首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.
The natural remanent magnetization of 22 out of a total of 31 oriented cores from the layered series of the Skaergaard gabbroic intrusion (age: 55 m.y.) in East Greenland shows good stability in thermal and AF testing. The average direction of 22 AF and 9 thermally treated specimens isD = 170°,I = ?59°,α95 = 4.2 before correction for tilt. The mean directions after rotation around strike to horizontal and after rotation to original attitudes suggested by others yields poorer population statistics. It is therefore concluded that flexuring took place between solidification and acquisition of remanent magnetization, a range in temperature of about 500°C which may represent an interval of somewhat less than 250,000 years. No evidence for secular variation is observed which may also suggest slow cooling through the blocking temperature range. The polarity is reversed and the pole position without “tilt correction” is 165°E, 61°N,dm = 6.2,dp = 4.6, which is similar to pole positions reported by others for the overlying slightly older basalt.  相似文献   

2.
Thermally acquired remanent magnetization is important for the estimation of the past magnetic field present at the time of cooling. Rocks that cool slowly commonly contain magnetic grains of millimeter scale. This study investigated 1-mm-sized magnetic minerals of iron, iron–nickel, magnetite, and hematite and concluded that the thermoremanent magnetization (TRM) acquired by these grains did not accurately record the ambient magnetic fields less than 1 μT. Instead, the TRM of these grains fluctuated around a constant value. Consequently, the magnetic grain ability to record the ambient field accurately is reduced. Above the critical field, TRM acquisition is governed by an empirical law and is proportional to saturation magnetization (Ms). The efficiency of TRM is inversely proportional to the mineral's saturation magnetization Ms and is related to the number of domains in the magnetic grains. The absolute field for which we have an onset of TRM sensitivity is inversely proportional to the size of the magnetic grain. These results have implications for previous reports of random directions in meteorites during alternating field demagnetization, or thermal demagnetization of TRM. Extraterrestrial magnetic fields in our solar system are weaker than the geomagnetic field by several orders of magnitude. Extraterrestrial rocks commonly contain large iron-based magnetic minerals as a common part of their composition, and therefore ignoring this behavior of multidomain grains can result in erroneous paleofield estimates.  相似文献   

3.
Methods for determining the Curie temperature (Tc) of titanomaghemites from experimental saturation magnetization-temperature (Js-T) data are reviewed.Js-T curves for many submarine basalts and synthetic titanomaghemites are irreversible and determining Curie temperatures from these curves is not a straightforward procedure. Subsequently, differences of sometimes over 100°C in the values ofTc may result just from the method of calculation. Two methods for determiningTc will be discussed: (1) the graphical method, and (2) the extrapolation method. The graphical method is the most common method employed for determining Curie temperatures of submarine basalts and synthetic titanomaghemites. The extrapolation method based on the quantum mechanical and thermodynamic aspects of the temperature variation of saturation magnetization nearTc, although not new to solid state physics, has not been used for estimating Curie temperatures of submarine basalts. The extrapolation method is more objective than the graphical method and uses the actual magnetization data in estimatingTc.  相似文献   

4.
Hysteresis loops to 1200 oersteds (9.55×104 A m?1) are measured between 295 K and 105 K for two deep-sea basalts (DSDP, Leg 34 and 37) containing large (~200 μm) unexsolved titanomagnetite grains. The Curie points, electron microprobe analyses and saturation magnetizations of the magnetic grains are the same as for unoxidized synthetic titanomagnetite (xFe2TiO4·(l ? x)Fe3O4) with x=0.6.As temperature is lowered from 295 to 190 K, coercive force Hc slowly rises from ~40 Oe to ~95 Oe approximately in proportion to the rise in the magnetostriction constant λ. Presumably, Hc is controlled by λ through internal stresses impeding domain wall motion. As expected of multidomain grains, the ratio of saturation remanence to saturation magnetization (in 1200 oersted cycles) jR/jS rises approximately in proportion to Hc, with a constant of proportionality consistent with titanomagnetite (x=0.6).As temperature is lowered from 190 to 120 K, Hc rises rapidly to ~400 Oe as a roughly linear function of the magnetocrystalline anisotropy constant K1. Perhaps Hc is now controlled by K1 through non-magnetic inclusions impeding domain wall motion.As temperature is lowered from 120 to 105 K, Hc rises even more rapidly to ~600 Oe. The control over Hc seems to have changed again, though most of the titanomagnetite is in grains large enough to still contain a few domains. The ratio jR/jS reaches 0.7 by 105 K and appears to be saturating towards the theoretical limit of 0.83.  相似文献   

5.
Various rock magnetic techniques were applied to characterize magnetically the samples of a soil profile taken from west-central Minnesota. There is a marked change in magnetic properties as a function of depth in the core. X-ray analysis and Curie temperature measurements carried out on the magnetic fractions indicate that magnetite is the dominant iron oxide in both the top soil and the subsoil. The intensity of anhysteretic remanent magnetization (ARM) decreases sharply as the depth increases. In contrast, the stability of ARM was found to be higher for the subsoil. The surface soil sample was capable of acquiring a significant amount of viscous remanent magnetization (VRM). The VRM acquisition coefficient (Sa) of the subsoil (Sa= 3.18 × 10?6emu g?1, 3.18 × 10?6A m2 kg?1) was about ten times weaker than that of the top soil sample (Sa = 3.868 × 10?7emu g?1, 3.868 × 10?7A m2 kg?1). The magnetic domain state indicator, the ratio of coercivity of remanence to coercive force, Hcr/Hc, was 1.5 and 3.85 for the top soil and subsoil, respectively. It appears that the observed variations in magnetic properties down the present soil core is due only to a difference in grain size. We conclude that the magnetic grains in surface soil samples were more single-domain (SD) like whereas the magnetite grains in the subsoil samples were more likely in pseudo-single-domain (PSD) or small multidomain (MD) range. The observed lower stability for the surface soil samples is attributed to the presence of superparamagnetic grains whose presence was confirmed by transmission electron micrographs.  相似文献   

6.
The effects of the variation of magnetic grain size on the magnetic properties of rocks have been studied throughout a reversely magnetized basaltic dyke with concentric cooling zones.Except in a few tachylites in which the magnetic mineral is a Ti-rich titanomagnetite, in the bulk of the dyke the magnetization is carried by almost pure magnetite grains. Although the percentage p of these magnetic oxides varies slightly, the large changes in the various magnetic parameters observed across the dyke are essentially attributable to large variations in the grain size of the magnetic particles.From the outer scoria region, where the magnetic grains are a mixture of single-domain (SD) and superparamagnetic (SP) grains, to the tachylite zone with finely crystallized basaltic glass containing interacting elongated SD particles, one observes an increase of both the ratio of the saturation remanent magnetization and the saturation induced magnetization Jrs/Jis, the bulk coercive force Hc, the median destructive field MDF, the intensity of the remanent magnetization Jr, and the Koenigsberger ratio Q. In the tachylites these parameters reach unusually high values, for subaerial basalts:
JrsJis〉 = 0.3, 〈Hc〉 = 460 Oe, 〈MDF〉 = 620 Oe r.m.s., 〈Jr〉 = 2.7 · 10?2e.m.u. cm?3 〈Q〉 = 24
These parameters decrease in the basalt toward the centre of the dyke where pseudo-single-domain (pseudo-SD) particles coexist together with multidomain (MD) grains. The susceptibility remains approximately constant from the inner basalt to the tachylite, but increases in the scoria up to values 10 times higher owing to the presence of SP particles. The magnetic viscosity increases also drastically toward the margin of the dyke due to an increase of the fraction of the SD particles just above the superparamagnetic threshold.  相似文献   

7.
Two geomagnetic reversals(R→N followed by N→R) have been recorded in a sequence of Miocene marine clays of Tortonian-Messinian age in western Crete (Greece). The time span of each transition is found to be of the order of 5000–10,000 years. The transitional VGP paths are largely constrained in longitude either near the site longitude(R→N) or opposite to it(N→R). A normalized magnetization intensity record has also been obtained and its variations during reversals are found to be in excellent agreement with the predictions of Hoffman's phenomenological model.  相似文献   

8.
Determining surface precipitation phase is required to properly correct precipitation gage data for wind effects, to determine the hydrologic response to a precipitation event, and for hydrologic modeling when rain will be treated differently from snow. In this paper we present a comparison of several methods for determining precipitation phase using 12 years of hourly precipitation, weather and snow data from a long-term measurement site at Reynolds Mountain East (RME), a headwater catchment within the Reynolds Creek Experimental Watershed (RCEW), in the Owyhee Mountains of Idaho, USA. Methods are based on thresholds of (1) air temperature (Ta) at 0 °C, (2) dual Ta threshold, −1 to 3 °C, (3) dewpoint temperature (Td) at 0 °C, and (4) wet bulb temperature (Tw) at 0 °C. The comparison shows that at the RME Grove site, the dual threshold approach predicts too much snow, while Ta, Td and Tw are generally similar predicting equivalent snow volumes over the 12 year-period indicating that during storms the cloud level is at or close to the surface at this location. To scale up the evaluation of these methods we evaluate them across a 380 m elevation range in RCEW during a large mixed-phase storm event. The event began as snow at all elevations and over the course of 4 h transitioned to rain at the lowest through highest elevations. Using 15-minute measurements of precipitation, changes in snow depth (zs), Ta, Td and Tw, at seven sites through this elevation range, we found precipitation phase linked to the during-storm surface humidity. By measuring humidity along an elevation gradient during the storm we are able to track changes in Td to reliably estimate precipitation phase and effectively track the elevation of the rain/snow transition during the event.  相似文献   

9.
Magnetite, haematite, and to a minor extent maghaemite are recognised in the Cretaceous and Paleocene red pelagic limestones at Gubbio. The magnetite is detrital (or biological), whereas the haematite grew during diagenesis from a goethitic precursor. Thermal and AF demagnetization of samples collected from close to reversal boundaries indicate that the various magnetization components do not record the polarity reversal at exactly the same stratigraphic level. In the few tens of centimetersbelow a recorded geomagnetic reversal, defined by the magnetite magnetization, some of the haematite grains are magnetized in the post-reversal field. The blocking temperature spectra of this haematite fraction (with post-reversal magnetization) are found to shift toward higher temperatures as the reversal boundary is approached. The blocking temperature spectra reflect the grain size spectra of the haematite, which we interpret as arising by the continual nucleation of grains down to a certain burial depth where the conditions are no longer conducive to further haematite growth. The depth below reversal boundaries to which haematite with post-reversal magnetization can occur, is estimated to be about 60 cm (after compaction), and is equivalent to a time of about 105 years for these particular sediments. A detailed study of the magnetization components at reversal boundaries indicates that the first diagenetic growth of haematite through the single-domain critical volume occurs prior to the mechanical fixation of the detrital (or biological) magnetite. Subsequently the diagenetic haematite grains do not rotate in response to the ambient geomagnetic field polarity as easily as the magnetite, because of their occurrence as pigmentary coatings on larger non-magnetic grains.  相似文献   

10.
This palaeomagnetic study is centered on agglomerates and volcanic rocks from the western margin of the Appalachian belt in the Drummondville-Actonvale-Granby area, Quebec (long.: 72°30′W, lat.: 46°00′N). It involves a total of 36 oriented samples (111 speciments) distributed over eleven sites. Both thermal and AF cleaning techniques were used to isolate residual remanent components. The dispersion of the directions is slightly reduced after AF cleaning and thermal treatment.The palaeopole position obtained is 191°E, 6°N (dm = 14°, dp = 7°) after thermal treatment and 164°E, 19°N (dm = 11°, dp = 6°) after AF cleaning. The polarity of most of the sites (two exceptions) are reversed. The thermal-treated data appear to be relatively stable and an approximate value of the primary magnetization is extracted from them. The palaeopole obtained does not lie close to the tentatively defined position of the Cambrian and Ordovician poles from rocks of the North American plate; it is located near the Upper Cambrian and Lower Ordovician poles from eastern Newfoundland and the Lower Ordovician pole from the Caledonides in Europe.  相似文献   

11.
The time variations in the CR geomagnetic cutoff rigidity and their relation to the interplanetary parameters and the Dst index during a strong magnetic storm of November 18–24, 2003, have been analyzed. The Tsyganenko (Ts03) model of a strongly disturbed magnetosphere [Tsyganenko, 2002a, 2002b; Tsyganenko et al., 2003] have been used to calculate effective geomagnetic thresholds with the help of the method for tracing CR particle trajectories in the magnetospheric magnetic field. The geomagnetic thresholds have been calculated using the method of global spectrographic survey (GSS), based on the data from the global network of CR stations, and the results have been compared with the effective geomagnetic cutoff rigidities. The daily anisotropy of effective geomagnetic thresholds during the Dst variation minimum have been estimated. The relation of the theoretical and experimental geomagnetic thresholds, obtained using the GSS method, to the interplanetary parameters and Dst variation is analyzed. The Dst variations, IMF B z , and solar wind density are most clearly defined in the geomagnetic thresholds during this storm. The correlation between B y and experimental geomagnetic thresholds is higher than such a correlation between this parameter and theoretical thresholds by a factor 2–3, which suggests that a real dawn-dusk asymmetry during this storm was stronger than such an asymmetry represented by the Ts03 model.  相似文献   

12.
The natural remanent magnetization of andesitic pumice emitted during the 1985 eruption of the Nevado del Ruiz volcano (Colombia) has a direction opposite to the present geomagnetic field. The self-reversing mechanism can be re-activated in the laboratory during cycles of heating and subsequent cooling in air and zero magnetic field. Laboratory-produced thermoremanent magnetization is dominated by the same self-reversal process in fields up to several mT. Microchemical, optical and Curie temperature analyses indicate that the ferromagnetic minerals are members of the magnetite-ulvöspinel and hematite-ilmenite series with average compositions of Fe2.73Ti0.27O4 and Fe1.38Ti0.62O3, respectively. In analogy with the magnetic behaviour of synthetically grown antiferromagnetic-ferromagnetic FeMn-FeNi films, the self-reversal can probably be interpreted in terms of an exchange field acting between a Ti-poor canted antiferromagnetic and a Ti-rich ferrimagnetic phase in the hemoilmenite grains.  相似文献   

13.
Thermal remanent magnetization (TRM) analyses were carried out on lithic fragments from two different typologies of pyroclastic density current (PDC) deposits of the 1982 eruption of El Chichón volcano, in order to estimate their equilibrium temperature (Tdep) after deposition. The estimated Tdep range is 360–400 °C, which overlaps the direct measurements of temperature carried out four days after the eruption on the PDC deposits. This overlap demonstrates the reliability of the TRM method to estimate the Tdep of pyroclastic deposits and to approximate their depositional temperature. These results also constraint the time needed for reaching thermal equilibrium within four days for the studied PDC deposits, in agreement with predictions of theoretical models.  相似文献   

14.
A theoretical model of grain size variation of domain transitions in titanomagnetite (x = 0.6) as a function of oxidation (z) is presented. The superparamagnetic (SP) to single-domain (SD) transition ds, the SD to two-domain (TD) transition d0, the TD to three-domain (3D) transition and the pseudo-single domain (PSD) to multi-domain (MD) transition are calculated as a function of z. It is shown that all the transition grain sizes increase with z, except for the PSD-MD transition for z > 0.6. The calculations predict that ds increases from 0.044 to 0.197 μm, d0 increases from 0.54 to 13 μm, the TD-3D transition increases from 1.6 to 49 μm as z varies from 0 to 0.8. The PSD-MD transition increases from 42 μm at z = 0 to 150 μm at z = 0.6, whereas between z = 0.6 to z = 0.8, the PSD-MD transition decreases to 49 μm. Qualitatively, the model explains some of the trends in magnetic properties of submarine basalts with low-temperature oxidation. Quantitatively, the model does give reasonable estimates of the PSD-MD boundary and d0, which are close to the experimental values for x = 0.6 and z = 0. Furthermore, the model predicts that psarks or two-domain grains could be the major contributors to the remanence of oxidized submarine pillow basalts.  相似文献   

15.
The elastic moduli of polycrystalline ringwoodite, (Mg0.91Fe0.09)2SiO4, were measured up to 470 K by means of the resonant sphere technique. The adiabatic bulk (KS) and shear (μ) moduli were found to be 185.1(2) and 118.22(6) GPa at room temperature, and the average slopes of dKS/dT and dμ/dT in the temperature range of the study were determined to be −0.0193(9) and −0.0148(3) GPa/K, respectively. Using these results, we estimate seismic wave velocity jumps for a pure olivine mantle model at 520 km depth. We find that the jump for the S-wave velocity is about 1.5 times larger than that for the P-wave velocity at this depth. This suggests that velocity jumps at the 520 km discontinuity are easier to detect using S-waves than P-waves.  相似文献   

16.
Results of a detailed petromagnetic study of sediments of the Koshak section, including the Mesozoic/Cenozoic (K/T) boundary, are presented. The rocks are shown to have a very low magnetization. A relatively high magnetization is characteristic of two thin clayey beds, one at the K/T boundary and the other 0.6 m above it: x up to 2.5 × 10?9 m3/kg, M s up to 0.6 × 10?3 A m2/kg, and M rs up to 0.4 × 10?3 A m2/kg. This is related to relatively high concentrations of hemoilmenite (up to 0.2%), magnetite (up to 0.01%), and goethite (up to 0.24%) in these beds. It is evident that the distribution of these magnetic minerals is lithologically controlled (the predominant occurrence in clayey beds), which is expressed, in particular, in the relation between the paramagnetic (clayey) and diamagnetic (carbonate) contributions to the magnetization of the sediments. Thus, clayey interbeds are sharply distinguished by the value of the paramagnetic magnetization (M p = (83–86) × 10?5 A m2/kg) as compared with purely diamagnetic chalk (M d = ?(26–35) × 10?5 A m2/kg). Minor concentrations of metallic iron (up to ~0.002%) discovered in the sediments have a lithologically uncontrolled distribution (metallic iron is more often observed near the K/T boundary rather than in clayey beds). Most probably, magnetite, hemoilmenite, and goethite were accumulated mostly with clay and other terrigenous material, while fine particles of iron are likely to have been dispersed by air. The whole set of the data of this work suggests that the K/T boundary is not distinguished by characteristic magnetomineralogical and magnetolithologic features.  相似文献   

17.
Some 50 oriented samples (120 specimens) have been collected on eight sites of volcanic rocks from the Lower Devonian Dalhousie Group of northern New Brunswick and Devonian andesitic to basic dykes from central New Brunswick. Univectorial and occasional multivectorial components were extracted from the various samples. Results after AF and thermal demagnetization compare relatively well. In the volcanics and tuffs, two components of magnetization have been isolated: A (D = 33°, I = ?58°, α95 = 7.3°, K = 236) for four sites and B (D = 66°, I = +53°) for three sites. The grouping of component A is improved after tilt correction but the fold test is not significantly positive at the 95% confidence level. Component A is interpreted as being primary while component B is unresolved and appears to be the resultant magnetization of a Late Paleozoic and a recent component. The pole position obtained for tilt corrected component A is 268°E, 1°S, dp = 6.5°, dm = 8.8°. The paleolatitude calculated for component A is 39°S. The paleopole of in situ component A is located close to those of the Early-Middle Devonian formations from Quebec, New Brunswick and New England states while the paleopole of tilt-corrected component A is similar to Lower Devonian poles of rock units from the Canadian Arctic Archipelago. If component A is primary (as we believe it to be), then the western half of the northern Appalachians had already docked onto the North American Craton by Early Devonian time. Alternatively, if component A is secondary the same conclusion applies but the juxtaposition took place in Middle Devonian time.  相似文献   

18.
The melting curves of the structural analogues SiO 2, BeF 2 and GeO 2 have been studied at pressures ?40 kbar in a piston-cylinder apparatus. The initial slopes dTm/dP of the β-quartz-liquid boundaries for SiO 2 and BeF 2 are ~35° while the slope of the rutile-liquid boundary for GeO 2 is approximately 32°C/kbar. These large values of dT/dP reflect the unusually low entropies of fusion for these compounds in which strong structural similarities exist between the crystalline phases and the melt. Implications for the extended phase diagram of silica are discussed and it is concluded that either: (1) a maximum exists on the coesite melting curve, or (2) estimates of the melting temperature of stishovite need to be revised upwards.  相似文献   

19.
20.
Coagulation of particles into aggregates during their deposition in a reservoir is numerically simulated with regard for Brownian motion, Van der Waals forces, gravitation, Stokes friction, and magnetostatic interaction, and the effect of this process on the depositional magnetization (DRM) is estimated. Clusters obtained due to random aggregation of smaller clusters have a loose and branching structure. The average fractal dimension of the clusters is d = 1.83 ± 0.23. In the process of coagulation, magnetic particles do not form chains or clusters, as was supposed in a number of preceding works, but become rather uniformly distributed among nonmagnetic particles, which provides an additional argument in favor of the fact that chains of magnetite particles in marine sediments are of biogenic origin rather than a result of mutual attraction of magnetic particles due to magnetostatic interaction. The deposition process is shown to obey a kind of the principle of scale invariance: the number of clusters and their average number of particles do not change if the basin depth H and the surface concentration of initial material c 0 simultaneously change (provided that temperature and the initial particle size r are constant) in such a way that Hc 0 = const. Coagulation is the most important factor forming the bottom layer structure and the magnetization of the suspension at a relatively high concentration c 0 Typical of redeposition conditions, lakes, and shelf seas. Coagulation virtually does not influence oceanic sediments because of the smallness of c 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号