首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
The remanent magnetization of igneous and sedimentary rocks, if not changed by heating or by alteration of magnetic minerals, keep the information about the intensity of that magnetic field in which initial magnetization took place.It has been determined that the dependence of anhysteretic remanent magnetization of such a rock on d.c. magnetic field permits us to find the paleointensity. A method of investigation of rock specimens by means of such remagnetization is suggested and applied to determining the paleointensity for a series of Permo-Triassic rocks.  相似文献   

2.
Our rock magnetic analysis of core Ph05 from the West Philippine Sea demonstrates that the core preserves a strong, stable remanent magnetization and meets the magnetic mineral criteria for relative paleointensity (RPI) analyses. The magnetic minerals in the sequence are dominated by pseudosingle-domain magnetite, and the concentration of magnetic minerals is at the same scale. Both the conventional normalizing method and the pseudo-Thellier method were used in conjunction with the examination of the rock magnetic properties and natural remanent magnetization. Susceptibility (χ), anhysteretic remnant magnetization (ARM) and saturation isothermal remnant magnetization (SIRM) were used as the natural remanent magnetization normalizer. However, coherence analysis indicated that only ARM is more suitable for paleointensity reconstruction. The age model of core is established based on oxygen isotope data and AMS14C data, which is consistent with the age model estimated from RPI records. The relative paleointensity data provide a continuous record of the intensity variation during the last 200 ka, which correlates well with the global references RPI stacks. Several prominent low paleointensity values are identified and are correlated to the main RPI minima in the SINT-200 record, suggesting that the sediments have recorded the real changes of geomagnetic field. Supported by National Natural Science Foundation of China (Grant No. 90411014) and Pilot Project of the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-211)  相似文献   

3.
The results of the Thellier–Coe experiments on paleointensity determination on the samples which contain chemical remanent magnetization (CRM) created by thermal annealing of titanomagnetites are reported. The results of the experiments are compared with the theoretical notions. For this purpose, Monte Carlo simulation of the process of CRM acquisition in the system of single-domain interacting particles was carried out; the paleointensity determination method based on the Thellier–Coe procedure was modeled; and the degree of paleointensity underestimation was quantitatively estimated based on the experimental data and on the numerical results. Both the experimental investigations and computer modeling suggest the following main conclusion: all the Arai–Nagata diagrams for CRM in the high-temperature area (in some cases up to the Curie temperature T c) contain a relatively long quasi-linear interval on which it is possible to estimate the slope coefficient k and, therefore, the paleointensity. Hence, if chemical magnetization (or remagnetization) took place in the course of the magnetomineralogical transformations of titanomagnetite- bearing igneous rocks during long-lasting cooling or during repeated heatings, it can lead to incorrect results in determining the intensity of the geomagnetic field in the geological past.  相似文献   

4.
To test the reliability of the Thellier method for paleointensity determinations, we studied six historic lavas from Hawaii and two Gauss-age lava flows from Raiatea Island (French Polynesia). Our aim is to investigate the effects of the NRM fraction and concave-up behavior of NRM–thermal remanent magnetization (TRM) diagrams on paleointensity determinations. For the Hawaiian samples, the paleointensity results were investigated at both sample and site levels. For consistency and confidence in the paleointensity results, it is important to measure multiple samples from each cooling unit. The results from the Raiatea Island samples confirm that reliable paleointensities can be obtained from NRM–TRM diagrams with concave-up curvature, provided the data are accompanied by successful partial TRM (pTRM) checks and no significant chemical remanent magnetization (CRM) production. We conclude that reliable determinations of the paleofield strength require analyses of linear segments representing at least 40–50% of the total NRM. This new criterion has to be considered for future studies and for evaluating published paleointensities for calculating average geomagnetic field models. Using this condition together with other commonly employed selection criteria, the observed mean site paleointensities are typically within 10% of the Definitive Geomagnetic Reference Field (DGRF). Our new results for the Hawaii 1960 lava flow are in excellent agreement with the expected value, in contrast to significant discrepancies observed in some earlier studies.

Overestimates of paleointensity determinations can arise from cooling-rate dependence of TRM acquisition, viscous remanent magnetization (VRM) at elevated temperatures, and TRM properties of multidomain (MD) particles. These outcomes are exaggerated at lower temperature ranges. Therefore, we suggest that, provided the pTRM checks are successful and there is no significant CRM production, it is better to increase the NRM fraction used in paleointensity analyses rather than to maximize correlation coefficients of line segments on the NRM–TRM diagrams.

We introduce the factor, Q = Nq, to assess the quality of the weighted mean paleointensity, Hw, for each cooling unit.  相似文献   


5.
A single-heating procedure is presented which makes possible the determination of two partially independent values of paleofield intensity for a given sample, one serving as a check to the other. The approach combines data required for Shaw-type and “ARM-method” determinations and in so doing furnishes a value of the ratio of TRM to ARM acquisition efficiency (f′) corrected for any physicochemical alteration to the magnetic carriers which may have occurred during laboratory heating.

Applicability of the Shaw-method to Fe-bearing samples is favorably demonstrated through simulated paleointensity determinations conducted on synthetic samples containing multi-domain grains. Moreover, coercivity spectra corresponding to anhysteretic remanent magnetization (ARM) are found to be considerably more sensitive to thermally induced alteration when compared with those corresponding to thermoremanent magnetization (TRM).

The combined Shaw-ARM procedure was successfully applied to lunar basalt sample 10017,135 rendering a paleointensity of 0.82 ± 0.11 Oe. The Thellier-Thellier method, however, was not able to provide a meaningful determination on the neighboring chip (number 136). These apparently conflicting findings may be explained by one or more of the following possible interpretations: (1) multiple step-wise heatings cause considerably more damage to the carriers of remanence than does a single-heating procedure; (2) the rock possesses extreme variability in magnetic properties from one sub-sample to the other; (3) the natural remanent magnetization in this lunar basalt is not a simple TRM.  相似文献   


6.
The reliability of the Thellier method for determining the paleointensity of a geomagnetic field is explored on recent igneous rocks of Kamchatka. The main magnetic mineral in the studied rocks is titanomagnetite with different degree of oxidation. It is obtained that the reliability of the results can be assessed based on the deviations of the check points of the partial thermoremanent magnetization (pTRM) during the Thellier experiment. Besides, for different rocks, it is found that the stability of titanomagnetites to heating during the experiments can be insufficient for validating the reliability of the results of paleointensity determination; however, at the same time, the reliability may depend on the initial (oxidation) state of the magnetic minerals of the studied rocks.  相似文献   

7.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

8.
The composition, granulometry data, and concentration of grains that carry the natural remanent magnetization (NRM) are studied in the bottom 6.5 meters of the loess-soil deposits of the Pekla section (Azov coast, Krasnodar region). It was shown that these strata, which correspond to the 9th–11th marine oxygen isotope stages (MIS) and cover the time interval ∼425–300 ka, are suitable for further paleomagnetic investigation. The deposits in the upper portion of the Inzhavino paleosoils (Likhvin Interstadial) contain the records of anomalous deviations of the direction of magnetization from the dipole field at the sampling site. The studied interval was sampled by taking two hand blocks from four sampling levels, which minimizes the errors due to the specimen cutting. This anomaly dated ∼300 ka possibly corresponds to the Biva-II geomagnetic excursion. However, the studies of implications of anisotropy in magnetic susceptibility (AMS) for the direction of natural remanent magnetization (NMR) have shown that parts of the samples from the Inzhavino paleosoils and the underlying loess horizon are magnetically anisotropic, which is characteristic for biogenic magnetite grains, while other parts of the samples exhibit plane anisotropy typical for natural sedimentary structures. A weak correlation between the time series of averaged curves of relative paleointensity, NRM20/ARM20 (and NRM20/K) for the loess horizons of the Pekla section and the global composite reference curve of relative paleointensity, Sint-800, in the time intervals 200–130 ka and 370–320 ka indicates that the paleomagnetic records have been imprinted not only on the detritic magnetic grains but also on the grains produced by chemical reactions and the life processes of bacteria.  相似文献   

9.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

10.
《Geofísica Internacional》2014,53(3):343-363
Meteorites represent the earliest records of the evolution of the solar system, providing information on the conditions, processes and chronology for formation of first solids, planetesimals and differentiated bodies. Evidence on the nature of magnetic fields in the early solar system has been derived from chondritic meteorites. Chondrules, which are millimeter sized silicate spherules formed by rapid melting and cooling, have been shown to retain remanent magnetization records dating from the time of chondrule formation and accretion of planetesimals. Studies on different meteorite classes, including ordinary and carbonaceous chondrites, have however provided contrasting results with wide ranges for protoplanetary disk magnetic fields. Developments on instrumentation and techniques for rock magnetic and paleointensity analyses are allowing increased precision. Micromagnetic and an array of geochemical, petrographic and electronic microscopy analyses provide unprecedented resolution, characterizing rock magnetic properties at magnetic domain scales. We review studies on chondrules from the Allende meteorite that reveal relationships among hysteresis parameters and physical properties. Coercivity, remanent and saturation remanence parameters correlate with chondrule size and density; in turn related to internal chondrule structure, mineralogy and morphology. Compound, fragmented and rimmed chondrules show distinct hysteresis properties, related to mineral composition and microstructures. The remanent magnetization record and paleointensity estimates derived from the Allende and other chondrites support remanent acquisition under influence of internal magnetic fields within parent planetesimals. Results support that rapid differentiation following formation of calcium-aluminum inclusions and chondrules gave rise to differentiated planetesimals with iron cores, capable of generating and sustaining dynamo action for million year periods. The Allende chondrite may have derived from a partly differentiated planetesimal which sustained an internal magnetic field.  相似文献   

11.
Polyphase magnetizations are not uncommon in old rocks. To obtain reliable paleointensities, these magnetizations need to be recognized and separated so that the paleointensity determination can be derived from one of the phases of magnetization. Some of the techniques used to detect and separate (and sometimes isolate) the different phases are described by means of a few examples. Special attention is given to the chemical remanent magnetization which can be found in both sedimentary and igneous rocks. It appears that a sedimentary rock near an igneous contact is the preferferred specimen for reliable paleointensity determinations.  相似文献   

12.
The Cretaceous Normal Superchron is a period of great interest to investigate global scale variations of the geomagnetic field. Long periods of single polarity are still a matter of debate: up to now there are two contradicting theories, which try to relate geomagnetic field intensity and reversal rate. We aim to shed light on the geomagnetic field strength during the Cretaceous Normal Superchron because data are still scarce and of dissimilar quality. To obtain reliable, absolute paleointensity determinations we investigate volcanic rocks from the Western Cordillera of Colombia. Several age determinations allow relating the samples to an age of about 92.5 Ma. To characterize the samples, we investigate rock magnetic properties and determine the characteristic remanent magnetization behavior. To determine paleointensities, we use a multimethod approach: first, we apply the classic Thellier-Coe protocol, and then, the relatively new multispecimen method. Rock magnetic measurements indicate magnetite as the main ferrimagnetic mineral, a stable magnetization revealed by reversible and nearly reversible thermomagnetic curves, and grain sizes that are either in the pseudosingle domain range or a mixture of single and multidomain grains. Alternating field and thermal demagnetization are rather complex, although we observe a few vector diagrams with a single, essentially uni-vectorial component with a small viscous overprint. Paleointensity determination with the Thellier-Coe protocol was unsuccessful, while with the multispecimen protocol we obtained four successful determinations out of 20. The failure of the Thellier-Coe protocol can be attributed to multidomain grains, which were observed during demagnetization and in rock magnetic experiments, and to the inhomogeneity of the volcanic rocks. Our multispecimen paleointensity determinations support low field strength at around 90 Ma during the Cretaceous Normal Superchron.  相似文献   

13.
Relative directions of magnetization have been measured within individual pillow basalts collected from the Atlantic Ocean and Caribbean Sea. The angle between the magnetic directions was determined and is referred to as the directional difference. Although one pillow contained a directional difference of 44°, the remaining ten pillows had differences less than 14°. The maximum orientation and measurement error was 7°. Dispersion on the scale found in these fine-grained pillow basalts would not appreciably affect the magnetic anomaly pattern on the sea floor. We detected no reversals of magnetization despite the sometimes large and variable low-temperature oxidation. Comparison of directions within homogeneous segments of the pillow, viscous remanent magnetization (VRM) acquisition experiments, and alternating field (AF) demagnetization indicate a large portion of the dispersion was due to the acquisition of a viscous component in the larger grained, less oxidized portion of the pillows. Evidence from one variably weathered pillow suggests that extreme low-temperature oxidation may lead to the acquisition of a secondary component with high coercivities (20–80 mT). We could not determine whether this was a chemical remanent magnetization (CRM) or a VRM acquired by single domain grains near the superparamagnetic threshold. Hysteresis properties confirmed by microscopic examination indicated that the magnetic grain size in all the pillows was at least as small as pseudo-single domain.  相似文献   

14.
The stability of natural remanent magnetization of three samples of oceanic basalts (DSDP Leg 25) is tested by alternating fields, thermal and pressure demagnetization. The possibility of low-temperature oxidation is examined by means of thermomagnetic curves.The effects of uniaxial compressions on initial susceptibility and induced magnetization are studied for the three samples. These experiments, performed in a field comparable to the geomagnetic field have shown large variations of magnetization. The results of paleomagnetism, as well as the interpretation of anomalies when the effects of the pressure of water and of possible sediments far from the ridge itself are taken into account, are discussed. The results could partly account for the decrease of magnetic anomaly amplitudes with distance from the mid-ocean ridge.  相似文献   

15.
A combined study of magnetic parameters of basalt and andesite samples is performed in the framework of geological investigations of the Franz Josef Land at the paleomagnetic laboratory of Munich University. The study included the determination of the coercivity, saturation magnetization, Curie points, natural remanent magnetization (NRM), and magnetic susceptibility and the examination of ferromagnetic minerals with a microscope. Data on the chemical composition of rocks are obtained for all samples, and radiological ages are determined for the majority of rocks.Thermomagnetic curves of samples are subdivided into four types depending on the composition of ferromagnetic NRM carriers.The data obtained point to multiple changes in the predominant composition of igneous rocks. Each stage of magmatism is characterized by a specific type of the ferromagnetic component in the rocks and, therefore, magnetomineralogical investigations can be used for differentiation and correlation of the igneous rocks.  相似文献   

16.
Deposition experiments have been carried out to measure the effect of particle size variation on the relationship between detrital remanent magnetization (DRM), anhysteretic remanent magnetization (ARM), and geomagnetic field intensity in sediments.Foraminiferal ooze from a box core taken in the Columbian Basin south of Jamaica was separated into several particle size ranges and redeposited in the laboratory in known magnetic fields. The intensity and alternating field (AF) demagnetization characteristics of the DRM and a subsequently applied ARM were compared for the various particle size ranges.The results show a variation of DRM/ARM ratios with particle size. The DRM intensities and directions indicate that particle sizes greater than 38 μm do not contribute significantly to the DRM of the total sediment. ARM intensities for larger particle sizes and particle size analysis of the whole sediment indicate that the fraction greater than 38 μm does make a significant contribution to the total ARM of a sample. Use of the DRM/ARM ratio in experimental measurements of magnetic paleointensity indicates that the method is unsatisfactory for sediments having a significant fraction of magnetic particles larger than 38 μm. It is also shown that, for sediments having a significant fraction of high-coercivity magnetic grains, the relative orientation of the ARM and DRM will affect ARM intensities, making necessary the use of corrected ARM and DRM intensities for ratio calculations.  相似文献   

17.
Experimental evidence and theory indicate that chemical changes occur in many igneous rocks at sufficiently low temperatures to significantly affect the remanent magnetization. Some chemical changes lead to self-reversals of magnetization that are not reproducible in laboratory experiments. Such self-reversals appear to be very rare in subaerially-erupted basalts, but they probably are much more common in some other rock types, such as granites and diorites. The stability of the natural remanent magnetization in igneous rocks can be decreased, left unaltered, or increased by chemical changes. In addition, chemical changes will usually affect the intensity of magnetization in a rock; the intensity can increase, decrease, or (rarely) be left unaltered by a chemical change. Such changes are important to consider in the development of improved techniques for obtaining reliable estimates of the intensity of the Earth's magnetic field in the past and in correctly interpreting marine magnetic anomalies. Finally, experiments and theory are presented which suggest that many of the chemical changes in igneous rocks will only occasionally produce significant changes in the direction of the magnetization.  相似文献   

18.
This paper reports on magnetic and magnetomineralogical studies of soils influenced by ironworks activity. Researches were conducted in five areas, of which Ostrowiec Świętokrzyski ironworks area is described in detail. A map of magnetic susceptibility was created based on field measurements and samples taken from soil profile were analyzed in laboratory. Measurements of magnetic susceptibility in two frequency ranges, anhysteretic remanent magnetization, isothermal remanent magnetization thermomagnetic and geochemical analysis were carried out. SEM was used to identify ferromagnetic fractions. As a result the horizontal and vertical extent of heavy metals pollution was established.  相似文献   

19.
The general problem of magnetic modelling involves accounting for the effect of both remanent magnetization and the application of an external magnetic field. However, as far as the disturbing field of a magnetic body in a magnetic environment is concerned, there is an equivalence between the effects of these two causations that allows the remanence to be represented in terms of an equivalent primary magnetic H field. Moreover, due to the linearity of the magnetic field in terms of its causations, the general modelling problem involving an applied magnetic field in the presence of remanence can be simply and more efficiently dealt with in terms of an equivalent primary field acting in the absence of any remanent magnetization.  相似文献   

20.
The data on the amplitude of variations in the direction and paleointensity of the geomagnetic field and the frequency of reversals throughout the last 50 Myr near the Paleozoic/Mesozoic and Mesozoic/Cenozoic boundaries, characterized by peaks of magmatic activity of Siberian and Deccan traps, and data on the amplitude of variations in the geomagnetic field direction relative to contemporary world magnetic anomalies are generalized. The boundaries of geological eras are not fixed in recorded paleointensity, polarity, reversal frequency, and variations in the geomagnetic field direction. Against the background of the “normal” field, nearly the same tendency of an increase in the amplitude of field direction variations is observed toward epicenters of contemporary lower mantle plumes; Greenland, Deccan, and Siberian superplumes; and world magnetic anomalies. This suggests a common origin of lower mantle plumes of various formation times, world magnetic anomalies, and the rise in the amplitude of geomagnetic field variations; i.e., all these phenomena are due to a local excitation in the upper part of the liquid core. Large plumes arise in intervals of the most significant changes in the paleointensity (drops or rises), while no correlation exists between the plume generation and the reversal frequency: times of plume formation correlate with the very diverse patterns of the frequency of reversals, from their total absence to maximum frequencies, implying that world magnetic anomalies, variations in the magnetic field direction and paleointensity, and plumes, on the one hand, and field reversals, on the other, have different sources. The time interval between magmatic activity of a plume at the Earth’s surface and its origination at the core-mantle boundary (the time of the plume rise toward the surface) amounts to 20–50 Myr in all cases considered. Different rise times are apparently associated with different paths of the plume rise, “delays” in the plume upward movement, and so on. The spread in “delay” times of each plume can be attributed to uncertainties in age determinations of paleomagnetic study objects and/or the natural remanent magnetization, but it is more probable that this is a result of the formation of a series of plumes (superplumes) in approximately the same region at the core-mantle boundary in the aforementioned time interval. Such an interpretation is supported by the existence of compact clusters of higher field direction amplitudes between 300 and 200 Ma that are possible regions of formation of world magnetic anomalies and plumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号