首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kazuo Kiminami 《Island Arc》2010,19(3):530-545
This study examines the geology of low‐grade (chlorite zone) metamorphic rocks in the Sanbagawa belt and of a Jurassic accretionary complex in the Northern Chichibu belt, eastern Shikoku, Japan. The bulk chemistries of metasandstones and metapelites in the Sanbagawa belt of eastern Shikoku are examined in order to determine their parentage. The Sanbagawa belt can be divided into northern and southern parts based on lithology and geologic structure. Geochemical data indicate that metasediments in the northern and southern parts are the metamorphic equivalents of the KS‐II (Coniacian–Campanian) and KS‐I (late Albian–early Coniacian) units of the Shimanto belt, respectively. The depositional ages of the parent sediments of low‐grade metamorphic rocks found in the Sanbagawa belt and the Jurassic Northern Chichibu belt, indicate a north‐younging polarity. In contrast, sedimentological evidence indicates younging to the south. These observations suggest that a tectonic event has resulted in a change from a northerly to southerly dip direction for schistosity and bedding in the Sanbagawa and Northern Chichibu belts of eastern Shikoku. The younging polarity observed in the Sanbagawa and Northern Chichibu belts, together with previously reported data on vitrinite reflectance and geological structure, indicate that the Northern Chichibu belt was part of the overburden formerly lying on top of the Sanbagawa low‐grade metamorphic rocks.  相似文献   

2.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

3.
Abstract The chemical Th-U-total Pb isochron method (CHIME) was applied to determine the age of monazite and thorite in five gneisses and zircon in an ultra high-pressure (UHP) phengite schist from the Su-Lu region, eastern China. The CHIME ages and isotopic ages reported in the literature show that gneisses in the Su-Lu region are divided into middle Proterozoic (1500–1720 Ma) and Mesozoic (100–250 Ma) groups. The Proterozoic group includes paragneiss and orthogneiss of the amphibolite-granulite facies, and their protolith age is late Archean-early Proterozoic. The Mesozoic group is mainly composed of orthogneiss of the greenschist-epidote amphibolite facies, and the protolith age is Middle Paleozoic-Early Proterozoic. The Proterozoic and Mesozoic gneisses occupy northern and southern areas of the Su-Lu region, respectively, which are divided by a major Wulian-Qingdao-Yantai fault. Ultra high-pressure metamorphic rocks occur as blocks in the Mesozoic gneisses, and form a UHP complex.
The UHP phengite schist in the Mesozoic orthogneiss contains detrital zircons with late Proterozoic CHIME age ( ca 860 Ma). Age of the UHP metamorphism is late Proterozoic or younger, and protolith age of the UHP metamorphic rocks is probably different from that of the surrounding Mesozoic gneisses.  相似文献   

4.
The Sakuma–Tenryu district consists mainly of pelitic and basic schists. Its metamorphic sequence has been divided into two units, the Shirakura and the Sejiri units. We carried out K–Ar analyses of phengite separates and X‐ray diffraction analyses of carbonaceous materials from the pelitic schists of both units. The age–d002 relationships show that the ages become older (66–73 Ma) in the Shirakura unit and younger (57–48 Ma) in the latter with increasing metamorphic temperature. The former has a positive relationship observed in the Sanbagawa meta‐Accretionary Complex (meta‐AC) (Sanbagawa metamorphic belt sensu stricto) in central Shikoku and the latter, a negative one in the Shimanto meta‐AC (a subunit of traditional Sanbagawa belt) of the Kanto Mountains. These contrasting age–temperature relationships are due to different tectonic styles relating to the exhumation of the metamorphic sequences. The duration from the peak metamorphism to the closure of the phengite K–Ar system was significantly different between the two metamorphic sequences: longer than 31 my in the Sanbagawa meta‐AC and shorter than 13 my in the Shimanto meta‐AC. The different natures of subducted plate boundaries may cause the different exhumation processes of metamorphic belts.  相似文献   

5.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   

6.
A variety of low‐ to high‐pressure metamorphic assemblages occur in the metabasic rocks and metachert in the Upper Cretaceous–Eocene ophiolite belt of the central part of the Naga Hills, an area in the northern sector of the Indo–Myanmar Ranges in the Indo–Eurasian collision zone. The ophiolite suite includes peridotite tectonite containing garnet lherzolite xenoliths, layered ultramafic–mafic cumulates, metabasic rocks, basaltic lava, volcaniclastics, plagiogranite, and pelagic sediments emplaced as dismembered and imbricated bodies at thrust contacts between moderately metamorphosed accretionary rocks/basement (Nimi Formation/Naga Metamorphics) and marine sediments (Disang Flysch). It is overlain by coarse clastic Paleogene sediments of ophiolite‐derived rocks (Jopi/Phokphur Formation). The metabasic rocks, including high‐grade barroisite/glaucophane‐bearing epidote eclogite and glaucophane schist, and low‐grade greenschist and prehnite–clinochlore schist, are associated with lava flows and ultramafic cumulates at the western thrust contact. Chemically, the metabasites show a low‐K tholeiitic affinity that favors derivation from a depleted mantle source as in the case of mid‐ocean ridge basalt. Thermobarometry indicates peak P–T conditions of about 20 kb and 525°C. Retrogression related to uplift is marked by replacement of barroisite and omphacite by glaucophane followed by secondary actinolite, albite, and chlorite formation. A metabasic lens with an eclogite core surrounded by successive layers of glaucophane schist and greenschist provides field evidence of retrogression and uplift. Presence of S‐C mylonite in garnet lherzolite and ‘mica fish’ in glaucophane schist indicates ductile deformation in the shear zone along which the ophiolite was emplaced.  相似文献   

7.
The Median Tectonic Line (MTL) is a first‐order tectonic boundary that separates the Sanbagawa and Ryoke metamorphic belts. Documented large‐scale top‐to‐the‐north normal displacements along this fault zone have the potential to contribute to the exhumation of the Sanbagawa high‐pressure metamorphic belt. Fluid inclusion analyses of vein material formed associated with secondary faults within the Sanbagawa belt affected by movement on the MTL show normal movement was initially induced under temperatures greater than around 250°C. Microstructures of quartz and K‐feldspar comprising the vein material suggest a deformation temperature of around 300°C, supporting the results of fluid inclusion analyses and suggesting deformation at depths of around 10 km. The retrograde P–T path of the Sanbagawa metamorphic rocks and the estimated isochore of the fluid inclusions do not intersect. The semi‐ductile structures of surrounding rocks and lack of evidence for hydrothermal metamorphism around the veins imply the temperature of the rocks was similar to that of the fluid. These observations suggest fluid pressure of the veins was lower than lithostatic pressure close to the MTL.  相似文献   

8.
Specific data is presented on structure and age of the sedimentary formations within the lower structural unit (Erdagou Formation) in the Taukha terrane, southern Sikhote–Alin, Russia. According to lithological research of this unit exposed in the Benevka River area, the Erdagou Formation represents a deformed fragment of so‐called Oceanic Plate Stratigraphy sequence. The Erdagou Formation includes all lithological varieties of rocks from pelagic (cherts and clayey cherts) and hemipelagic (siliceous mudstones) up to oceanic‐margin (mudstones, siltstones, and turbidites) deposits. Based on the results of radiolarian biostratigraphic research of the rocks, the age of the cherts is from middle Oxfordian to the beginning of Berriasian. Transitive layers between cherts and terrigenous rocks (turbidites), namely siliceous mudstones, are early Berriasian in age. The lower part of the terrigenous section is characterized by late Berriasian–late Valanginian radiolarians. Taking these data into account, it is plausible that the accretion of the given part of the paleo‐oceanic plate occurred post‐Valanginian.  相似文献   

9.
The Hidaka Metamorphic Belt is a well-known example of island-arc crustal section, in which metamorphic grade increases westwards from unmetamorphosed sediment up to granulite facies. It is divided into lower (granulite to amphibolite facies) and upper (amphibolite to greenschist facies) metamorphic sequences. The metamorphic age of the belt was considered to be ~55 Ma, based on Rb – Sr whole-rock isochron ages for granulites and related S-type tonalities. However, zircons from the granulites in the lower sequence yield U – Pb ages of ~21 – 19 Ma, and a preliminary report on zircons from pelitic gneiss in the upper sequence gives a U – Pb age of ~40 Ma. In this paper we provide new zircon U – Pb ages from two pelitic gneisses in the upper sequence to assess the metamorphic age and also the maximum depositional age of the sedimentary protolith. The weighted mean 206Pb/238U ages from a biotite gneiss in the central area of the belt yield 39.6 ± 0.9 Ma for newly grown metamorphic rims and 53.1 ± 0.9 Ma for the youngest detrital cores. The ages of zircons from a cordierite–biotite gneiss in the southern area are 35.9 ± 0.7 Ma for metamorphic rims and 46.5 ± 2.8 Ma for the youngest detrital cores. These results indicate that metamorphism of the upper sequence took place at ~40 – 36 Ma, and that the sedimentary protolith was deposited after ~53 – 47 Ma. These metamorphic ages are consistent with the reported ages of ~37–36 Ma plutonic rocks in the upper sequence, but contrast with the ~21–19 Ma ages of metamorphic and plutonic rocks in the lower sequence. Therefore, we conclude that the upper and lower metamorphic sequences developed independently but coupled with each other before ~19 Ma as a result of dextral reverse tectonic movement.  相似文献   

10.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   

11.
Abstract Recent geological investigations of the Isua Supracrustal Belt (3.8 Ga), southern West Greenland, have suggested that it is the oldest accretionary complex on earth, defined by an oceanic plate‐type stratigraphy and a duplex structure. Plate history from mid‐oceanic ridge through plume magmatism to subduction zone has been postulated from analysis of the reconstructed oceanic plate stratigraphy in the accretionary complex. Comparison between field occurrence of greenstones in modern and ancient accretionary complexes reveals that two types of tholeiitic basalt from different tectonic settings, mid‐oceanic ridge basalt (MORB) and oceanic island basalt (OIB), occur. This work presents major, trace and rare earth element (REE) compositions of greenstones derived from Isua MORB and OIB, and of extremely rare relict igneous clinopyroxene in Isua MORB. The Isua clinopyroxenes (Cpx) have compositional variations equivalent to those of Cpx in modern MORB; in particular, low TiO2 and Na2O contents. The Isua Cpx show slightly light (L)REE‐depleted REE patterns, and the calculated REE pattern of the host magma is in agreement with that of Isua MORB. Analyses of 49 least‐altered greenstones carefully selected from approximately 1200 samples indicate that Isua MORB are enriched in Al2O3, and depleted in TiO2, FeO*, Y and Zr at the given MgO content, compared with Isua OIB. In addition, Isua MORB show an LREE‐depleted pattern, whereas Isua OIB forms a flat REE pattern. Such differences suggest that the Early Archean mantle had already become heterogeneous, depending on the tectonic environment. Isua MORB are enriched in FeO compared with modern MORB. Comparison of Isua MORB with recent melting experiments shows that the source mantle had 85–87 in Mg? and was enriched in FeO. Potential mantle temperature is estimated to be approximately 1480°C, indicating that the Early Archean mantle was hotter by at most approximately 150°C than the modern mantle.  相似文献   

12.
Emilio  Saccani  Adonis  Photiades 《Island Arc》2005,14(4):494-516
Abstract Ophiolitic mélanges associated with ophiolitic sequences are wide spread in the Mirdita–Subpelagonian zone (Albanide–Hellenide Orogenic Belt) and consist of tectonosedimentary ‘block‐in‐matrix‐type’ mélanges. Volcanic and subvolcanic basaltic rocks included in the main mélange units are studied in this paper with the aim of assessing their chemistry and petrogenesis, as well as their original tectonic setting of formation. Basaltic rocks incorporated in these mélanges include (i) Triassic transitional to alkaline within‐plate basalts (WPB); (ii) Triassic normal (N‐MORB) and enriched (E‐MORB) mid‐oceanic ridge basalts; (iii) Jurassic N‐MORB; (iv) Jurassic basalts with geochemical characteristics intermediate between MORB and island arc tholeiites (MORB/IAT); and (v) Jurassic boninitic rocks. These rocks record different igneous activities, which are related to the geodynamic and mantle evolution through time in the Mirdita–Subpelagonian sector of the Tethys. Mélange units formed mainly through sedimentary processes are characterized by the prevalence of materials derived from the supra‐subduction zone (SSZ) environments, whereas in mélange units where tectonic processes prevail, oceanic materials predominate. In contrast, no compositional distinction between structurally similar mélange units is observed, suggesting that they may be regarded as a unique mélange belt extending from the Hellenides to the Albanides, whose formation was largely dominated by the mechanisms of incorporation of the different materials. Most of the basaltic rocks surfacing in the MOR and SSZ Albanide–Hellenide ophiolites are incorporated in mélanges. However, basalts with island arc tholeiitic affinity, although they are volumetrically the most abundant ophiolitic rock types, have not been found in mélanges so far. This implies that the rocks forming the main part of the intraoceanic arc do not seem to have contributed to the mélange formation, whereas rocks presumably formed in the forearc region are largely represented in sedimentary‐dominated mélanges. In addition, Triassic E‐MORB, N‐MORB and WPB included in many mélanges are not presently found in the ophiolitic sequences. Nonetheless, they testify to the existence throughout the Albanide–Hellenide Belt of an oceanic basin since the Middle Triassic.  相似文献   

13.
We have estimated the timescale of material circulation in the Sanbagawa subduction zone based on U–Pb zircon and K–Ar phengite dating in the Ikeda district, central Shikoku. The Minawa and Koboke units are major constituents of the high‐P Sanbagawa metamorphic complex in Shikoku, southwest Japan. For the Minawa unit, ages of 92–81 Ma for the trench‐fill sediments, are indicated, whereas the age of ductile deformation and metamorphism of garnet and chlorite zones are 74–72 Ma and 65 Ma, respectively. Our results and occurrence of c. 150 Ma Besshi‐type deposits formed at mid‐ocean ridge suggest that the 60‐Myr‐old Izanagi Plate was subducted beneath the Eurasian Plate at c. 90 Ma, and this observation is consistent with recent plate reconstructions. For the Koboke unit, the depositional ages of the trench‐fill sediments and the dates for the termination of ductile deformation and metamorphism are estimated at c. 76–74 and 64–62 Ma, respectively. In the Ikeda district, the depositional ages generally become younger towards lower structural levels in the Sanbagawa metamorphic complex. Our results of U–Pb and K–Ar dating show that the circulation of material from the deposition of the Minawa and Koboke units at the trench through an active high‐P metamorphic domain to the final exhumation from the domain occurred continuously throughout c. 30 Myr (from c. 90 to 60 Ma).  相似文献   

14.
Fu-Yuan  Wu  Jin-Hui  Yang  Ching-Hua  Lo  Simon A.  Wilde  De-You  Sun  Bor-Ming  Jahn 《Island Arc》2007,16(1):156-172
Abstract The tectonic setting of the Eastern Asian continental margin in the Jurassic is highly controversial. In the current study, we have selected the Heilongjiang complex located at the western margin of the Jiamusi Massif in northeastern China for geochronological investigation to address this issue. Field and petrographic investigations indicate that the Heilongjiang complex is composed predominately of granitic gneiss, marble, mafic‐ultramafic rocks, blueschist, greenschist, quartzite, muscovite‐albite schist and two‐mica schist that were tectonically interleaved, indicating they represent a mélange. The marble, two‐mica schist and granitic gneiss were most probably derived from the Mashan complex, a high‐grade gneiss complex in the Jiamusi Massif with which the Heilongjiang Group is intimately associated. The ultramafic rocks, blueschist, greenschist and quartzite (chert) are similar to components in ophiolite. The sensitive high mass‐resolution ion microprobe U‐Pb zircon age of 265 ± 4 Ma for the granitic gneiss indicates that the protolith granite was emplaced coevally with Permian batholiths in the Jiamusi Massif. 40Ar/39Ar dating of biotite and phengite from the granitic gneiss and mica schist yields a late Early Jurassic metamorphic age between 184 and 174 Ma. Early components of the Jiamusi Massif, including the Mashan complex, probably formed part of an exotic block from Gondwana, affected by late Pan‐African orogenesis, and collided with the Asian continental margin during the Early Jurassic. Subduction of oceanic crust between the Jiamusi block and the eastern part of the Central Asian Orogenic Belt resulted in the formation of a huge volume of Jurassic granites in the Zhangguangcai Range. Consequently, the collision of the Jiamusi Massif with the Central Asian Orogenic Belt to the west can be considered as the result of circum‐Pacific accretion, unrelated to the Central Asian Orogenic Belt. The widespread development of Jurassic accretionary complexes along the Asian continental margin supports such an interpretation.  相似文献   

15.
The present paper reports, for the first time, the occurrence of an omphacite‐bearing mafic schist from the Asemi‐gawa region of the Sanbagawa belt (southwest Japan). The mafic schist occurs as thin layers within pelitic schist of the albite–biotite zone. Omphacite in the mafic schist only occurs as inclusions in garnet, and albite is the major Na phase in the matrix, suggesting that the mafic schist represents highly retrogressed eclogite. Garnet grains in the sample show prograde‐type compositional zoning with no textural or compositional break, and contain mineral inclusions of omphacite, quartz, glaucophane, barroisite/hornblende, epidote and titanite. In addition to the petrographic observations, Raman spectroscopy and focused ion beam system–transmission electron microscope analyses were used for identification of omphacite in the sample. The omphacite in the sample shows a strong Raman peak at 678 cm?1, and concomitant Raman peaks are all consistent with those of the reference omphacite Raman spectrum. The selected area electron diffraction pattern of the omphacite is compatible with the common P2/n omphacite structure. Quartz inclusions in the mafic schist preserve high residual pressure values of Δω1 > 8.5 cm?1, corresponding to the eclogite facies conditions. The combination of Raman geothermobarometries and garnet–clinopyroxene geothermometry gives peak pressure–temperature (PT) conditions of 1.7–2.0 GPa and 440–540 °C for the mafic schist. The peak P–T values are comparable to those of the schistose eclogitic rocks in other Sanbagawa eclogite units of Shikoku. These findings along with previous age constraints suggest that most of the Sanbagawa schistose eclogites and associated metasedimentary rocks share similar simple P–T histories along the Late Cretaceous subduction zone.  相似文献   

16.
Geological observations in the central part of Tokunoshima in the Amami Islands, Southwest Japan, reveal that discrete layers of serpentinite, dioritic gneiss, and amphibolite are intercalated into pelitic schist and these rock bodies form a northwest‐dipping tectonic stack. A subhorizontal psammitic schist layer overlies them. These rocks underwent ductile deformation that is denoted by penetrative foliation and mineral lineation. Microstructures of the sheared metamorphic rocks and serpentinite indicate top‐to‐the‐east, ‐southeast or ‐south (hanging‐wall up) displacements. The en echelon array of rock bodies is interpreted as a duplex with the psammitic schist layer on its top and the pelitic schist layer on its bottom. It is inferred that the serpentinite‐bearing duplex was formed due to the tectonic erosion and the subsequent accretionary growth operated in a Cretaceous or older subduction zone. Tokunoshima has been considered to belong to the Shimanto Belt. However, regional low‐pressure and high‐temperature type amphibolite‐facies metamorphism and related ductile deformation have not been recognized in the other areas of the Shimanto Belt. There is no metamorphic rock occurrence comparable to that of Tokunoshima in the neighboring islands. The metamorphic rocks in Tokunoshima can be correlated to any of low‐pressure/temperature type metamorphic regions in Kyushu.  相似文献   

17.
The mafic volcanic rocks and hypabyssal rocks in the Chon Dean‐Wang Pong area are possibly the southern extension of the western Loei Volcanic Sub‐belt, Northeast Thailand. They are least‐altered, and might have been formed in Permian–Triassic times. The rocks are commonly porphyritic, with different amounts of plagioclase, clinopyroxene, orthopyroxene, amphibole, Fe–Ti oxide, unknown mafic mineral, and apatite phenocrysts or microphenocrysts, and are uncommonly seriate textured. The groundmass mainly shows an intergranular texture, with occasionally hyalophitic, intersertal and ophitic–subophitic textures. The groundmass constituents have the same minerals as the phenocrysts or microphenocrysts and may contain altered glass. The groundmass plagioclase laths may show a preferred orientation. Chemically, the studied rock samples can be separated into three magmatic groups: Group I, Group II, and Group III. These magmatic groups are different in values for Ti/Zr ratios. The averaged Ti/Zr values for Group I, Group II, and Group III rocks are 83 ± 6, 46 ± 12, and 29 ± 5, respectively. In addition, the Group I rocks have higher P/Zr, but lower Zr/Nb relative to Group II and Group III rocks. The Group I and Group II rocks comprise tholeiitic andesite–basalt and microdiorite–microgabbro, while the Group III rocks are calc‐alkalic andesite and microdiorite. According to the magmatic affinities and the negative Nb anomalies on normal mid‐oceanic ridge basalt (N‐MORB) normalized multi‐element plot, arc‐related lavas are persuasive. The similarity between the studied lavas and the Quaternary lavas from the northern Kyukyu Arc, in terms of chondrite‐normalized rare earth element (REE) patterns and N‐MORB normalized multi‐element patterns, leads to a conclusion that the mafic volcanic rocks and hypabyssal rocks in the Chon Daen–Wang Pong area have been formed in a volcanic arc environment.  相似文献   

18.
Abstract The Bantimala Complex of South Sulawesi consists mainly of mélange, chert, basalt, ultramafic rocks and high pressure type metamorphic rocks. Well-preserved radiolarians were extracted from 10 samples of chert, and K-Ar age dating was done for muscovite from five samples of schist of the Bantimala Complex. The radiolarian assemblage from chert is assigned middle Cretaceous (late Albian-early Cenomanian) age, while the K-Ar age data from schist range from 132 Ma to 114 Ma except for one sample with rare muscovite. The radiolarian chert is unconformably underlain by schist in the Bantimala Complex. The stratigraphie relationship and the time lag of these two kinds of age data from chert and underlying schist suggest short-time tectonic events immediately followed by a quick waning tectonism in this region during the Albian-Cenomanian transgression.  相似文献   

19.
Abstract The low grade metamorphic Jurassic accretionary complex in the western part of the Mino-Tanba Belt, Southwest Japan, is a chaotic sedimentary complex which consists of argillaceous matrices with allochthonous blocks of chert, greenstone, siliceous mudstone, terrigenous sandstone and mudstone. The complex is divided into three distinct geologic units, Units I, II and III, with a tectonic boundary (thrust) between them, forming a pile-nappe structure. They have different features for lithologies, fossil age, metamorphic condition and K-Ar age. Microfossil researches revealed that their timings of accretion were in the early Early Jurassic ( ca 195 Ma) for Unit III, in the early Middle Jurassic ( ca 175 Ma) for Unit II and in the latest Late Jurassic (ca 147 Ma) for Unit I. On the other hand, K-Ar age determinations of white mica separated from pelitic rocks of the three units clarified that the subsequent subduction-related metamorphism was 23 million years after the accretion of each unit. These results strongly suggest that the accretionary and metamorphic process had taken place episodically with an interval of 20 to 28 million years during Mesozoic time in the western part of the Mino-Tanba Belt, Southwest Japan.  相似文献   

20.
New U–Pb ages of zircons from migmatitic pelitic gneisses in the Omuta district, northern Kyushu, southwest Japan are presented. Metamorphic zonation from the Suo metamorphic complex to the gneisses suggests that the protolith of the gneisses was the Suo metamorphic complex. The zircon ages reveal the following: (i) a transformation took place from the high‐P Suo metamorphic complex to a high‐T metamorphic complex that includes the migmatitic pelitic gneisses; (ii) the detrital zircon cores in the Suo pelitic rocks have two main age components (ca 1900–1800 Ma and 250 Ma), with some of the detrital zircon cores being supplied (being reworked) from a high‐grade metamorphic source; and (iii) one metamorphic zircon rim yields 105.1 ±5.3 Ma concordant age that represents the age of the high‐T metamorphism. The high‐P to high‐T transformation of metamorphic complexes implies the seaward shift of a volcanic arc or a landward shift of the metamorphic complex from a trench to the sides of a volcanic arc in an arc–trench system during the Early Cretaceous. The Omuta district is located on the same geographical trend as the Ryoke plutono‐metamorphic complex, and our estimated age of the high‐T metamorphism is similar to that of the Ryoke plutono‐metamorphism in the Yanai district of western Chugoku. Therefore, the high‐T metamorphic complex possibly represents the western extension of the Ryoke plutono‐metamorphic complex. The protolith of the metamorphic rocks of the Ryoke plutono‐metamorphic complex was the Jurassic accretionary complex of the inner zone of southwest Japan. The high‐P to high‐T transformation in the Omuta district also suggests that the geographic trend of the Jurassic accretionary complex was oblique to that of the mid‐Cretaceous high‐T metamorphic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号