首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The transition zones between rivers and adjacent riparian aquifers are locations of high biogeochemical activities that contribute to a removal of potentially hazardous substances in the aquatic system. The potential of the removal processes depends highly on subsurface water travel times, which can be determined by using the propagation of electrical conductivity (EC) signal from the river into the riparian aquifer. Although this method has been applied and verified in many studies, we observe possible limitations for the usage of EC fluctuation analysis. Our findings are based on EC time series analyses during storm events and artificial hydropeaks induced by watermill operations. Travel times derived by cross‐correlation analysis were compared with travel times calculated based on backward particle tracking of a calibrated transient numerical groundwater flow model. The cross‐correlation method produced only reasonable travel times for the artificial hydropeaks. In contrast, cross‐correlation analysis of the EC data during natural storm events resulted in implausibly negative or unrealistically low travel times for the bulk of the data sets. We conclude that the reason for this behaviour is, first, the low EC contrast between river and groundwater in connection with a strong damping of the infiltrating river EC signal into the subsurface during storm events. Second, the existence of old and less‐mineralized riparian water between the river and the monitoring well resulted in bank‐storage‐driven EC breakthrough curves with earlier arrival times and the subsequent estimation of implausible riparian travel times.  相似文献   

2.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
This study investigates spatial patterns and temporal dynamics of aquifer–river exchange flow at a reach of the River Leith, UK. Observations of sub‐channel vertical hydraulic gradients at the field site indicate the dominance of groundwater up‐welling into the river and the absence of groundwater recharge from surface water. However, observed hydraulic heads do not provide information on potential surface water infiltration into the top 0–15 cm of the streambed as these depths are not covered by the existing experimental infrastructure. In order to evaluate whether surface water infiltration is likely to occur outside the ‘window of detection’, i.e. the shallow streambed, a numerical groundwater model is used to simulate hydrological exchanges between the aquifer and the river. Transient simulations of the successfully validated model (Nash and Sutcliff efficiency of 0·91) suggest that surface water infiltration is marginal and that the possibility of significant volumes of surface water infiltrating into non‐monitored shallow streambed sediments can be excluded for the simulation period. Furthermore, the simulation results show that with increasing head differences between river and aquifer towards the end of the simulation period, the impact of streambed topography and hydraulic conductivity on spatial patterns of exchange flow rates decreases. A set of peak flow scenarios with altered groundwater‐surface water head gradients is simulated in order to quantify the potential for surface water infiltration during characteristic winter flow conditions following the observation period. The results indicate that, particularly at the beginning of peak flow conditions, head gradients are likely to cause substantial increase in surface water infiltration into the streambed. The study highlights the potential for the improvement of process understanding of hyporheic exchange flow patterns at the stream reach scale by simulating aquifer‐river exchange fluxes with a standard numerical groundwater model and a simple but robust model structure and parameterization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The role of lithology in influencing basin form and function is explored empirically by investigating correlations between a range of catchment variables, where the spatial unit of analysis is not surface catchments but lithologically coherent groundwater units. Using the Thames basin, UK, as a case study, nine groundwater units have been identified. Values for 11 hydrological and geomorphological variables, including rainfall, drainage density, Baseflow Index, aquifer porosity, storage coefficient and log‐hydraulic conductivity, aquifer and drainage elevation, river incision, and hypsometric integral have been estimated for each of the groundwater units in the basin, and Pearson correlation coefficients calculated for all pairs of variables. Seven of the correlation coefficients are found to be significant at a confidence level of > 99%. Negative correlations between drainage density and log aquifer hydraulic conductivity, and between drainage density and river incision, and positive correlations between log‐hydraulic conductivity and river incision, log‐hydraulic conductivity and Baseflow Index, and between Baseflow Index and river incision are inferred to have consistent causal explanations. For example, incision of rivers into aquifers leads to relative increases in hydraulic gradients in the vicinity of rivers which, in turn, promotes the development of secondary porosity increasing both aquifer hydraulic conductivity and, hence, Baseflow Index. The implication of this interpretation is that the geomorphological evolution of basins is intimately linked to the evolution of hydraulic conductivity of the underlying aquifers. This is consistent with, and supports the notion of a coupled complexly evolving surface water‐groundwater system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This study aimed to investigate the seasonal variability of runoff generation processes, the sources of stream water, and the controls on the contribution of event water to streamflow for a small forested catchment in the Italian pre‐Alps. Hydrometric, isotopic, and electrical conductivity data collected between August 2012 and August 2013 revealed a marked seasonal variability in runoff responses. Noticeable differences in runoff coefficients and hydrological dynamics between summer and fall/spring rainfall events were related to antecedent moisture conditions and event size. Two‐component and three‐component hydrograph separation and end‐member mixing analysis showed an increase in event water contributions to streamflow with event size and average rainfall intensity. Event water fractions were larger during dry conditions in the summer, suggesting that stormflow generation in the summer consisted predominantly of direct channel precipitation and some saturated overland flow from the riparian zone. On the contrary, groundwater and hillslope soil water contributions dominated the streamflow response during wet conditions in fall. Seasonal differences were also noted between event water fractions computed based on isotopic and electrical conductivity data, likely because of the dilution effect during the wetter months. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A key parameter used in the assessment of bank filtration is the travel time of the infiltrated river water during the passage through groundwater. We analyze time series of electrical conductivity (EC) in the river and adjacent groundwater observation wells to investigate travel times of young hyporheic groundwater in adjoining channelized and restored sections of River Thur in North-East Switzerland. To quantify mixing ratios and mean residence times we perform cross-correlation analysis and non-parametric deconvolution of the EC time series. Measurements of radon-222 in the groundwater samples validate the calculated residence times. A simple relationship between travel time and distance to the river has not been observed. Therefore, we speculate that the lateral position and depth of the thalweg as well as the type of bank stabilization might control the infiltration processes in losing rivers. Diurnal oscillations of EC observed in the river and in nearby observation wells facilitate analyzing the temporal variation of infiltration. The diurnal oscillations are particularly pronounced in low flow situations, while the overall EC signal is dominated by individual high-flow events. Differences in travel times derived from diurnal and overall EC signals thus reflect different infiltration regimes.  相似文献   

7.
Interactions of surface water and groundwater (SW–GW) play an important role in the physical, chemical, and ecological processes of riparian zones. The main objective of this study was to describe the two‐dimensional characteristics of riverbank SW–GW interactions and to quantify their influence factors. The SW–GW exchange fluxes for six sections (S1 to S6) of the Qinhuai River, China, were estimated using a heat tracing method, and field hydrogeological and thermodynamic parameters were obtained via inverse modelling. Global sensitivity analysis was performed to compare the effects of layered heterogeneity of hydraulic conductivity and river stage variation on SW–GW exchange. Under the condition of varied river stage, only the lateral exchange fluxes at S1 apparently decreased during the monitoring period, probably resulting from its relatively higher hydraulic conductivity. Meanwhile, the SW–GW exchanges for the other five sections were quite stable over time. The lateral exchange fluxes were higher than the vertical ones. The riverbank groundwater flow showed different spatial variation characteristics for the six sections, but most of the higher exchange fluxes occurred in the lower area of a section. The section with larger hydraulic conductivity has an apparent dynamic response to surface water and groundwater level differences, whereas lower permeabilities severely reduced the response of groundwater flow. The influence of boundary conditions on SW–GW interactions was restricted to a limited extent, and the impact extent will expand with the increase of peak water level and hydraulic conductivity. The SW–GW head difference was the main influence factors in SW–GW interactions, and the influence of both SW–GW head difference and hydraulic conductivity decreased with an increase of the distance from the surface water boundary. For each layer of riverbank sediment, its hydraulic conductivity had greater influence on its groundwater flow than the other layers, whereas it had negligible effects on its overlying/underlying layers. Consequently, the variations in river stage and hydraulic conductivity were the main factors influencing the spatial and temporal characteristics of riverbank groundwater flow, respectively.  相似文献   

8.
The hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two‐dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone. The proportion of total water exchanged through the river bank compared to the river bed is a function of aquifer hydraulic conductivity, partial penetration, and hydraulic gradient. Total exchange may be estimated to within 50% using existing analytical solutions provided that unsaturated zone processes do not strongly influence exchange. Model‐calculated bank storage is at a maximum when no hydraulic gradient is present and increases as the hydraulic conductivity increases. However, in the presence of a hydraulic gradient, the largest exchange flux or distance of penetration does not necessarily correspond to the highest hydraulic conductivity, as high hydraulic conductivity increases the components of exchange both into and out of an aquifer. Flood wave characteristics do not influence ambient groundwater discharge, and so in large floods, hydraulic gradients must be high to reduce the volume of bank storage. Practical measurement of bank storage metrics is problematic due to the limitations of available measurement technologies and the nested processes of exchange that occur at the river‐aquifer interface. Proxies, such as time series concentration data in rivers and groundwater, require further development to be representative and quantitative.  相似文献   

9.
Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computation time. The soil and water assessment tool (SWAT) model is a semi‐distributed model that has been successfully applied around the world. However, it has not been able to simulate the two‐way exchanges between surface water and groundwater. In this study, the SWAT‐landscape unit (LU) model – based on a catena method that routes flow across three LUs (the divide, the hillslope and the valley) – was modified and applied in the floodplain of the Garonne River. The modified model was called SWAT‐LUD. Darcy's equation was applied to simulate groundwater flow. The algorithm for surface water‐level simulation during flooding periods was modified, and the influence of flooding on groundwater levels was added to the model. Chloride was chosen as a conservative tracer to test simulated water exchanges. The simulated water exchange quantity from SWAT‐LUD was compared with the output of a two‐dimensional distributed model, surface–subsurface water exchange model. The results showed that simulated groundwater levels in the LU adjoining the river matched the observed data very well. Additionally, SWAT‐LUD model was able to reflect the actual water exchange between the river and the aquifer. It showed that river water discharge has a significant influence on the surface–groundwater exchanges. The main water flow direction in the river/groundwater interface was from groundwater to river; water that flowed in this direction accounted for 65% of the total exchanged water volume. The water mixing occurs mainly during high hydraulic periods. Flooded water was important for the surface–subsurface water exchange process; it accounted for 69% of total water that flowed from the river to the aquifer. The new module also provides the option of simulating pollution transfer occurring at the river/groundwater interface at the catchment scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The purpose of this study is to apply time series analysis to investigate whether the groundwater quality in the coastal area is affected by the tide. Continuous and regular in situ monitoring data of electrical conductivity (EC) and groundwater level, and tidal level data measured by the National Oceanographic Research Institute were used for the time series analysis. Through the time series analysis, it is known that EC and groundwater level conspicuously fluctuate with two periodicities (15.4 and 0.52-day), which is very similar to those of the tide. Also the behaviors of their fluctuations vary in accordance with the tidal period. These indicate that the groundwater quality has been mainly controlled by the tidal level, and the strength of tidal effect on the groundwater quality is different according to the tidal period.  相似文献   

11.
Interaction between groundwater and surface water in watersheds has significant impacts on water management and water rights, nutrient loading from aquifers to streams, and in‐stream flow requirements for aquatic species. Of particular importance are the spatial patterns of these interactions. This study explores the spatio‐temporal patterns of groundwater discharge to a river system in a semi‐arid region, with methods applied to the Sprague River Watershed (4100 km2) within the Upper Klamath Basin in Oregon, USA. Patterns of groundwater–surface water interaction are explored throughout the watershed during the 1970–2003 time period using a coupled SWAT‐MODFLOW model tested against streamflow, groundwater level and field‐estimated reach‐specific groundwater discharge rates. Daily time steps and coupling are used, with groundwater discharge rates calculated for each model computational point along the stream. Model results also are averaged by month and by year to determine seasonal and decadal trends in groundwater discharge rates. Results show high spatial variability in groundwater discharge, with several locations showing no groundwater/surface water interaction. Average annual groundwater discharge is 20.5 m3/s, with maximum and minimum rates occurring in September–October and March–April, respectively. Annual average rates increase by approximately 0.02 m3/s per year over the 34‐year period, negligible compared with the average annual rate, although 70% of the stream network experiences an increase in groundwater discharge rate between 1970 and 2003. Results can assist with water management, identifying potential locations of heavy nutrient mass loading from the aquifer to streams and ecological assessment and planning focused on locations of high groundwater discharge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
To supplement conventional geophysical log data, this study presents temporal variations in electrical conductivity (EC) and temperature with depth in a multilayered coastal aquifer, on the eastern part of Jeju Island, Korea. One‐month time‐series data obtained at eight points from a multi‐depth monitoring system showed that semidiurnal and semimonthly tidal variations induced dynamic fluctuations in EC and temperature. At some depths, EC ranged from 1483 to 26 822 µS cm?1, while some points showed no significant variations. The results of EC log and time‐series data revealed that a sharp fresh‐saltwater interface occurred at low tide, but the diffusion zone broadened to 20 m at high tide. EC, temperature, and tide level data were used for the cross‐correlation analysis. The response time of EC and temperature to tide appears to range from less than 30 min to 11 h. Using end‐member mixing analysis (EMMA), the fraction of variations of chloride concentration in the multilayered aquifer was explained, and a conceptual model was developed which subdivided the coastal aquifer into four vertical zones. The percentage of water derived from seawater varied from 2 to 48 at specific depth, owing to tidal fluctuations. Continuous observations of EC and temperature at multiple depths are powerful tools for quantifying the transport of saline water by tidal variations in multilayered coastal aquifers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Water level time series from groundwater production wells offer a transient dataset that can be used to estimate aquifer properties in areas with active groundwater development. This article describes a new parameter estimation method to infer aquifer properties from such datasets. Specifically, the method analyzes long‐term water level measurements from multiple, interacting groundwater production wells and relies on temporal water level derivatives to estimate the aquifer transmissivity and storativity. Analytically modeled derivatives are compared to derivatives calculated directly from the observed water level data; an optimization technique is used to identify best‐fitting transmissivity and storativity values that minimize the difference between modeled and observed derivatives. We demonstrate how the consideration of derivative (slope) behavior eliminates uncertainty associated with static water levels and well‐loss coefficients, enabling effective use of water level data from groundwater production wells. The method is applied to time‐series data collected over a period of 6 years from a municipal well field operating in the Denver Basin, Colorado (USA). The estimated aquifer properties are shown to be consistent with previously published values. The parameter estimation method is further tested using synthetic water level time series generated with a numerical model that incorporates the style of heterogeneity that occurs in the Denver Basin sandstone aquifers.  相似文献   

14.
In this work, we study groundwater system temporal scaling in relation to plant water use and near‐river‐stage fluctuations in riparian zones where phreatophytes exist. Using detrended fluctuation analysis (DFA), we investigate the influence of regular diurnal fluctuations due to phreatophyte water use on temporal scaling properties of groundwater level variations. We found that groundwater use by phreatophytes, at the field site on the Colorado River, USA, results in distinctive crossovers (slope changes when the plots are fitted with straight lines) in the logarithm plots of root‐mean‐square fluctuations of the detrended water level time series versus time scales of groundwater level dynamics. For groundwater levels monitored at wells close to the river, we identified one crossover at ~1 day in the scaling characteristics of groundwater level variations. When time scale exceeds 1 day, the scaling properties decrease from persistent to close to 1/f noise, where f is the frequency. For groundwater levels recorded at wells further away from the river, the slope of the straight line fit (i.e. scaling exponent) is smallest when the time scale is between 1 and 3 days. When the time scale is < 1 day, groundwater variations become persistent. When the time scale is between 1 and 3 days, the variations are close to white noise, but return to persistent when the time scale is > 3 days. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Being a large hyper‐saline water body, Lake Urmia in north‐western Iran deals with a gradual decline in its water level. Most of the studies on Lake Urmia have neglected the groundwater issue. In this study, as a direct approach, the interaction between the groundwater level and the lake water level is investigated both in time and space by analysing the groundwater data compiled from observation wells surrounding the lake. Baseflow separation is considered as an indirect approach to understand the groundwater contribution to the river network flowing into the lake. It is determined that about 70% of run‐off in the rivers draining into the lake is born in the form of baseflow. An interaction between the lake and the groundwater storage is clearly seen from the analysis to conclude that groundwater has a potential to recharge the lake. Thus, the shrinkage of water level in Lake Urmia could be expected to accelerate with the drastic use of groundwater, which will be a disaster with no return.  相似文献   

16.
Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high‐flow events in an 18‐month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high‐flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite‐difference model including high‐conductivity cells representing the conduit network (“discrete‐continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high‐flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
During the evolution of meander bends, the intra‐meander groundwater head gradients steepen and generate zones of accelerated water and nutrient intra‐meander fluxes important for ecosystem processes. This paper compares and contrasts three MODFLOW groundwater model packages based on their simulation of intra‐meander flux for two stages of meander evolution observed in a sandbox river table and one level of river bed clogging, where the hydraulic conductivity in the river bed is lower than in the adjacent aquifer. These packages are the Time‐Variant Specified Head package [constant head (CHD)], River package (RIV), and Streamflow‐Routing package (SFR2), each controlling the groundwater or river head bounding the intra‐meander region. The RIV and SFR2 packages fix river stage and allow for variation in groundwater head below the river, which is suggested for simulating intra‐meander flux for all sinuosities with and without river bed clogging whenever river bed parameters are available. The CHD package fixes below river groundwater head and fails to simulate intra‐meander head loss and flux in meanders with high sinuosity or river bed clogging. In low sinuosity meanders and in cases without river bed clogging, there were no significant differences between MODFLOW packages for simulating river intra‐meander head loss and flux. This research demonstrates why MODFLOW users need to consider the limitations of each package when simulating intra‐meander flux in reaches with river bed clogging, high sinuosity, or similarly steep hydraulic gradients. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Management of water resources in alluvial aquifers relies mainly on understanding interactions between hydraulically connected streams and aquifers. Numerical models that simulate this interaction often are used as decision support tools for water resource management. However, the accuracy of numerical predictions relies heavily on unknown system parameters (e.g., streambed conductivity and aquifer hydraulic conductivity), which are spatially heterogeneous and difficult to measure directly. This paper employs an ensemble smoother to invert groundwater level measurements to jointly estimate spatially varying streambed and alluvial aquifer hydraulic conductivity along a 35.6‐km segment of the South Platte River in Northeastern Colorado. The accuracy of the inversion procedure is evaluated using a synthetic experiment and historical groundwater level measurements, with the latter constituting the novelty of this study in the inversion and validation of high‐resolution fields of streambed and aquifer conductivities. Results show that the estimated streambed conductivity field and aquifer conductivity field produce an acceptable agreement between observed and simulated groundwater levels and stream flow rates. The estimated parameter fields are also used to simulate the spatially varying flow exchange between the alluvial aquifer and the stream, which exhibits high spatial variability along the river reach with a maximum average monthly aquifer gain of about 2.3 m3/day and a maximum average monthly aquifer loss of 2.8 m3/day, per unit area of streambed (m2). These results demonstrate that data assimilation inversion provides a reliable and computationally affordable tool to estimate the spatial variability of streambed and aquifer conductivities at high resolution in real‐world systems.  相似文献   

19.
In the Amazon basin, floodplains form a complex mosaic of freshwater systems with differing morphologies, resulting in varied inundation patterns and heterogeneous chemical and ecological characteristics. In this study, we focused on the Janauacá floodplain, a medium‐sized system (786 km2, including the local watershed) located along the Solimões River. Based on in situ and satellite observations acquired from November 2006 to November 2011, we computed water fluxes between the mainstream and the floodplain and examined the temporal dynamics of floodplain storage from river flooding, rainfall, runoff, and exchanges with groundwater through bank seepage for the 5 years from 2006 to 2011. The mainstream was the main input of water to the flooded area, accounting on average for 93% of total water inputs by the end of the water year. Direct precipitation and runoff from uplands contributed less than or equal to 5% and 10%, respectively. The seepage contribution was less than 1%. Model uncertainties, evaluated using Monte Carlo analysis of the input data and model parameters, showed that all water fluxes were relatively well constrained except for outflow through seepage, which had a standard deviation across simulations greater than 60%. The water balance computation was verified using electrical conductivity as an assumed non‐reactive tracer. Except during periods of very low water, the simulated and measured conductivities agreed well. Moreover, conductivity data analysis confirmed that the Janauacá system can be considered homogeneous in terms of electrical conductivity for filling percentages equal to or greater than 40% (i.e., when the water level is above 19.5 m, generally from April to August) but presented large heterogeneities during the rest of the hydrological cycle.  相似文献   

20.
River restoration measures are becoming increasingly popular and are leading to dynamic river bed morphologies that in turn result in complex water level distributions in a river. Disconnected river branches, nonlinear longitudinal water level profiles and morphologically induced lateral water level gradients can evolve rapidly. The modeling of such river‐groundwater systems is of high practical relevance in order to assess the impact of restoration measures on the exchange flux between a river and groundwater or on the residence times between a river and a pumping well. However, the model input includes a proper definition of the river boundary condition, which requires a detailed spatial and temporal river water level distribution. In this study, we present two new methods to estimate river water level distributions that are based directly on measured data. Comparing generated time series of water levels with those obtained by a hydraulic model as a reference, the new methods proved to offer an accurate and faster alternative with a simpler implementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号