首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
城市化对北京气象站极端气温指数趋势变化的影响   总被引:11,自引:2,他引:9       下载免费PDF全文
利用5个乡村气象站和北京气象站(简称北京站)1960~2008年日最高、最低气温资料,比较分析了北京地区城市和乡村极端气温指数年、季节的时间变化以及城市化对北京站各极端气温指数趋势变化的影响.结果表明:1960~2008年北京站霜冻日数、冷夜日数、冷昼日数和平均日较差均显著减少,暖夜日数、暖昼日数、平均最高气温和平均最...  相似文献   

2.
Spatial and temporal distributions of the trends of extreme precipitation indices were analysed between 1986 and 2005, over the Iberian Peninsula (IP). The knowledge of the patterns of extreme precipitation is important for impacts assessment, development of adaptation and mitigation strategies. As such, there is a growing need for a more detailed knowledge of precipitation climate change.This analysis was performed for Portuguese and Spanish observational datasets and results performed by the Weather Research and Forecast (WRF) model forced by the ERA-Interim reanalysis. Extreme precipitation indices recommended by the Expert Team for Climate Change Detection Monitoring and Indices were computed, by year and season. Then, annual and seasonal trends of the indices were estimated by Theil-Sen method and their significance was tested by the Mann-Kendal test. Additionally, a second simulation forced by the Max Planck Institute Earth System Model (MPI-ESM), was considered. This second modelling configuration was created in order to assess its performance when simulating extremes of precipitation.The annual trends estimated for the 1986–2005, from the observational datasets and from the ERA-driven simulation reveal: 1) negative statistically significant trends of the CWD index in the Galicia and in the centre of the IP; 2) positive statistically significant trends of the CDD index over the south of the IP and negative statistically significant trends in Galicia, north and centre of Portugal; 3) positive statistically significant trends of the R75p index in some regions of the north of the IP; 4) positive statistically significant trends in the R95pTOT index in the Central Mountains Chain, Leon Mountains and in the north of Portugal.Seasonally, negative statistically significant trends of the CWD index were found in Galicia, in winter and in the south of the IP, in summer. Positive statistically significant trends of the CWD index were identified in the Leon Mountains, in spring, and in Galicia, in autumn. For the CDD index, negative statistically significant trends were seen in Valencia, in the spring, and, in Galicia and Portugal (north and centre), in summer. Positive statistically significant trends of the CDD index were found: in the east of the IP, in the winter; in the Cantabrian Mountain, in the spring; and, in the south of the IP, in summer. Regarding to the R75p index, negative statistically significant trends were found in Galicia, in winter and positive statistically significant trends in the north of Portugal, in spring and in the Central Mountains Chain and north of Portugal, in autumn. For the R95pTOT index, negative statistically significant trends were found over the Sierra Cuenca and Sierra Cazorla, in winter and positive statistically significant trends were found over the Sierra Cebollera, in winter and in Castile-la Mancha region, in spring.The results of the annual and seasonal trends of the extreme precipitation indices performed for observational datasets and the simulation forced by ERA-Interim, are similar. The results obtained for the simulation forced by MPI-ESM are not satisfactory, and can be a source of criticism for the use of simulation forced by MPI-ESM in this type of climate change studies. Even for the relatively short period used, the WRF model, when properly forced is a useful tool due to the similar results of Portuguese and Spanish observational datasets and the simulation forced by ERA-Interim.  相似文献   

3.
Spatiotemporal changes in climatic extremes in the Yellow River Basin from 1959 to 2008 were investigated on the basis of a suite of 27 climatic indices derived from daily temperature and precipitation data from 75 meteorological stations with the help of the Mann–Kendall test, linear regression method and GIS technique. Furthermore, the changes in the probability distribution of the extreme indices were examined. The results indicate: (1) The whole basin is dominated by significant increase in the frequency of warm days and warm nights, and dominated by significant decrease in the frequency of cold days and cold nights. Although trends in absolute temperature indices show less spatial coherence compared with that in the percentile-based temperature indices, overall increasing trends can be found in Max Tmax (TXx), Min Tmax (TXn), Max Tmin (TNx) and Min Tmin (TNn). (2) Although the spatial patterns and the number of stations with significant changes for threshold and duration temperature indices are also not identical, general positive trends in warm indices (i.e., summer days (SU25), tropical nights (TR20), warm spell duration indicator and growing season length) and negative trends in cold indices (i.e., frost days, ice days and cold spell duration indicator) can be found in the basin. Annual nighttime temperature has increased at a faster rate than that in daytime temperature, leading to obvious decrease in diurnal temperature range. (3) The changes in precipitation indices are much weaker and less spatially coherent compared with these of temperature indices. For all precipitation indices, only few stations are characterized by significantly change in extreme precipitation, and their spatial patterns are always characterized by irregular and insignificant positive and negative changes. However, generally, changes in precipitation extremes present drying trends, although most of the changes are insignificant. (4) Results at seasonal scale show that warming trends occur for all seasons, particularly in winter. Different from that in other three seasons, general positive trends in max 1-day precipitation (Rx1DAY) and max 5-day precipitation (Rx5DAY) are found in winter. Analysis of changes in probability distributions of indices for 1959–1983 and 1984–2008 indicate a remarkable shift toward warmer condition and a less pronounced tendency toward drier condition during the past decades. The results can provide beneficial reference to water resource and eco-environment management strategies in the Yellow River Basin for associated policymakers and stakeholders.  相似文献   

4.
A high resolution atmospheric modelling study was done for a 20-year recent historical period. The dynamic downscaling approach adopted used the Max Planck Institute Earth System Model (MPI-ESM) to drive the WRF running in climate mode. Three online nested domains were used covering part of the North Atlantic and Europe, with a resolution 81 km, and reaching 9 km in the innermost domain which covers the Iberian Peninsula.This paper presents the validation of the WRF configuration, which is based on historic simulations between 1986 and 2005 and observational datasets of near surface temperature and precipitation for the same period. The validation was done in terms of comparison of probability distributions between model results and observations, as daily climatologies, spatially averaged inside subdomains obtained with cluster analysis of the observations, for each of the four seasons. In addition, Taylor diagrams are presented for each of the seasons and subdomains. This validation approach was repeated with the results of a new WRF simulation with the same parameterisations but forced by the ERA-Interim reanalysis. The capacity of the MPI-ESM driven WRF configuration to compare with observations and in a manner similar to the ERA-Interim driven WRF, ensures the capacity of the configuration for climate and climate change studies.Considering the difficulty to simulate extremes in long term simulations, the results showed a comfortable comparison of both models (forced by climate model and reanalysis results) with observations. This provides us confidence on the continuity of using the MPI-ESM driven WRF configuration for climate studies.  相似文献   

5.
张冬峰  石英 《地球物理学报》2012,55(9):2854-2866
采用高水平分辨率区域气候模式进行区域未来气候变化预估,对理解全球增暖对区域气候的潜在影响和科学评估区域气候变化有很好的参考价值.这里对国家气候中心使用25 km高水平分辨率区域气候模式RegCM3单向嵌套全球模式MIROC3.2_hires在观测温室气体(1951—2000)和IPCC A1B温室气体排放情景下(2001—2100)进行的共计150年长时间模拟结果,进行华北地区未来气温、降水和极端气候事件变化的分析.模式检验结果表明:模式对当代(1981—2000)气温以及和气温有关的极端气候事件(霜冻日数、生长季长度)的空间分布和数值模拟较好;对降水及和降水有关的极端气候事件(强降水日期、降水强度、五日最大降水量)能够模拟出它们各自的主要空间分布特征,但在模拟数值上存在偏大、偏强的误差.和全球模式驱动场相比,区域模式模拟的气温、降水和极端气候事件有明显的改进.2010—2100年华北地区随时间区域平均气温升高幅度逐渐增大,随之霜冻日数逐渐减少,生长季长度逐渐增多;同时随温室效应的不断加剧,未来降水呈增加的趋势,强降水日期和五日最大降水量逐渐增多、降水强度逐渐增大.从空间分布看,21世纪末期(2081—2100)气温、降水以及有关的极端气候事件变化比21世纪中期(2041—2060)更加明显.  相似文献   

6.
如何提高天气预报和气候预测的技巧?   总被引:11,自引:2,他引:9       下载免费PDF全文
钱维宏 《地球物理学报》2012,55(5):1532-1540
从理论上探讨如何提高天气预报和气候预测的技巧.气候包括以小时为基本单位的昼夜循环、以日为基本单位的年(季节)循环、年代际循环和世纪循环等时间尺度的变化.这些气候变化存在确定的外强迫,是可以被认识和预报的.相对气候昼夜循环和年(季节)循环的偏差是天气尺度扰动.天气尺度的瞬变大气扰动可引发极端天气事件.有技巧的天气预报正是要通过天气尺度大气扰动信号,提前几天甚至十几天,预报出极端天气事件的发生.相对气候年代际和世纪循环的偏差是气候异常,有技巧的气候预测正是要预报出这种异常.距平天气图会大大提高短期和中期—延伸期天气预报的技巧,距平数值预报模式的研制也会加快提高中期—延伸期天气预报和气候预测的技巧.  相似文献   

7.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式,对中国地区1978-2000年及IPCC A1B情景下2038-2070年气候分别进行了水平分辨率为50 km的模拟试验.文章首先检验了模式模拟的当代极端气候结果,在此基础上对6个极端温度指数和6个极端降水指数的未来变化进行了预估.检验结果表明:MM5V3模式对中国地区当代日最高、最低温度及强降水(大雨和暴雨)日数的空间分布和概率特征均具有一定的模拟能力,但模拟的日最高温度在大部分地区偏低,日最低温度在南方地区偏低、西北地区偏高.概率统计结果显示日最高温度向低值频段偏移,日最低温度在0℃的峰值附近明显偏高.模式对大雨和暴雨年平均日数的模拟在东部地区偏多,概率统计结果则为一致偏大.未来中国地区极端气候预估结果表明:极端高温、极端低温和相对高温在全国范围内都将升高,且线性趋势均为上升;霜日日数则为减少,并具有下降趋势;暖日日数和相对低温在青藏高原和新疆部分地区有所减少、其它地区均为增加,且线性趋势暖日日数为上升,相对低温不明显.极端降水指数的变化具有区域特征,其中单日最大降水、连续五日最大降水、最长无雨期、强降水日数、简单降水强度和极端降水总量均在江淮、华南及西南地区有所增多,而在东北及内蒙古地区有所减少,未来中国南方地区降水的极端化趋势将更加显著.极端降水指数的线性趋势除最长无雨期外其它均为上升.  相似文献   

8.
Climate warming, one of the main features of global change, has exerted indelible impacts on the environment, among which the impact on the transport and fate of pollutants has aroused widespread concern. Persistent organic pollutants (POPs) are a class of pollutants that are transported worldwide. Determining the impact of climate warming on the global cycling of POPs is important for understanding POP cycling processes and formulating relevant environmental policies. In this review, the main research findings in this field over the past ten years are summarized and the effects of climate warming on emissions, transport, storage, degradation and toxicity of POPs are reviewed. This review also summarizes the primary POP fate models and their application. Additionally, research gaps and future research directions are identified and suggested. Under the influence of climate change, global cycling of POPs mainly shows the following responses. (1) Global warming directly promotes the secondary emission of POPs; for example, temperature rise will cause POPs to be re-released from soils and oceans, and melting glaciers and permafrost can re-release POPs into freshwater ecosystems. (2) Global extreme weather events, such as droughts and floods, result in the redistribution of POPs through intense soil erosion. (3) The changes in atmospheric circulation and ocean currents have significantly influenced the global transport of POPs. (4) Climate warming has altered marine biological productivity, which has changed the POP storage capacity of the ocean. (5) Aquatic and terrestrial food-chain structures have undergone significant changes, which could lead to amplification of POP toxicity in ecosystems. (6) Overall, warming accelerates the POP volatilization process and increases the amount of POPs in the environment, although global warming facilitates their degradation at the same time. (7) Various models have predicted the future environmental behaviors of POPs. These models are used to assist governments in comprehensively considering the impact of global warming on the environmental fate of POPs and therefore controlling POPs effectively. Future studies should focus on the synergistic effects of global changes on the cycling of POPs. Additionally, the interactions among global carbon cycling, water cycling and POP cycling will be a new research direction for better understanding the adaptation of ecosystems to climate change.  相似文献   

9.
In a changing climate, the common assumption of stationarity of climate extremes has been increasingly challenged, raising the need to incorporate non-stationarity in extreme value modeling. In this study, quantile regression is used to identify the trends of annual temperature extremes and their correlations with two large climate patterns, the western Pacific subtropical high (WPSH) and the Arctic Oscillation (AO) at 357 stations in China. Statistical significant positive trends and correlations between warm (or cold) temperature extremes and WPSH (or AO) have been detected at most stations. The influence of WPSH on warm extremes is significant in southern China, while the AO mainly affects the cold extremes in northern and eastern China. Then, annual temperature extremes are fitted to generalized extreme value (GEV) distributions with time-varying parameters. The summer (or winter) mean daily maximum (or minimum) temperatures and two climate indices, the WPSH index and the AO index, are chosen as covariates. In total, 16 candidate GEV distribution models are constructed, and the best fitting model with the lowest Bayesian information criterion (BIC) is selected. The 20-year return levels of annual warm (or cold) extremes in the period 1961–1980 and 1991–2010 are computed and compared. The changes of 20-year return levels of annual warm and cold extremes are jointly determined by trend and distributional changes of annual temperature extremes. Analysis of large scale atmospheric circulation changes indicate that a strengthening anticyclonic circulation and increasing geopotential height in recent decades may have contributed to the changes in temperature extremes in China.  相似文献   

10.
The Global Warming Debate: A Review of the State of Science   总被引:2,自引:0,他引:2  
A review of the present status of the global warming science is presented in this paper. The term global warming is now popularly used to refer to the recent reported increase in the mean surface temperature of the earth; this increase being attributed to increasing human activity and in particular to the increased concentration of greenhouse gases (carbon dioxide, methane and nitrous oxide) in the atmosphere. Since the mid to late 1980s there has been an intense and often emotional debate on this topic. The various climate change reports (1996, 2001) prepared by the IPCC (Intergovernmental Panel on Climate Change), have provided the scientific framework that ultimately led to the Kyoto protocol on the reduction of greenhouse gas emissions (particularly carbon dioxide) due to the burning of fossil fuels. Numerous peer-reviewed studies reported in recent literature have attempted to verify several of the projections on climate change that have been detailed by the IPCC reports.The global warming debate as presented by the media usually focuses on the increasing mean temperature of the earth, associated extreme weather events and future climate projections of increasing frequency of extreme weather events worldwide. In reality, the climate change issue is considerably more complex than an increase in the earth’s mean temperature and in extreme weather events. Several recent studies have questioned many of the projections of climate change made by the IPCC reports and at present there is an emerging dissenting view of the global warming science which is at odds with the IPCC view of the cause and consequence of global warming. Our review suggests that the dissenting view offered by the skeptics or opponents of global warming appears substantially more credible than the supporting view put forth by the proponents of global warming. Further, the projections of future climate change over the next fifty to one hundred years is based on insufficiently verified climate models and are therefore not considered reliable at this point in time.  相似文献   

11.
Changes in thermal extremes of the climate of Poland in 1951–2010 are examined. Warm extremes have become more frequent, while cold extremes have become less frequent. In the warming climate of Poland, the increase in the number of extremely warm days in a year and the decrease in the number of extremely cold days in a year have been observed. Also the increase of the maximum number of consecutive hot days in a year and the decrease of the maximum number of consecutive very cold and extremely cold days in a year have been observed. However, the trends are not of ubiquitous statistic significance, as the natural variability is strong.  相似文献   

12.
东北松嫩平原区湖泊对气候变化响应的初步研究   总被引:5,自引:3,他引:2  
以气候变暖为主要特点的气候变化已成为当前研究的焦点,气候变化和不同类型的生态系统之间的相互作用更是受到广泛关注.东北地区作为我国气候变化的一个敏感区,观测记录和多种模式预估显示该区气候变暖显著并将进一步增强,降水变化趋势则不明显或略有增加.东北松嫩平原湖泊群是我国湖泊密度最大的湖区之一,但近几十年来,该区湖泊生态环境不断恶化,其中气候因素最为受人关注.本文从以下几个角度综述了松嫩平原湖泊群对气候变化的响应:(1)湖泊面积和湖泊水位;(2)湖泊水质;(3)湖泊生态多样性.在此基础上,探讨了该区未来气候变化对湖泊的可能影响以及湖泊的演变趋势,也阐述了在这种自然背景下的人类活动对湖泊环境演变的影响.  相似文献   

13.
Climate extremes in South Western Siberia: past and future   总被引:1,自引:1,他引:0  
In this study, the temporal and spatial trends of ten climate extreme indices were computed based on observed daily precipitation and on daily maximum and minimum temperatures at 26 weather stations in South Western Siberia during the period 1969–2011 and, based on projected daily maximum and minimum temperatures, during 2021–2050. The Mann–Kendall test was employed to analyze the temporal trend and a combination of multiple linear regressions and semivariogram functions were used to evaluate the regional spatial trends and the local spatial variability of climate extremes, respectively. The results show that the temperature-based climate extremes increase at a 0.05 significance level while none of the precipitation-based climate extremes did. Spatially, dominant gradients are observed along latitude: The northern taiga vegetation zone experiences a colder and wetter climate while the southern forest steppe zone is drier and hotter. Over time, a tendency towards homogenization of the regional climate is observed through a decrease of the spatial variability for most climate extreme indices. In the future, the most intense changes are anticipated for the bio-climate indicators “growing season length” and “growing degree days” in the north, while the warming indicators, “warm day” and “warm night” are expected to be high to the south.  相似文献   

14.
Changes in the ice phenology, seasonal temperature and extreme events are consistent evidence of climate change effect on lakes. In this study, we analyzed multiannual variability, determined long-term trends and detected changes in the frequency of extreme events in the surface water temperature (LSWT) of Lake Peipsi (Estonia/Russia) for nearly seven decades (1950-2018) and aimed to trace how the LSWT responded to the climate change. Dynamic water temperature parameters were calculated using the smoothed water temperature curve fitted to daily water temperatures. Our results showed that, although the average LSWT did not increase significantly on an annual basis since 1950 it rose rapidly in the winter season during the last decade (∼ +0.5 °C). Ice formation exhibited a marked (∼15 days) delay since 2007 resulting in a longer open water period. Extreme LSWT events did not occur more frequently. We noticed however significant fluctuating in winter LSWT in time series, starting from 2007 and also causing an increase in stochasticity. The consequences of the on-going winter warming and changes of ice cover phenology are expected to be crucial for Lake Peipsi ecosystem functioning and impact on lake biota, especially temperature-sensitive native fishes.  相似文献   

15.
Regional climate models are important tools to examine the spatial and temporal characteristics of rainfall and temperature at high resolutions. Such information has potential applications in sectors like agriculture and health. In this study, the Regional Climate Model Version 3 (RegCM3) has been integrated in the ensemble mode at 55 km resolution over India for the summer monsoon season during the years 1982–2009. Emphasis has been given on the validation of the model simulation at the regional level. In Central India, both rainfall and temperature show the best correlations with respective observed values. The model gives rise to large wet biases over Northwest and Peninsular India. RegCM3 slightly underestimates the summer monsoon precipitation over the Central and Northeast India. Nevertheless, over these regions, RegCM3 simulated rainfall is closer to the observations when compared to the other regions where rainfall is overestimated. The position of the monsoon trough simulated by the model lies to the north of its original observed position. This is similar to the usual monsoon break conditions leading to less rainfall over Central India. RegCM3 simulated surface maximum temperature shows a large negative bias over the country while the surface minimum temperature is close to the observation. Nevertheless, there is a strong correlation between the all India weighted average surface temperature simulated by RegCM3 and IMD observed values. While examining the extreme weather conditions in Central India, it is found that RegCM3 simulated frequencies of occurrence of very wet days, extremely wet days, warm days and warm nights more often as compared to those in IMD observed values. However, these are systematic biases. The model biases in the frequencies of distribution of rainfall extremes explain the wet and dry biases in different regions in the country. Overall, the inter-annual characteristics of both the rainfall and temperature extremes simulated by RegCM3 in Central India are well in phase with those found in the observed data.  相似文献   

16.
We utilise a global finite-element sea ice–ocean model (FESOM), focused on the Antarctic marginal seas, to analyse projections of ice shelf basal melting in a warmer climate. Ice shelf–ocean interaction is described using a three-equation system with a diagnostic computation of temperature and salinity at the ice–ocean interface. A tetrahedral mesh with a minimumhorizontal resolution of 4 km and hybrid vertical coordinates is used. Ice shelf draft, cavity geometry, and global ocean bathymetry have been derived from the RTopo-1 data set. The model is forced with the atmospheric output from two climate models: (1) the Hadley Centre Climate Model (HadCM3) and (2) Max Planck Institute’s ECHAM5/MPI-OM coupled climate model. Results from experiments forced with their twentieth century output are used to evaluate the modelled present-day ocean state. Sea ice coverage is largely realistic in both simulations; modelled ice shelf basal melt rates compare well with observations in both cases, but are consistently smaller for ECHAM5/MPI-OM. Projections for future ice shelf basal melting are computed using atmospheric output for the Intergovernmental Panel on Climate Change (IPCC) scenarios E1 and A1B. In simulations forced with ECHAM5 data, trends in ice shelf basal melting are small. In contrast, decreasing convection along the Antarctic coast in HadCM3 scenarios leads to a decreasing salinity on the continental shelf and to intrusions of warm deep water of open ocean origin. In the case of the Filchner–Ronne Ice Shelf (FRIS), this water reaches deep into the cavity, so that basal melting increases by a factor of 4 to 6 compared to the present value of about 90 Gt/year. By the middle of the twenty-second century, FRIS becomes the dominant contributor to total ice shelf basal mass loss in these simulations. Our results indicate that the surface freshwater fluxes on the continental shelves may be crucial for the future of especially the large cold water ice shelves in the Southern Ocean.  相似文献   

17.
Irregular variations in the temperature of the subauroral lower thermosphere during the winter stratospheric warming, which began in the first decade of December 2001 and continued to the end of the observational season (February 19, 2002), have been analyzed. The temperature measurements were based on the thermal broadening of the 557.7 nm oxygen emission measured during moonless nights at Maimaga optical station in the vicinity of Yakutsk (?=63°N, λ=129.7° E) using the Fabry-Pérot spectrometer. Isolated fragments of the map of contour lines of the horizontal temperature field and the globally averaged height-time section of the temperature at the levels of the 1, 2, 5, 10, 30, 50, and 70 hPa isobaric surfaces, obtained by the NOAA Meteorological Satellite Systems, as well as the F 10.7 and Ap indices have been used to analyze the cause-effect relation between the variations in the temperature of the subauroral lower thermosphere and winter stratospheric warming events. It is shown that, when warming is detected at heights of the lower thermosphere, the temperature can become higher than its model values by up to 20 K, which indicates that the planetary waves can penetrate to heights of the lower thermosphere and then propagate downward. In this case the atmosphere cools at heights of the lower thermosphere and tends to heat up above 10 hPa and to cool below 30 and 50 hPa; i.e., we observe the well-known fact of vertical alternation of cold and warm atmospheric regions detected during winter stratospheric warming events.  相似文献   

18.
Increasing precipitation extremes are one of the possible consequences of a warmer climate. These may exceed the capacity of urban drainage systems, and thus impact the urban environment. Because short‐duration precipitation events are primarily responsible for flooding in urban systems, it is important to assess the response of extreme precipitation at hourly (or sub‐hourly) scales to a warming climate. This study aims to evaluate the projected changes in extreme rainfall events across the region of Sicily (Italy) and, for two urban areas, to assess possible changes in Depth‐Duration‐Frequency (DDF) curves. We used Regional Climate Model outputs from Coordinated Regional Climate Downscaling Experiment for Europe area ensemble simulations at a ~12 km spatial resolution, for the current period and 2 future horizons under the Representative Concentration Pathways 8.5 scenario. Extreme events at the daily scale were first investigated by comparing the quantiles estimated from rain gauge observations and Regional Climate Model outputs. Second, we implemented a temporal downscaling approach to estimate rainfall for sub‐daily durations from the modelled daily precipitation, and, lastly, we analysed future projections at daily and sub‐daily scales. A frequency distribution was fitted to annual maxima time series for the sub‐daily durations to derive the DDF curves for 2 future time horizons and the 2 urban areas. The overall results showed a raising of the growth curves for the future horizons, indicating an increase in the intensity of extreme precipitation, especially for the shortest durations. The DDF curves highlight a general increase of extreme quantiles for the 2 urban areas, thus underlining the risk of failure of the existing urban drainage systems under more severe events.  相似文献   

19.
天气尺度瞬变扰动的物理分解原理   总被引:16,自引:8,他引:8       下载免费PDF全文
钱维宏 《地球物理学报》2012,55(5):1439-1448
大气变量可以在时空域内物理分解成四个部分.前两个是纬圈-时间平均的对称部分和时间平均的非对称部分,分别由太阳辐射和海陆分布热力调节的季节变化引起,并形成规则的逐日气候.第三部分是由年际和季节内的热带海洋或极地热力强迫引起的纬圈平均瞬变对称扰动,可形成大气变量的行星尺度指数循环.第四部分是一些复杂的天气尺度瞬变非对称扰动.大气变量中的逐日天气尺度瞬变扰动,可以用于指示区域持续性的干旱、暴雨、低温和热浪等极端天气事件.天气尺度瞬变扰动天气图能在极端天气事件的预报中发挥应有的作用.  相似文献   

20.
The Oceanographic Society of Gipuzkoa has recorded daily sea-surface temperature (SST) measurements, since 2nd July 1946, on a (nearly) daily basis. Sixty years of SST measurements (1947–2007) have been considered, in order to analyse the hydrographic trends and anomalies at the southeastern Bay of Biscay. The study reviews initially the consistency and reliability of the time-series; and trends and anomaly patterns. Then, the periodicity of the series; a reference period, for analysing seasonality during the period 2001–2007; and oceano-meteorological coupling within the period 2001–2007, with reference to the baseline period, have been determined. Within this context, a slight cooling trend has been observed for the whole of the time-series, in contrast to the warming over the last three-decadal period. Regarding the periodicity of the series, several cycles have been identified, with periods of about 8, 11 and 18 years; these represent the influence of climate cycles over the (local) SST series. Additionally, seasonal anomaly patterns between 2001 and 2007 have been examined based upon the selected reference period (1980–2002). Several extreme seasonal events have been observed, such as warm summer SST values in 2003 and 2006 and cold winter values in 2005. Such events can be explained by the “deseasonality” phenomenon, observed throughout the study period. In addition to the direct influence of atmospherical parameters, such as air temperature and irradiance on SST, dynamical variables (turbulence and upwelling–downwelling) account also for this coupling. Overall, despite the marginal location and surface character of the time-series, it reveals anomalies that agree with those described for larger zones of the northeastern Atlantic Ocean; hence, it can be characterised as being a reliable and representative long-term SST series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号