies cause substantial changes in the structure of the thermobaric field of the subpolar and high-latitude troposphere, which form more favorable conditions for the regeneration of cyclones. In this case the role of the Arctic vertical frontal zone is apparently important. Temperature field changes can be caused by the radiation effects of variations in the upper cloudiness.  相似文献   

15.
An upwelling system exists in the coastal waters of the northern South China Sea (NSCS), a region that is frequently affected by tropical cyclones in summer. This study investigates the evolution of the NSCS monsoon-driven upwelling system and the effects of the Talim and Doksuri tropical cyclones on the system using in situ observational data obtained at three mooring stations, one land-based meteorological station, and concurrent satellite remote sensing data for the NSCS coastal waters from May to July 2012. The results show that the occurrence and evolution of the upwelling system were mainly controlled by the Asian southwest monsoon, while the eastward current also made important contributions to the upwelling intensity. A decrease in the bottom water temperature and shifts in the along-shore and cross-shore currents were direct evidence of the establishment, existence, and recovery of this upwelling. Tropical cyclones have significant impacts on hydrodynamics and can thus influence the evolution of the NSCS upwelling system by changing the local wind and current fields. Variations in water level and local current systems impeded the development of upwelling during tropical cyclones Talim and Doksuri in the study area, which have low-frequency fluctuations of approximately 2–10 days. These variations were the results of the coupled interactions between local wind fields, coastal trapped waves, and other factors. The hydrodynamic environment of the marine water (including coastal upwelling system) rapidly recovered to normal sea conditions after each cyclone passed due to the relatively short duration of the impact of a tropical cyclone on the dynamic environment of the waters.  相似文献   

16.
“Non rainfall” atmospheric water (dew, fog, vapour adsorption) supplies a small amount of water to the soil surface that may be important for arid soil micro-hydrology and ecology. Research into the direct effects of this water on soil is, however, lacking due to instrument and technical constraints. We report on the design, development, construction and findings of an automated microlysimeter instrument to directly measure this soil water cycle in Stellenbosch, South Africa during winter. Performance of the microlysimeter was satisfactory and results obtained were compared to literature and fell within the expected range. “Non rainfall” atmospheric water input into bare soil (river sand) was between 0.88 and 1.10?mm per night while evaporation was between 1.39 and 2.71?mm per day. The study also attempted to differentiate the composition of “non rainfall” atmospheric water and results showed that vapour adsorption contributed the bulk of this input.  相似文献   

17.
Experimental measurements of the absorption coefficient of atmospheric water vapour, at wavelengths between 8 and 13 m, are examined on the basis of atmospheric models describing the meteorological conditions of the observed atmospheres to obtain estimates of the foreign-broadening absorption coefficient for homogeneous paths. The results show that the variable contribution given by unresolved lines predominates on the continuum term due to wing effects of remote lines, even for rather high spectral resolutions.Associated with estimates of the self-broadening absorption coefficient, as proposed byRoberts et al. (1976), these data are applied to a wide set of atmospheric models, corresponding to various latitudes and seasons, indicating that the two components of the atmospheric absorption coefficient are closely related to the surface temperature. Because of the variable weights given by foreign- and self-broadening terms, the atmospheric absorption coefficient turns out to increase with the surface temperature with different rates at various wavelengths.  相似文献   

18.
The Role of Water Vapour in Earth’s Energy Flows   总被引:1,自引:1,他引:0  
Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.  相似文献   

19.
This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide‐prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three‐dimensional (3D) Devil's Slide‐like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one‐dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide‐like problems. Twenty‐four simulations of steady‐state saturated subsurface flow were conducted in a concept‐development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure‐prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide‐like system, provide a foundation for future investigations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
—?The role of sea-surface temperature (SST) and Coriolis parameter in the evolution and intensification of tropical cyclones has been examined using the ten-level axi-symmetric primitive equation model described in the companion paper (Bhaskar Rao and Ashok, 1999). Two experiments have been conducted using the ten-level model to assess the role of Coriolis parameter “f” in tropical cyclone intensity and the size of the storm generated. Six experiments have been performed to assess the importance of Sea-Surface Temperature (SST) in tropical cyclogenesis and intensification. The initial thermodynamic field and the initial vortex are the same as that used to simulate the Bay of Bengal tropical cyclone discussed in the companion paper. Further sensitivity experiments indicated a strong dependency of the model on SSTs. The model initial vortex could not intensify with an SST of 299?K but could with an SST of 300?K. The increase of SST from 300?K to 300.5?K shows rapid intensification with a minimum central surface pressure of 910?hPa and a maximum tangential wind of 80?m/s. Further increase of SST only shows a marginal increase in intensity and a larger radius of maximum wind. Sensitivity experiments to assess the role of the Coriolis parameter suggest that tropical cyclones develop more intensity and are faster at relatively lower latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号