首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The desert of eastern Libya forms one of the most arid regions of the Sahara. The Great Man‐Made River Project (GMRP) was established. It transports millions of cubic meters of water a day from desert wellfields to the coastal cities, where over 80% of the population lives. The Tazerbo Wellfield is one of the wellfields designed within the GMRP, delivering water to the eastern coast of Libya through an underground pipe network. Tazerbo Wellfield consists of 108 production wells; each well was designed to pump 100 L/s. The planned total groundwater withdrawal from all wells is 1 million m3/d. The deep sandstone aquifer (Nubian sandstone) is covered by a thick mudstone‐siltstone aquitard and is being heavily pumped. The aquifer and fine‐grained sediments of the aquitard may be compacted resulting in land subsidence as a result of high exploitation. Local sinkholes have developed in the area of Tazerbo since the start of the pumping from the wellfield in 2004. These sinkholes have been caused mainly by lowering of the piezometric heads due to the withdrawal of groundwater. In this study, a hydrogeological investigation is presented about the effect of large groundwater pumping from the Nubian sandstone aquifer in Tazerbo Wellfield, SE Libya, based on physical parameters for 108 production wells and 23 observation wells.  相似文献   

2.
长期过量开采地下水,使地下水位持续下降、水质发生变化,动水位观测井断流;地面沉降造成井管上窜,观测管路系统被损坏等,这些现象对地震地下流体观测地震前兆异常的正确判断带来很大困难。应用水文地质理论与方法,分析含水层的水均衡状态、应力-应变状态及其与水位动态的关系,初步探讨了超采区井水位异常性质的理论与方法。结果表明,根据井孔所在区水位下降漏斗的扩散特征,结合以上所提到的理论和方法,依据资料多年变化特征,可以较准确地判断异常的性质。研究结果有助于区分单一集中抽水与长期地下水超采对水位观测的影响,有助于正确识别超采区水位前兆异常,有助于地震分析预报水平的提高  相似文献   

3.
Water from the San Joaquin Delta, having chloride concentrations up to 3590 mg/L, has intruded fresh water aquifers underlying Stockton, California. Changes in chloride concentrations at depth within these aquifers were evaluated using sequential electromagnetic (EM) induction logs collected during 2004 through 2007 at seven multiple‐well sites as deep as 268 m. Sequential EM logging is useful for identifying changes in groundwater quality through polyvinyl chloride‐cased wells in intervals not screened by wells. These unscreened intervals represent more than 90% of the aquifer at the sites studied. Sequential EM logging suggested degrading groundwater quality in numerous thin intervals, typically between 1 and 7 m in thickness, especially in the northern part of the study area. Some of these intervals were unscreened by wells, and would not have been identified by traditional groundwater sample collection. Sequential logging also identified intervals with improving water quality—possibly due to groundwater management practices that have limited pumping and promoted artificial recharge. EM resistivity was correlated with chloride concentrations in sampled wells and in water from core material. Natural gamma log data were used to account for the effect of aquifer lithology on EM resistivity. Results of this study show that a sequential EM logging is useful for identifying and monitoring the movement of high‐chloride water, having lower salinities and chloride concentrations than sea water, in aquifer intervals not screened by wells, and that increases in chloride in water from wells in the area are consistent with high‐chloride water originating from the San Joaquin Delta rather than from the underlying saline aquifer.  相似文献   

4.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
The remediation strategy for an industrial site located in a coastal area involves a pump and treat system and a horizontal flow barrier (HFB) penetrating the main aquifer. To validate the groundwater flow conceptual model and to verify the efficiency of the remediation systems, we carried out piezometric measurements, slug tests, pumping tests, flowmeter tests and multilevel sampling. Flowmeter tests are used to infer vertical groundwater flow directions, and base exchange index is used to infer horizontal flow directions at a metric scale. The selected wells are located both upstream and downstream of the HFB. The installation of the HFB produced constraints to the groundwater flow. A stagnant zone of contaminated freshwater floating over the salt wedge in the upper portion of the aquifer is detected downstream of the HFB. This study confirms that the adopted remediation system is efficiently working in the area upstream of the HFB and even downstream in the bottom part of the aquifer. At the same time, it has also confirmed that hot spots are still present in stagnant zones located downstream of the HFB in the upper part of the aquifer, requiring a different approach to accomplish remediation targets. The integrated approach for flow quantification used in this study allows to discriminate the direction and the magnitude of groundwater fluxes near an HFB in a coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Ground subsidence of detrital deposits in the Almería basin (SE Spain) was studied using the remote sensing technique of Differential Interferometry SAR (DInSAR). This basin is one of the most arid in Europe, receiving an average rainfall of 250 mm per year. Over the last 60 years the region has experienced an enormous agricultural and urban expansion, whose water demand has been largely supplied from groundwater, leading to the current situation of overexploitation of water resources. This paper outlines the likely relationship between groundwater abstraction and subsidence. To this end, 34 ERS and Envisat images, taken between 2003 and 2009, were analysed to estimate ground surface deformations, and hence, compared with water table variations measured in a number of piezometers in the basin. The analysis shows a clear parallelism between the variations in piezometric level and deformation of the ground surface. In addition, the zones of greatest subsidence coincide with those areas where groundwater abstractions are concentrated. Subsidence over the examined period varies from 10 to 30 mm, with extreme values as high as 50 mm, which translates to a rate of between 1·7 and 5 mm/year, reaching maximum rates of 8 mm/year at some points. Given such subsidence rates, damage to urban infrastructures are, for the moment, incipient. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The objective of this article is to analyze the influence of clay zones on subsidence from groundwater pumping. Finite element analyses were conducted on a sand‐only aquifer and a sand aquifer with two clay zones located at different distances from the well face. A model that accounts for recoverable and nonrecoverable strains was used to simulate the sand and clay. This model couples the groundwater flow with the stress‐deformation response of the aquifer materials. Each aquifer was pumped from a single well for a period of 6 months, and then the groundwater level was lowered gradually to an elevation below the elevation of the clay zones and kept there for 10 years. The groundwater level was then raised gradually back to the original elevation over a period of 10 years. The results of the analyses show that the ground surface subsidence profile is strongly influenced by the presence of the clays zones. The ground surface sags where these clay zones are present resulting in a wavy ground surface profile. Subsidence continued when pumping is stopped, albeit at a much slower rate than during pumping, and when the groundwater level is below the elevation of the clay zones. Clay zones further away from the well face lag the subsidence of clay zones nearer the well face because of lower changes in hydrostatic head. Sags in ground surface subsidence profile from groundwater pumping are indicators of the presence of low hydraulic conductive geological materials.  相似文献   

8.
Las Vegas Valley has had a long history of groundwater development and subsequent surface deformation. InSAR interferograms have revealed detailed and complex spatial patterns of subsidence in the Las Vegas Valley area that do not coincide with major pumping regions. This research represents the first effort to use high spatial and temporal resolution subsidence observations from InSAR and hydraulic head data to inversely calibrate transmissivities (T), elastic and inelastic skeletal storage coefficients (Ske and Skv) of the developed‐zone aquifer and conductance (CR) of the basin‐fill faults for the entire Las Vegas basin. The results indicate that the subsidence observations from InSAR are extremely beneficial for accurately quantifying hydraulic parameters, and the model calibration results are far more accurate than when using only groundwater levels as observations, and just a limited number of subsidence observations. The discrepancy between distributions of pumping and greatest levels of subsidence is found to be attributed to spatial variations in clay thickness. The Eglington fault separates thicker interbeds to the northwest from thinner interbeds to the southeast and the fault may act as a groundwater‐flow barrier and/or subsidence boundary, although the influence of the groundwater barrier to this area is found to be insignificant. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A geochemical study was carried out in a small spa area (Onyang Spa, Korea) where intensive pumping of deep thermal groundwater (1 300 000 m3 year−1) is taking place. This has caused the deep fractures to lose their artesian pressure and the upper shallow fractures have been encroached by shallow, cold waters. To quantify the influence of long‐term heavy pumping on the quality of the geothermal water, groundwater sampling and chemical analysis, water‐level measurement, and well loggings were performed for the selected deep thermal wells and shallow cold wells. Chemical analysis results indicate a big contrast in water chemistry and origins between the two water types. Shallow groundwater shows a wider concentration ranges in solutes that are closely related to human activity, illustrating the water's vulnerability to contamination near the land surface. Plots of water chemistry as a function of fluoride reveal that the quality of the thermal water was greatly influenced by the shallow, cold groundwater and that intensive pumping of the deep thermal groundwater has caused the introduction of shallow groundwater into the deeper fractures. Although the deep and the shallow fractures were piezometrically separated to some extent, a mixing model based on fluoride and nitrate indicated that the cold‐water fractions in the thermal wells are up to 50%. This suggests that the thermal water is faced with water quality degradation by the downward flow of the shallow, cold water. Restriction on the total of all the pumpage permits per unit area is suggested to restore the artesian pressure of the deep thermal aquifer and to prevent cold‐water intrusion in the study area. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
In July 1988, hydrocarbons were detected in wells in the urban area of Albolote, near Granada, Spain, near the border of the "Vega de Granada" alluvial aquifer. According to available hydrogeological data, the contamination was attributed to leaks in the underground pipelines of a nearby (300m) industrial factory, where the loss of 40,000 to 50,000 liters of gasoline had been detected some weeks before. A complete hydrogeological investigation was then undertaken, involving, among other techniques: (a) an inventory of the existing wells in the area; (b) the preparation of piezometric maps; (c) the application of electrical geophysical methods; (d) the drilling of piezometers and new pumping wells between the urbanized area and the leak point; (e) the improvement of the pluviometric and piezometric control by the installation of a pluviograph and several limnigraphs; (f) the sampling, initially daily and finally weekly, in a 20-well observation network, also used for piezometric control; and (g) the geostatistical study of the analytical data. The contamination plume, extended in the direction of the flow lines, has a length of 500m and a width of less than 50m, and appears to have occurred mainly in a paleochannel. Hydrocarbons (1600 liters) were recovered by pumping and by using absorbent blankets, as well as by a gas and liquid suction method. Hydrocarbon concentrations have continuously decreased. However, sporadic increases, associated with rainfall, have been observed suggesting the presence of retained hydrocarbons in the unsaturated zone. The rate of decrease in hydrocarbon concentrations has currently slowed, particularly in the less affected zone. As a means of activating the cleaning up of the unsaturated zone, an artificial recharging method has been designed.  相似文献   

11.
Rapid urbanization in the Jakarta area has become a severe subsurface environmental issue as it entails groundwater level decline and land subsidence caused by excessive groundwater pumping. In this study, apparent groundwater age rejuvenation in the deep aquifer under DKI Jakarta was found by comparing 14C activities between 1985 and 2008. We discussed the use of a numerical groundwater flow model to evaluate the rejuvenation process in this urbanized area. When considering the deep aquifer in the DKI Jakarta area, we can assume six direction fluxes toward the aquifer: two vertical fluxes (downward and upward flux) and four horizontal fluxes (northern, southern, western, and eastern flux). Results of model calculations show that the greatest groundwater flux among six flux directions became ‘vertical downward flux’, which means that shallower groundwater intrudes into the deep one because of excessive groundwater pumping from the mid‐1980s. This flux grows about 50% during the 2000s. This result is consistent with the detection of CFC‐12 and SF6, which functions as an indicator of young groundwater even in the deep groundwater. The rejuvenation ratio ‘R’ was determined using 14C activity in the groundwater; R increases with the CFC‐12 concentration and both show good correlation. Furthermore, we estimated the ‘vertical downward flux’ at each well's screen depth using model estimation. Results show that this flux is greater in the urban groundwater depression area and especially at shallower parts of the deep aquifer, and that it affects the magnitude of the shallow groundwater intrusion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Excessive groundwater withdrawal has caused severe land subsidence worldwide. The pore water pressure and the deformation of pumped hydrostratigraphic units are complex. A fully coupled three-dimensional numerical simulation was carried out for different pumping plans in this paper. When groundwater is pumped from a confined aquifer, the great compaction occurs in the pumped aquifer and its upper and lower adjacent aquitard units. Land subsidence is smaller and the area affected by land subsidence is greater when groundwater is pumped from the deeper confined aquifer. The pore water pressure in the pumped confined aquifer changes immediately with pumpage. In the adjacent aquitard units, however, the pore water pressure increases in the early pumping time and decreases in the early recharging time. The decrease in the pore water pressure vertically spreads from the interface between aquitard and pumped aquifer to the other surface of the aquitard. The pumped aquifer compacts and rebounds immediately with pumping and non-pumping or recharging actions, while the compaction and rebounding of the aquitard units clearly lag behind. The compaction of the adjacent aquitard unit first occurs near the interface between aquitard and pumped aquifer units, and the compaction zone spreads outward as the pumping goes on. The aquitards may expand vertically within some zones. Due to the inelastic deformation of soil skeleton, different pumping plans result in different land subsidence. For the same net pumpage, maximal land subsidence and horizontal displacement are the smallest for constant discharge and the greatest for recharge-discharge cycle.  相似文献   

13.
Large agricultural fields in South Korea are located mostly on alluvial plains, where a significant amount of groundwater is used for heating of water‐curtain insulated greenhouses. Such greenhouses are commonly used for crop cultivation during the winter dry season from November to March. After use the groundwater is discharged directly into streams, causing groundwater depletion. A hydrogeological study was carried out in a typical agricultural area of this type, located on an alluvial aquifer near the Nakdong River. Groundwater levels, chemical characteristics, and temperatures from 68 observation wells were analyzed to determine the impacts of seasonal groundwater pumping on the groundwater system and stream‐aquifer interactions. Our results show that the groundwater system has not yet reached a state of dynamic equilibrium. Decades of excessive seasonal pumping have caused a gradual decline of groundwater levels, leading to groundwater depletion, especially in areas further from the river. Seasonal pumping has also significantly affected groundwater quality in the aquifer near the river. Groundwater temperature is decreasing (in this case a disadvantage), and saline groundwater is being diluted by induced recharge. The results of this study provide a basic outline for effective integrated water management that is widely applicable in South Korea.  相似文献   

14.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

15.
The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water‐budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head‐dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three‐dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water‐budget analyses, most often with groundwater‐flow models. Transport models, particularly particle‐tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them.  相似文献   

16.
Saltwater intrusion problems have been usually tackled through analytical models because of its simplicity, easy implementation and low computational cost. Most of these models are based on the sharp‐interface approximation and the Ghyben–Herzberg relation, which neglects mixing of fresh water and seawater and implicitly assumes that salt water remains static. This paper provides insight into the validity of a sharp‐interface approximation defined from a steady state solution when applied to transient seawater intrusion problems. The validation tests have been performed on a 3D unconfined synthetic aquifer, which include spatial and temporal distribution of recharge and pumping wells. Using a change of variable, the governing equation of the steady state sharp‐interface problem can be written with the same structure of the steady confined groundwater flow equation as a function of a single potential variable (?). We propose to approach also the transient problem solving a single potential equation (using also the ? variable) with the same structure of the confined groundwater flow equation. It will allow solving the problem by using the classical MODFLOW code. We have used the parameter estimation model PEST to calibrate the parameters of the transient sharp‐interface equation. We show how after the calibration process, the sharp‐interface approach may provide accurate enough results when applied to transient problems and improve the steady state results, thus avoiding the need of implementing a density‐dependent model and reducing the computational cost. This has been proved by comparing results with those obtained using the finite difference numerical code SEAWAT for solving the coupled partial differential equations of flow and density‐dependent transport. The comparison was performed in terms of piezometric heads, seawater penetration, transition zone width and critical pumping rates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The present study investigates the possible hydrologic effects of the proposed lignite open‐cast mining in Drama lignite field (north Greece). Recent years have seen a rapid increase in surface mining. This activity has generated a growing concern for the potential environmental impacts associated with large scale surface mining. In order to achieve a safe mine operation and allow extraction of lignite to considerable depths, extensive dewatering by pumping will be necessary, while at the same time it is desirable to avoid presence of overpumping conditions in the broader area. Based on stratigrafic, hydrologic and hydrogeologic data, a three‐dimensional finite difference model was developed in order to simulate the dewatering process of the western part of the lignite open‐cast mine in Drama and to predict both spatially and temporally the decline of ground water level down to the lignite surface. The dewatering of the part of the aquifer which underlies the mine area will influence the hydrological conditions of the broader region. The most important anticipated effects will be the abandonment of shallow wells as well as the decrease of ground water pumping rates of deep wells. Aquifer discharge towards the ditches of the study area will cease and there will be an inversion of ground water flow from the ditches towards the underlying aquifer. Dewatering activities will probably result in minor subsidence of the nearby peat deposits of Drama Philippi marshes. Moreover, sand pumping as well as the presence of gasses is likely to cause local subsidence phenomena, mainly in the pit slopes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The North Tabriz Fault (NTF) is the predominant regional‐scale tectonic structure in the northwest of Iran. In the east side of the city of Tabriz, a portion of the fault trend has been completely concealed by recent sediments and urbanization. In this paper, some hydrogeological methods are used to locate the concealed sector. As is clear from the pumping tests results, despite the fact that the northern observation wells were closer to the pumping wells than the southern ones, they have not been affected by pumping. Conversely, all southern wells were affected by pumping and displayed decline of the water table. In addition, obvious differences in groundwater levels combined with clear differences in groundwater quality within a short distance across the probable fault trend are sufficient reasons for the presence of the fault that behaves as a barrier to groundwater lateral flows. Significant change in the elevation of the bedrock base of the aquifer over less than 200 m suggests that the fault has near vertical dip. These results indicate that the inferred trend of the NTF closely conforms to its actual trend. Therefore, the hydrogeological studies can be complementary tools to determine the position and trend of concealed faults.  相似文献   

19.
A multidisciplinary approach is presented here for quantifying land subsidence in a heavily pumped aquifer system with complex stratigraphy. The methodology consists in incorporating Terzaghi’s 1D instantaneous compaction principle into a 3D groundwater flow model that is then applied and calibrated to reproduce observed hydraulic heads and compaction for the Toluca Valley, Mexico. Differential Interferometric Synthetic Aperture Radar (D-InSAR), a generated 3D-geological model, extensometers, monitoring wells, and available literature are used to constrain the model. The D-InSAR measured subsidence, extensometers, and numerical simulations of subsidence agree relatively well. Simulations show that since regional subsidence began in the mid 1960s there has been up to 2 m of subsidence in the industrial corridor, where heavy pumping and thick clay layers are found. This study shows that an approach using various sources of data is useful in estimating and constraining the vertical component of the inelastic skeletal specific storage.  相似文献   

20.
This paper aims to contribute to understanding the importance of four factors on the determination of sustainable yields: (i) aquifer properties; (ii) temporal distribution of recharge; (iii) temporal distribution of groundwater pumping; and (iv) spatial distribution of pumping wells. It is important to comprehend how the present‐day and future vulnerability of groundwater systems to pumping activities depend on these critical factors and what the risks are of considering sustainable yield as a fixed percentage of mean annual recharge (MAR). A numerical model of the Querença–Silves aquifer in Portugal is used to develop hypothetical scenarios with which these factors are studied. Results demonstrate the aquifer properties, particularly the storage coefficient, have an important role in determining the resilience of an aquifer and therefore to which degree it is dependent on the spatial and temporal distribution of abstraction and recharge, as well as the occurrence of extreme events. Sustainable yields are determined for the developed scenarios based on specific criteria rather than a fraction of MAR. Under simplified current recharge and abstraction conditions, the sustainable yield was determined at approximately 73% of MAR or 76 million m3. When considering a concentration of rainfall in time, as predicted by climate scenarios for the region, sustainable yield could drop to ca 70% of MAR. However, a more even distribution of pumping volumes throughout the year could increase this value. The location of the pumping wells is seen to affect the distribution of hydraulic heads in the aquifer, albeit without significant changes in sustainable yield. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号